summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py1422
1 files changed, 1422 insertions, 0 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
new file mode 100644
index 000000000..7b04ee2f4
--- /dev/null
+++ b/numpy/add_newdocs.py
@@ -0,0 +1,1422 @@
+from lib import add_newdoc
+
+add_newdoc('numpy.core','dtype',
+ [('fields', "Fields of the data-type or None if no fields"),
+ ('names', "Names of fields or None if no fields"),
+ ('alignment', "Needed alignment for this data-type"),
+ ('byteorder',
+ "Little-endian (<), big-endian (>), native (=), or "\
+ "not-applicable (|)"),
+ ('char', "Letter typecode for this data-type"),
+ ('type', "Type object associated with this data-type"),
+ ('kind', "Character giving type-family of this data-type"),
+ ('itemsize', "Size of each item"),
+ ('hasobject', "Non-zero if Python objects are in "\
+ "this data-type"),
+ ('num', "Internally-used number for builtin base"),
+ ('newbyteorder',
+"""self.newbyteorder(<endian>)
+returns a copy of the dtype object with altered byteorders.
+If <endian> is not given all byteorders are swapped.
+Otherwise endian can be '>', '<', or '=' to force a particular
+byteorder. Data-types in all fields are also updated in the
+new dtype object.
+"""),
+ ("__reduce__", "self.__reduce__() for pickling"),
+ ("__setstate__", "self.__setstate__() for pickling"),
+ ("subdtype", "A tuple of (descr, shape) or None"),
+ ("descr", "The array_interface data-type descriptor."),
+ ("str", "The array interface typestring."),
+ ("name", "The name of the true data-type"),
+ ("base", "The base data-type or self if no subdtype"),
+ ("shape", "The shape of the subdtype or (1,)"),
+ ("isbuiltin", "Is this a built-in data-type?"),
+ ("isnative", "Is the byte-order of this data-type native?")
+ ]
+ )
+
+###############################################################################
+#
+# flatiter
+#
+# flatiter needs a toplevel description
+#
+###############################################################################
+
+# attributes
+add_newdoc('numpy.core', 'flatiter', ('base',
+ """documentation needed
+
+ """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('coords',
+ """An N-d tuple of current coordinates.
+
+ """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('index',
+ """documentation needed
+
+ """))
+
+
+
+# functions
+add_newdoc('numpy.core', 'flatiter', ('__array__',
+ """__array__(type=None) Get array from iterator
+
+ """))
+
+
+add_newdoc('numpy.core', 'flatiter', ('copy',
+ """copy() Get a copy of the iterator as a 1-d array
+
+ """))
+
+
+###############################################################################
+#
+# broadcast
+#
+###############################################################################
+
+# attributes
+add_newdoc('numpy.core', 'broadcast', ('index',
+ """current index in broadcasted result
+
+ """))
+
+
+add_newdoc('numpy.core', 'broadcast', ('iters',
+ """tuple of individual iterators
+
+ """))
+
+
+add_newdoc('numpy.core', 'broadcast', ('nd',
+ """number of dimensions of broadcasted result
+
+ """))
+
+
+add_newdoc('numpy.core', 'broadcast', ('numiter',
+ """number of iterators
+
+ """))
+
+
+add_newdoc('numpy.core', 'broadcast', ('shape',
+ """shape of broadcasted result
+
+ """))
+
+
+add_newdoc('numpy.core', 'broadcast', ('size',
+ """total size of broadcasted result
+
+ """))
+
+
+###############################################################################
+#
+# numpy functions
+#
+###############################################################################
+
+add_newdoc('numpy.core.multiarray','array',
+ """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)
+
+ Return an array from object with the specified date-type.
+
+ Inputs:
+ object - an array, any object exposing the array interface, any
+ object whose __array__ method returns an array, or any
+ (nested) sequence.
+ dtype - The desired data-type for the array. If not given, then
+ the type will be determined as the minimum type required
+ to hold the objects in the sequence. This argument can only
+ be used to 'upcast' the array. For downcasting, use the
+ .astype(t) method.
+ copy - If true, then force a copy. Otherwise a copy will only occur
+ if __array__ returns a copy, obj is a nested sequence, or
+ a copy is needed to satisfy any of the other requirements
+ order - Specify the order of the array. If order is 'C', then the
+ array will be in C-contiguous order (last-index varies the
+ fastest). If order is 'FORTRAN', then the returned array
+ will be in Fortran-contiguous order (first-index varies the
+ fastest). If order is None, then the returned array may
+ be in either C-, or Fortran-contiguous order or even
+ discontiguous.
+ subok - If True, then sub-classes will be passed-through, otherwise
+ the returned array will be forced to be a base-class array
+ ndmin - Specifies the minimum number of dimensions that the resulting
+ array should have. 1's will be pre-pended to the shape as
+ needed to meet this requirement.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','empty',
+ """empty((d1,...,dn),dtype=float,order='C')
+
+ Return a new array of shape (d1,...,dn) and given type with all its
+ entries uninitialized. This can be faster than zeros.
+
+ """)
+
+
+add_newdoc('numpy.core.multiarray','scalar',
+ """scalar(dtype,obj)
+
+ Return a new scalar array of the given type initialized with
+ obj. Mainly for pickle support. The dtype must be a valid data-type
+ descriptor. If dtype corresponds to an OBJECT descriptor, then obj
+ can be any object, otherwise obj must be a string. If obj is not given
+ it will be interpreted as None for object type and zeros for all other
+ types.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','zeros',
+ """zeros((d1,...,dn),dtype=float,order='C')
+
+ Return a new array of shape (d1,...,dn) and type typecode with all
+ it's entries initialized to zero.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','set_typeDict',
+ """set_typeDict(dict)
+
+ Set the internal dictionary that can look up an array type using a
+ registered code.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','fromstring',
+ """fromstring(string, dtype=float, count=-1, sep='')
+
+ Return a new 1d array initialized from the raw binary data in string.
+
+ If count is positive, the new array will have count elements, otherwise its
+ size is determined by the size of string. If sep is not empty then the
+ string is interpreted in ASCII mode and converted to the desired number type
+ using sep as the separator between elements (extra whitespace is ignored).
+
+ """)
+
+add_newdoc('numpy.core.multiarray','fromiter',
+ """fromiter(iterable, dtype, count=-1)
+
+ Return a new 1d array initialized from iterable. If count is
+ nonegative, the new array will have count elements, otherwise it's
+ size is determined by the generator.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','fromfile',
+ """fromfile(file=, dtype=float, count=-1, sep='') -> array.
+
+ Required arguments:
+ file -- open file object or string containing file name.
+
+ Keyword arguments:
+ dtype -- type and order of the returned array (default float)
+ count -- number of items to input (default all)
+ sep -- separater between items if file is a text file (default "")
+
+ Return an array of the given data type from a text or binary file. The
+ 'file' argument can be an open file or a string with the name of a file to
+ read from. If 'count' == -1 the entire file is read, otherwise count is the
+ number of items of the given type to read in. If 'sep' is "" it means to
+ read binary data from the file using the specified dtype, otherwise it gives
+ the separator between elements in a text file. The 'dtype' value is also
+ used to determine the size and order of the items in binary files.
+
+
+ Data written using the tofile() method can be conveniently recovered using
+ this function.
+
+ WARNING: This function should be used sparingly as the binary files are not
+ platform independent. In particular, they contain no endianess or datatype
+ information. Nevertheless it can be useful for reading in simply formatted
+ or binary data quickly.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','frombuffer',
+ """frombuffer(buffer=, dtype=float, count=-1, offset=0)
+
+ Returns a 1-d array of data type dtype from buffer. The buffer
+ argument must be an object that exposes the buffer interface. If
+ count is -1 then the entire buffer is used, otherwise, count is the
+ size of the output. If offset is given then jump that far into the
+ buffer. If the buffer has data that is out not in machine byte-order,
+ than use a propert data type descriptor. The data will not be
+ byteswapped, but the array will manage it in future operations.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','concatenate',
+ """concatenate((a1, a2, ...), axis=0)
+
+ Join arrays together.
+
+ The tuple of sequences (a1, a2, ...) are joined along the given axis
+ (default is the first one) into a single numpy array.
+
+ Example:
+
+ >>> concatenate( ([0,1,2], [5,6,7]) )
+ array([0, 1, 2, 5, 6, 7])
+
+ """)
+
+add_newdoc('numpy.core.multiarray','inner',
+ """inner(a,b)
+
+ Returns the dot product of two arrays, which has shape a.shape[:-1] +
+ b.shape[:-1] with elements computed by the product of the elements
+ from the last dimensions of a and b.
+
+ """)
+
+add_newdoc('numpy.core','fastCopyAndTranspose',
+ """_fastCopyAndTranspose(a)""")
+
+add_newdoc('numpy.core.multiarray','correlate',
+ """cross_correlate(a,v, mode=0)""")
+
+add_newdoc('numpy.core.multiarray','arange',
+ """arange([start,] stop[, step,], dtype=None)
+
+ For integer arguments, just like range() except it returns an array
+ whose type can be specified by the keyword argument dtype. If dtype
+ is not specified, the type of the result is deduced from the type of
+ the arguments.
+
+ For floating point arguments, the length of the result is ceil((stop -
+ start)/step). This rule may result in the last element of the result
+ being greater than stop.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','_get_ndarray_c_version',
+ """_get_ndarray_c_version()
+
+ Return the compile time NDARRAY_VERSION number.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','_reconstruct',
+ """_reconstruct(subtype, shape, dtype)
+
+ Construct an empty array. Used by Pickles.
+
+ """)
+
+
+add_newdoc('numpy.core.multiarray','set_string_function',
+ """set_string_function(f, repr=1)
+
+ Set the python function f to be the function used to obtain a pretty
+ printable string version of an array whenever an array is printed.
+ f(M) should expect an array argument M, and should return a string
+ consisting of the desired representation of M for printing.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','set_numeric_ops',
+ """set_numeric_ops(op=func, ...)
+
+ Set some or all of the number methods for all array objects. Do not
+ forget **dict can be used as the argument list. Return the functions
+ that were replaced, which can be stored and set later.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','where',
+ """where(condition, | x, y)
+
+ The result is shaped like condition and has elements of x and y where
+ condition is respectively true or false. If x or y are not given,
+ then it is equivalent to condition.nonzero().
+
+ To group the indices by element, rather than dimension, use
+
+ transpose(where(condition, | x, y))
+
+ instead. This always results in a 2d array, with a row of indices for
+ each element that satisfies the condition.
+
+ """)
+
+
+add_newdoc('numpy.core.multiarray','lexsort',
+ """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys.
+
+ Perform an indirect sort using a list of keys. The first key is sorted,
+ then the second, and so on through the list of keys. At each step the
+ previous order is preserved when equal keys are encountered. The result is
+ a sort on multiple keys. If the keys represented columns of a spreadsheet,
+ for example, this would sort using multiple columns (the last key being
+ used for the primary sort order, the second-to-last key for the secondary
+ sort order, and so on). The keys argument must be a sequence of things
+ that can be converted to arrays of the same shape.
+
+ :Parameters:
+
+ a : array type
+ Array containing values that the returned indices should sort.
+
+ axis : integer
+ Axis to be indirectly sorted. None indicates that the flattened
+ array should be used. Default is -1.
+
+ :Returns:
+
+ indices : integer array
+ Array of indices that sort the keys along the specified axis. The
+ array has the same shape as the keys.
+
+ :SeeAlso:
+
+ - argsort : indirect sort
+ - sort : inplace sort
+
+ """)
+
+add_newdoc('numpy.core.multiarray','can_cast',
+ """can_cast(from=d1, to=d2)
+
+ Returns True if data type d1 can be cast to data type d2 without
+ losing precision.
+
+ """)
+
+add_newdoc('numpy.core.multiarray','newbuffer',
+ """newbuffer(size)
+
+ Return a new uninitialized buffer object of size bytes
+
+ """)
+
+add_newdoc('numpy.core.multiarray','getbuffer',
+ """getbuffer(obj [,offset[, size]])
+
+ Create a buffer object from the given object referencing a slice of
+ length size starting at offset. Default is the entire buffer. A
+ read-write buffer is attempted followed by a read-only buffer.
+
+ """)
+
+##############################################################################
+#
+# Documentation for ndarray attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ndarray object
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray',
+ """An array object represents a multidimensional, homogeneous array
+ of fixed-size items. An associated data-type-descriptor object
+ details the data-type in an array (including byteorder and any
+ fields). An array can be constructed using the numpy.array
+ command. Arrays are sequence, mapping and numeric objects.
+ More information is available in the numpy module and by looking
+ at the methods and attributes of an array.
+
+ ndarray.__new__(subtype, shape=, dtype=float, buffer=None,
+ offset=0, strides=None, order=None)
+
+ There are two modes of creating an array using __new__:
+ 1) If buffer is None, then only shape, dtype, and order
+ are used
+ 2) If buffer is an object exporting the buffer interface, then
+ all keywords are interpreted.
+ The dtype parameter can be any object that can be interpreted
+ as a numpy.dtype object.
+
+ No __init__ method is needed because the array is fully
+ initialized after the __new__ method.
+
+ """)
+
+
+##############################################################################
+#
+# ndarray attributes
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
+ """Array protocol: Python side."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
+ """None."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
+ """Array priority."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
+ """Array protocol: C-struct side."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
+ """Allow the array to be interpreted as a ctypes object by returning the
+ data-memory location as an integer
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
+ """Base object if memory is from some other object.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
+ """A ctypes interface object.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
+ """Buffer object pointing to the start of the data.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
+ """Data-type for the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
+ """Imaginary part of the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
+ """Length of one element in bytes.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
+ """Special object providing array flags.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
+ """A 1-d flat iterator.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
+ """Number of bytes in the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
+ """Number of array dimensions.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
+ """Real part of the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
+ """Tuple of array dimensions.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
+ """Number of elements in the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
+ """Tuple of bytes to step in each dimension.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
+ """Same as self.transpose() except self is returned for self.ndim < 2.
+
+ """))
+
+
+##############################################################################
+#
+# ndarray methods
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
+ """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
+
+ Returns either a new reference to self if dtype is not given or a new array
+ of provided data type if dtype is different from the current dtype of the
+ array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
+ """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
+ """a.__copy__(|order) -> copy, possibly with different order.
+
+ Return a copy of the array.
+
+ Argument:
+ order -- Order of returned copy (default 'C')
+ If order is 'C' (False) then the result is contiguous (default).
+ If order is 'Fortran' (True) then the result has fortran order.
+ If order is 'Any' (None) then the result has fortran order
+ only if m is already in fortran order.;
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
+ """a.__deepcopy__() -> Deep copy of array.
+
+ Used if copy.deepcopy is called on an array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
+ """a.__reduce__()
+
+ For pickling.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
+ """a.__setstate__(version, shape, typecode, isfortran, rawdata)
+
+ For unpickling.
+
+ Arguments:
+ version -- optional pickle version. If omitted defaults to 0.
+ shape -- a tuple giving the shape
+ typecode -- a typecode
+ isFortran -- a bool stating if Fortran or no
+ rawdata -- a binary string with the data (or a list if Object array)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
+ """ a.all(axis=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
+ """ a.any(axis=None, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
+ """ a.argmax(axis=None, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
+ """ a.argmin(axis=None, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
+ """a.argsort(axis=-1, kind='quicksort', order=None) -> indices
+
+ Perform an indirect sort along the given axis using the algorithm specified
+ by the kind keyword. It returns an array of indices of the same shape as
+ 'a' that index data along the given axis in sorted order.
+
+ :Parameters:
+
+ axis : integer
+ Axis to be indirectly sorted. None indicates that the flattened
+ array should be used. Default is -1.
+
+ kind : string
+ Sorting algorithm to use. Possible values are 'quicksort',
+ 'mergesort', or 'heapsort'. Default is 'quicksort'.
+
+ order : list type or None
+ When a is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. Not all fields need be
+ specified.
+
+ :Returns:
+
+ indices : integer array
+ Array of indices that sort 'a' along the specified axis.
+
+ :SeeAlso:
+
+ - lexsort : indirect stable sort with multiple keys
+ - sort : inplace sort
+
+ :Notes:
+ ------
+
+ The various sorts are characterized by average speed, worst case
+ performance, need for work space, and whether they are stable. A stable
+ sort keeps items with the same key in the same relative order. The three
+ available algorithms have the following properties:
+
+ |------------------------------------------------------|
+ | kind | speed | worst case | work space | stable|
+ |------------------------------------------------------|
+ |'quicksort'| 1 | O(n^2) | 0 | no |
+ |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
+ |'heapsort' | 3 | O(n*log(n)) | 0 | no |
+ |------------------------------------------------------|
+
+ All the sort algorithms make temporary copies of the data when the sort is not
+ along the last axis. Consequently, sorts along the last axis are faster and use
+ less space than sorts along other axis.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
+ """a.astype(t) -> Copy of array cast to type t.
+
+ Cast array m to type t. t can be either a string representing a typecode,
+ or a python type object of type int, float, or complex.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
+ """a.byteswap(False) -> View or copy. Swap the bytes in the array.
+
+ Swap the bytes in the array. Return the byteswapped array. If the first
+ argument is True, byteswap in-place and return a reference to self.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
+ """ a.choose(b0, b1, ..., bn, out=None, mode='raise')
+
+ Return an array that merges the b_i arrays together using 'a' as
+ the index The b_i arrays and 'a' must all be broadcastable to the
+ same shape. The output at a particular position is the input
+ array b_i at that position depending on the value of 'a' at that
+ position. Therefore, 'a' must be an integer array with entries
+ from 0 to n+1.;
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
+ """a.clip(min=, max=, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
+ """a.compress(condition=, axis=None, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
+ """a.conj()
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
+ """a.conjugate()
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
+ """a.copy(|order) -> copy, possibly with different order.
+
+ Return a copy of the array.
+
+ Argument:
+ order -- Order of returned copy (default 'C')
+ If order is 'C' (False) then the result is contiguous (default).
+ If order is 'Fortran' (True) then the result has fortran order.
+ If order is 'Any' (None) then the result has fortran order
+ only if m is already in fortran order.;
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
+ """a.cumprod(axis=None, dtype=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
+ """a.cumsum(axis=None, dtype=None, out=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
+ """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals
+
+ If a is 2-d, return the diagonal of self with the given offset, i.e., the
+ collection of elements of the form a[i,i+offset]. If a is n-d with n > 2,
+ then the axes specified by axis1 and axis2 are used to determine the 2-d
+ subarray whose diagonal is returned. The shape of the resulting array can
+ be determined by removing axis1 and axis2 and appending an index to the
+ right equal to the size of the resulting diagonals.
+
+ :Parameters:
+ offset : integer
+ Offset of the diagonal from the main diagonal. Can be both positive
+ and negative. Defaults to main diagonal.
+ axis1 : integer
+ Axis to be used as the first axis of the 2-d subarrays from which
+ the diagonals should be taken. Defaults to first index.
+ axis2 : integer
+ Axis to be used as the second axis of the 2-d subarrays from which
+ the diagonals should be taken. Defaults to second index.
+
+ :Returns:
+ array_of_diagonals : same type as original array
+ If a is 2-d, then a 1-d array containing the diagonal is returned.
+ If a is n-d, n > 2, then an array of diagonals is returned.
+
+ :SeeAlso:
+ - diag : matlab workalike for 1-d and 2-d arrays.
+ - diagflat : creates diagonal arrays
+ - trace : sum along diagonals
+
+ Examples
+ --------
+
+ >>> a = arange(4).reshape(2,2)
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> a.diagonal()
+ array([0, 3])
+ >>> a.diagonal(1)
+ array([1])
+
+ >>> a = arange(8).reshape(2,2,2)
+ >>> a
+ array([[[0, 1],
+ [2, 3]],
+
+ [[4, 5],
+ [6, 7]]])
+ >>> a.diagonal(0,-2,-1)
+ array([[0, 3],
+ [4, 7]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
+ """a.dump(file) Dump a pickle of the array to the specified file.
+
+ The array can be read back with pickle.load or numpy.load
+
+ Arguments:
+ file -- string naming the dump file.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
+ """a.dumps() returns the pickle of the array as a string.
+
+ pickle.loads or numpy.loads will convert the string back to an array.
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
+ """a.fill(value) -> None. Fill the array with the scalar value.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
+ """a.flatten([fortran]) return a 1-d array (always copy)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
+ """a.getfield(dtype, offset) -> field of array as given type.
+
+ Returns a field of the given array as a certain type. A field is a view of
+ the array data with each itemsize determined by the given type and the
+ offset into the current array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
+ """a.item() -> copy of first array item as Python scalar.
+
+ Copy the first element of array to a standard Python scalar and return
+ it. The array must be of size one.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
+ """a.max(axis=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
+ """a.mean(axis=None, dtype=None, out=None) -> mean
+
+ Returns the average of the array elements. The average is taken over the
+ flattened array by default, otherwise over the specified axis.
+
+ :Parameters:
+
+ axis : integer
+ Axis along which the means are computed. The default is
+ to compute the standard deviation of the flattened array.
+
+ dtype : type
+ Type to use in computing the means. For arrays of
+ integer type the default is float32, for arrays of float types it
+ is the same as the array type.
+
+ out : ndarray
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type will be cast if
+ necessary.
+
+ :Returns:
+
+ mean : The return type varies, see above.
+ A new array holding the result is returned unless out is specified,
+ in which case a reference to out is returned.
+
+ :SeeAlso:
+
+ - var : variance
+ - std : standard deviation
+
+ Notes
+ -----
+
+ The mean is the sum of the elements along the axis divided by the
+ number of elements.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
+ """a.min(axis=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
+ """a.newbyteorder(<byteorder>) is equivalent to
+ a.view(a.dtype.newbytorder(<byteorder>))
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
+ """a.nonzero() returns a tuple of arrays
+
+ Returns a tuple of arrays, one for each dimension of a,
+ containing the indices of the non-zero elements in that
+ dimension. The corresponding non-zero values can be obtained
+ with
+ a[a.nonzero()].
+
+ To group the indices by element, rather than dimension, use
+ transpose(a.nonzero())
+ instead. The result of this is always a 2d array, with a row for
+ each non-zero element.;
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
+ """a.prod(axis=None, dtype=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
+ """a.ptp(axis=None) a.max(axis)-a.min(axis)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
+ """a.put(indices, values, mode) sets a.flat[n] = values[n] for
+ each n in indices. If values is shorter than indices then it
+ will repeat.
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'putmask',
+ """putmask(a, mask, values) sets a.flat[n] = values[n] for each n where
+ mask.flat[n] is true. If values is not the same size of a and mask then
+ it will repeat. This gives different behavior than a[mask] = values.
+ """)
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
+ """a.ravel([fortran]) return a 1-d array (copy only if needed)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
+ """a.repeat(repeats=, axis=none)
+
+ copy elements of a, repeats times. the repeats argument must be a sequence
+ of length a.shape[axis] or a scalar.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
+ """a.reshape(d1, d2, ..., dn, order='c')
+
+ Return a new array from this one. The new array must have the same number
+ of elements as self. Also always returns a view or raises a ValueError if
+ that is impossible.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
+ """a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape.
+
+ Change size and shape of self inplace. Array must own its own memory and
+ not be referenced by other arrays. Returns None.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
+ """a.round(decimals=0, out=None) -> out (a). Rounds to 'decimals' places.
+
+ Keyword arguments:
+ decimals -- number of decimals to round to (default 0). May be negative.
+ out -- existing array to use for output (default a).
+
+ Return:
+ Reference to out, where None specifies the original array a.
+
+ Round to the specified number of decimals. When 'decimals' is negative it
+ specifies the number of positions to the left of the decimal point. The
+ real and imaginary parts of complex numbers are rounded separately. Nothing
+ is done if the array is not of float type and 'decimals' is >= 0.
+
+ The keyword 'out' may be used to specify a different array to hold the
+ result rather than the default 'a'. If the type of the array specified by
+ 'out' differs from that of 'a', the result is cast to the new type,
+ otherwise the original type is kept. Floats round to floats by default.
+
+ Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to
+ 0.0, etc. Results may also be surprising due to the inexact representation
+ of decimal fractions in IEEE floating point and the errors introduced in
+ scaling the numbers when 'decimals' is something other than 0.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
+ """a.searchsorted(v, side='left') -> index array.
+
+ Find the indices into a sorted array such that if the corresponding keys in
+ v were inserted before the indices the order of a would be preserved. If
+ side='left', then the first such index is returned. If side='right', then
+ the last such index is returned. If there is no such index because the key
+ is out of bounds, then the length of a is returned, i.e., the key would
+ need to be appended. The returned index array has the same shape as v.
+
+ :Parameters:
+
+ v : array or list type
+ Array of keys to be searched for in a.
+
+ side : string
+ Possible values are : 'left', 'right'. Default is 'left'. Return
+ the first or last index where the key could be inserted.
+
+ :Returns:
+
+ indices : integer array
+ The returned array has the same shape as v.
+
+ :SeeAlso:
+
+ - sort
+ - histogram
+
+ :Notes:
+ -------
+
+ The array a must be 1-d and is assumed to be sorted in ascending order.
+ Searchsorted uses binary search to find the required insertion points.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
+ """m.setfield(value, dtype, offset) -> None.
+ places val into field of the given array defined by the data type and offset.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
+ """a.setflags(write=None, align=None, uic=None)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
+ """a.sort(axis=-1, kind='quicksort', order=None) -> None.
+
+ Perform an inplace sort along the given axis using the algorithm specified
+ by the kind keyword.
+
+ :Parameters:
+
+ axis : integer
+ Axis to be sorted along. None indicates that the flattened array
+ should be used. Default is -1.
+
+ kind : string
+ Sorting algorithm to use. Possible values are 'quicksort',
+ 'mergesort', or 'heapsort'. Default is 'quicksort'.
+
+ order : list type or None
+ When a is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. Not all fields need be
+ specified.
+
+ :Returns:
+
+ None
+
+ :SeeAlso:
+
+ - argsort : indirect sort
+ - lexsort : indirect stable sort on multiple keys
+ - searchsorted : find keys in sorted array
+
+ :Notes:
+ ------
+
+ The various sorts are characterized by average speed, worst case
+ performance, need for work space, and whether they are stable. A stable
+ sort keeps items with the same key in the same relative order. The three
+ available algorithms have the following properties:
+
+ |------------------------------------------------------|
+ | kind | speed | worst case | work space | stable|
+ |------------------------------------------------------|
+ |'quicksort'| 1 | O(n^2) | 0 | no |
+ |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
+ |'heapsort' | 3 | O(n*log(n)) | 0 | no |
+ |------------------------------------------------------|
+
+ All the sort algorithms make temporary copies of the data when the sort is not
+ along the last axis. Consequently, sorts along the last axis are faster and use
+ less space than sorts along other axis.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
+ """m.squeeze() eliminate all length-1 dimensions
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
+ """a.std(axis=None, dtype=None, out=None) -> standard deviation.
+
+ Returns the standard deviation of the array elements, a measure of the
+ spread of a distribution. The standard deviation is computed for the
+ flattened array by default, otherwise over the specified axis.
+
+ :Parameters:
+
+ axis : integer
+ Axis along which the standard deviation is computed. The default is
+ to compute the standard deviation of the flattened array.
+
+ dtype : type
+ Type to use in computing the standard deviation. For arrays of
+ integer type the default is float32, for arrays of float types it
+ is the same as the array type.
+
+ out : ndarray
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type will be cast if
+ necessary.
+
+ :Returns:
+
+ standard deviation : The return type varies, see above.
+ A new array holding the result is returned unless out is specified,
+ in which case a reference to out is returned.
+
+ :SeeAlso:
+
+ - var : variance
+ - mean : average
+
+ Notes
+ -----
+
+ The standard deviation is the square root of the average of the squared
+ deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)). The
+ computed standard deviation is biased, i.e., the mean is computed by
+ dividing by the number of elements, N, rather than by N-1.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
+ """a.sum(axis=None, dtype=None) -> Sum of array over given axis.
+
+ Sum the array over the given axis. If the axis is None, sum over
+ all dimensions of the array.
+
+ The optional dtype argument is the data type for the returned
+ value and intermediate calculations. The default is to upcast
+ (promote) smaller integer types to the platform-dependent int.
+ For example, on 32-bit platforms:
+
+ a.dtype default sum dtype
+ ---------------------------------------------------
+ bool, int8, int16, int32 int32
+
+ Warning: The arithmetic is modular and no error is raised on overflow.
+
+ Examples:
+
+ >>> array([0.5, 1.5]).sum()
+ 2.0
+ >>> array([0.5, 1.5]).sum(dtype=int32)
+ 1
+ >>> array([[0, 1], [0, 5]]).sum(axis=0)
+ array([0, 6])
+ >>> array([[0, 1], [0, 5]]).sum(axis=1)
+ array([1, 5])
+ >>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
+ -128
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
+ """a.swapaxes(axis1, axis2) -> new view with axes swapped.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
+ """a.take(indices, axis=None, out=None, mode='raise') -> new array.
+
+ The new array is formed from the elements of a indexed by indices along the
+ given axis.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
+ """a.tofile(fid, sep="", format="%s") -> None. Write the data to a file.
+
+ Required arguments:
+ file -- an open file object or a string containing a filename
+
+ Keyword arguments:
+ sep -- separator for text output. Write binary if empty (default "")
+ format -- format string for text file output (default "%s")
+
+ A convenience function for quick storage of array data. Information on
+ endianess and precision is lost, so this method is not a good choice for
+ files intended to archive data or transport data between machines with
+ different endianess. Some of these problems can be overcome by outputting
+ the data as text files at the expense of speed and file size.
+
+ If 'sep' is empty this method is equivalent to file.write(a.tostring()). If
+ 'sep' is not empty each data item is converted to the nearest Python type
+ and formatted using "format"%item. The resulting strings are written to the
+ file separated by the contents of 'sep'. The data is always written in "C"
+ (row major) order independent of the order of 'a'.
+
+ The data produced by this method can be recovered by using the function
+ fromfile().
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
+ """a.tolist() -> Array as hierarchical list.
+
+ Copy the data portion of the array to a hierarchical python list and return
+ that list. Data items are converted to the nearest compatible Python type.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring',
+ """a.tostring(order='C') -> raw copy of array data as a Python string.
+
+ Keyword arguments:
+ order -- order of the data item in the copy {"C","F","A"} (default "C")
+
+ Construct a Python string containing the raw bytes in the array. The order
+ of the data in arrays with ndim > 1 is specified by the 'order' keyword and
+ this keyword overrides the order of the array. The
+ choices are:
+
+ "C" -- C order (row major)
+ "Fortran" -- Fortran order (column major)
+ "Any" -- Current order of array.
+ None -- Same as "Any"
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
+ """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
+ return the sum along the offset diagonal of the array's indicated
+ axis1 and axis2.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
+ """a.transpose(*axes)
+
+ Returns a view of 'a' with axes transposed. If no axes are given,
+ or None is passed, switches the order of the axes. For a 2-d
+ array, this is the usual matrix transpose. If axes are given,
+ they describe how the axes are permuted.
+
+ Example:
+ >>> a = array([[1,2],[3,4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> a.transpose()
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose((1,0))
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose(1,0)
+ array([[1, 3],
+ [2, 4]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
+ """a.var(axis=None, dtype=None, out=None) -> variance
+
+ Returns the variance of the array elements, a measure of the spread of a
+ distribution. The variance is computed for the flattened array by default,
+ otherwise over the specified axis.
+
+ :Parameters:
+
+ axis : integer
+ Axis along which the variance is computed. The default is to
+ compute the variance of the flattened array.
+
+ dtype : type
+ Type to use in computing the variance. For arrays of integer type
+ the default is float32, for arrays of float types it is the same as
+ the array type.
+
+ out : ndarray
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type will be cast if
+ necessary.
+
+ :Returns:
+
+ variance : The return type varies, see above.
+ A new array holding the result is returned unless out is specified,
+ in which case a reference to out is returned.
+
+ :SeeAlso:
+
+ - std : standard deviation
+ - mean: average
+
+ Notes
+ -----
+
+ The variance is the average of the squared deviations from the mean, i.e.
+ var = mean((x - x.mean())**2). The computed variance is biased, i.e.,
+ the mean is computed by dividing by the number of elements, N, rather
+ than by N-1.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
+ """a.view(<type>) -> new view of array with same data.
+
+ Type can be either a new sub-type object or a data-descriptor object
+
+ """))