summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py133
1 files changed, 4 insertions, 129 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 6c6488547..b8223f7c6 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -204,8 +204,6 @@ add_newdoc('numpy.core', 'nditer',
copies those elements indicated by this mask.
* 'writemasked' indicates that only elements where the chosen
'arraymask' operand is True will be written to.
- * 'use_maskna' indicates that this operand should be treated
- like an NA-masked array.
op_dtypes : dtype or tuple of dtype(s), optional
The required data type(s) of the operands. If copying or buffering
is enabled, the data will be converted to/from their original types.
@@ -640,7 +638,7 @@ add_newdoc('numpy.core', 'broadcast', ('reset',
add_newdoc('numpy.core.multiarray', 'array',
"""
- array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0, maskna=None, ownmaskna=False)
+ array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
Create an array.
@@ -676,25 +674,6 @@ add_newdoc('numpy.core.multiarray', 'array',
Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.
- maskna : bool or None, optional
- If this is set to True, it forces the array to have an NA mask.
- If the input is an array without a mask, this means a view with
- an NA mask is created. If the input is an array with a mask, the
- mask is preserved as-is.
-
- If this is set to False, it forces the array to not have an NA
- mask. If the input is an array with a mask, and has no NA values,
- it will create a copy of the input without an NA mask.
-
- .. versionadded:: 1.7.0
-
- ownmaskna : bool, optional
- If this is set to True, forces the array to have a mask which
- it owns. It may still return a view of the data from the input,
- but the result will always own its own mask.
-
- .. versionadded:: 1.7.0
-
Returns
-------
@@ -705,11 +684,6 @@ add_newdoc('numpy.core.multiarray', 'array',
--------
empty, empty_like, zeros, zeros_like, ones, ones_like, fill
- Notes
- -----
- The `maskna` and `ownmaskna` keywords are *experimental* in the 1.7
- release; their behavior may change in future versions.
-
Examples
--------
>>> np.array([1, 2, 3])
@@ -769,8 +743,6 @@ add_newdoc('numpy.core.multiarray', 'empty',
order : {'C', 'F'}, optional
Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.
- maskna : boolean
- If this is true, the returned array will have an NA mask.
See Also
--------
@@ -919,35 +891,6 @@ add_newdoc('numpy.core.multiarray', 'zeros',
""")
-add_newdoc('numpy.core.multiarray', 'isna',
- """
- isna(a)
-
- Returns an array with True for each element of *a* that is NA.
-
- Parameters
- ----------
- a : array_like
- The array for which to check for NA.
-
- Returns
- -------
- result : bool or array of bool
- Number of non-zero values in the array.
-
- Examples
- --------
- >>> np.isna(np.NA)
- True
- >>> np.isna(1.5)
- False
- >>> np.isna(np.nan)
- False
- >>> a = np.array([0, np.NA, 3.5, np.NA])
- >>> np.isna(a)
- array([False, True, False, True], dtype=bool)
- """)
-
add_newdoc('numpy.core.multiarray', 'count_nonzero',
"""
count_nonzero(a)
@@ -962,9 +905,6 @@ add_newdoc('numpy.core.multiarray', 'count_nonzero',
Axis or axes along which a reduction is performed.
The default (`axis` = None) is perform a reduction over all
the dimensions of the input array.
- skipna : bool, optional
- If this is set to True, any NA elements in the array are skipped
- instead of propagating.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
@@ -992,60 +932,6 @@ add_newdoc('numpy.core.multiarray', 'count_nonzero',
[3]])
""")
-add_newdoc('numpy.core.multiarray', 'count_reduce_items',
- """
- count_reduce_items(arr, axis=None, skipna=False, keepdims=False)
-
- Counts the number of items a reduction with the same `axis`
- and `skipna` parameter values would use. The purpose of this
- function is for the creation of reduction operations
- which use the item count, such as :func:`mean`.
-
- When `skipna` is False or `arr` doesn't have an NA mask,
- the result is simply the product of the reduction axis
- sizes, returned as a single scalar.
-
- Parameters
- ----------
- arr : array_like
- The array for which to count the reduce items.
- axis : None or int or tuple of ints, optional
- Axis or axes along which a reduction is performed.
- The default (`axis` = None) is perform a reduction over all
- the dimensions of the input array.
- skipna : bool, optional
- If this is set to True, any NA elements in the array are not
- counted. The only time this function does any actual counting
- instead of a cheap multiply of a few sizes is when `skipna` is
- true and `arr` has an NA mask.
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the original `arr`.
-
- Returns
- -------
- count : intp or array of intp
- Number of items that would be used in a reduction with the
- same `axis` and `skipna` parameter values.
-
- Examples
- --------
- >>> a = np.array([[1,np.NA,1], [1,1,np.NA]])
-
- >>> np.count_reduce_items(a)
- 6
- >>> np.count_reduce_items(a, skipna=True)
- 4
- >>> np.sum(a, skipna=True)
- 4
-
- >>> np.count_reduce_items(a, axis=0, skipna=True)
- array([2, 1, 1])
- >>> np.sum(a, axis=0, skipna=True)
- array([2, 1, 1])
- """)
-
add_newdoc('numpy.core.multiarray','set_typeDict',
"""set_typeDict(dict)
@@ -1409,7 +1295,7 @@ add_newdoc('numpy.core.multiarray','correlate',
add_newdoc('numpy.core.multiarray', 'arange',
"""
- arange([start,] stop[, step,], dtype=None, maskna=False)
+ arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
@@ -1438,8 +1324,6 @@ add_newdoc('numpy.core.multiarray', 'arange',
dtype : dtype
The type of the output array. If `dtype` is not given, infer the data
type from the other input arguments.
- maskna : boolean
- If this is true, the returned array will have an NA mask.
Returns
-------
@@ -3320,7 +3204,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
"""
- a.copy(order='C', maskna=None)
+ a.copy(order='C')
Return a copy of the array.
@@ -3331,10 +3215,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
- maskna : bool, optional
- If specifies, forces the copy to have or to not have an
- NA mask. This is a way to remove an NA mask from an array
- while making a copy.
See also
--------
@@ -5470,7 +5350,7 @@ add_newdoc('numpy.core', 'ufunc', ('types',
add_newdoc('numpy.core', 'ufunc', ('reduce',
"""
- reduce(a, axis=0, dtype=None, out=None, skipna=False, keepdims=False)
+ reduce(a, axis=0, dtype=None, out=None, keepdims=False)
Reduces `a`'s dimension by one, by applying ufunc along one axis.
@@ -5515,11 +5395,6 @@ add_newdoc('numpy.core', 'ufunc', ('reduce',
out : ndarray, optional
A location into which the result is stored. If not provided, a
freshly-allocated array is returned.
- skipna : bool, optional
- If this is set to True, the reduction is done as if any NA elements
- were not counted in the array. The default, False, causes the
- NA values to propagate, so if any element in a set of elements
- being reduced is NA, the result will be NA.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,