diff options
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 1422 |
1 files changed, 1422 insertions, 0 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py new file mode 100644 index 000000000..7b04ee2f4 --- /dev/null +++ b/numpy/add_newdocs.py @@ -0,0 +1,1422 @@ +from lib import add_newdoc + +add_newdoc('numpy.core','dtype', + [('fields', "Fields of the data-type or None if no fields"), + ('names', "Names of fields or None if no fields"), + ('alignment', "Needed alignment for this data-type"), + ('byteorder', + "Little-endian (<), big-endian (>), native (=), or "\ + "not-applicable (|)"), + ('char', "Letter typecode for this data-type"), + ('type', "Type object associated with this data-type"), + ('kind', "Character giving type-family of this data-type"), + ('itemsize', "Size of each item"), + ('hasobject', "Non-zero if Python objects are in "\ + "this data-type"), + ('num', "Internally-used number for builtin base"), + ('newbyteorder', +"""self.newbyteorder(<endian>) +returns a copy of the dtype object with altered byteorders. +If <endian> is not given all byteorders are swapped. +Otherwise endian can be '>', '<', or '=' to force a particular +byteorder. Data-types in all fields are also updated in the +new dtype object. +"""), + ("__reduce__", "self.__reduce__() for pickling"), + ("__setstate__", "self.__setstate__() for pickling"), + ("subdtype", "A tuple of (descr, shape) or None"), + ("descr", "The array_interface data-type descriptor."), + ("str", "The array interface typestring."), + ("name", "The name of the true data-type"), + ("base", "The base data-type or self if no subdtype"), + ("shape", "The shape of the subdtype or (1,)"), + ("isbuiltin", "Is this a built-in data-type?"), + ("isnative", "Is the byte-order of this data-type native?") + ] + ) + +############################################################################### +# +# flatiter +# +# flatiter needs a toplevel description +# +############################################################################### + +# attributes +add_newdoc('numpy.core', 'flatiter', ('base', + """documentation needed + + """)) + + + +add_newdoc('numpy.core', 'flatiter', ('coords', + """An N-d tuple of current coordinates. + + """)) + + + +add_newdoc('numpy.core', 'flatiter', ('index', + """documentation needed + + """)) + + + +# functions +add_newdoc('numpy.core', 'flatiter', ('__array__', + """__array__(type=None) Get array from iterator + + """)) + + +add_newdoc('numpy.core', 'flatiter', ('copy', + """copy() Get a copy of the iterator as a 1-d array + + """)) + + +############################################################################### +# +# broadcast +# +############################################################################### + +# attributes +add_newdoc('numpy.core', 'broadcast', ('index', + """current index in broadcasted result + + """)) + + +add_newdoc('numpy.core', 'broadcast', ('iters', + """tuple of individual iterators + + """)) + + +add_newdoc('numpy.core', 'broadcast', ('nd', + """number of dimensions of broadcasted result + + """)) + + +add_newdoc('numpy.core', 'broadcast', ('numiter', + """number of iterators + + """)) + + +add_newdoc('numpy.core', 'broadcast', ('shape', + """shape of broadcasted result + + """)) + + +add_newdoc('numpy.core', 'broadcast', ('size', + """total size of broadcasted result + + """)) + + +############################################################################### +# +# numpy functions +# +############################################################################### + +add_newdoc('numpy.core.multiarray','array', + """array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0) + + Return an array from object with the specified date-type. + + Inputs: + object - an array, any object exposing the array interface, any + object whose __array__ method returns an array, or any + (nested) sequence. + dtype - The desired data-type for the array. If not given, then + the type will be determined as the minimum type required + to hold the objects in the sequence. This argument can only + be used to 'upcast' the array. For downcasting, use the + .astype(t) method. + copy - If true, then force a copy. Otherwise a copy will only occur + if __array__ returns a copy, obj is a nested sequence, or + a copy is needed to satisfy any of the other requirements + order - Specify the order of the array. If order is 'C', then the + array will be in C-contiguous order (last-index varies the + fastest). If order is 'FORTRAN', then the returned array + will be in Fortran-contiguous order (first-index varies the + fastest). If order is None, then the returned array may + be in either C-, or Fortran-contiguous order or even + discontiguous. + subok - If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array + ndmin - Specifies the minimum number of dimensions that the resulting + array should have. 1's will be pre-pended to the shape as + needed to meet this requirement. + + """) + +add_newdoc('numpy.core.multiarray','empty', + """empty((d1,...,dn),dtype=float,order='C') + + Return a new array of shape (d1,...,dn) and given type with all its + entries uninitialized. This can be faster than zeros. + + """) + + +add_newdoc('numpy.core.multiarray','scalar', + """scalar(dtype,obj) + + Return a new scalar array of the given type initialized with + obj. Mainly for pickle support. The dtype must be a valid data-type + descriptor. If dtype corresponds to an OBJECT descriptor, then obj + can be any object, otherwise obj must be a string. If obj is not given + it will be interpreted as None for object type and zeros for all other + types. + + """) + +add_newdoc('numpy.core.multiarray','zeros', + """zeros((d1,...,dn),dtype=float,order='C') + + Return a new array of shape (d1,...,dn) and type typecode with all + it's entries initialized to zero. + + """) + +add_newdoc('numpy.core.multiarray','set_typeDict', + """set_typeDict(dict) + + Set the internal dictionary that can look up an array type using a + registered code. + + """) + +add_newdoc('numpy.core.multiarray','fromstring', + """fromstring(string, dtype=float, count=-1, sep='') + + Return a new 1d array initialized from the raw binary data in string. + + If count is positive, the new array will have count elements, otherwise its + size is determined by the size of string. If sep is not empty then the + string is interpreted in ASCII mode and converted to the desired number type + using sep as the separator between elements (extra whitespace is ignored). + + """) + +add_newdoc('numpy.core.multiarray','fromiter', + """fromiter(iterable, dtype, count=-1) + + Return a new 1d array initialized from iterable. If count is + nonegative, the new array will have count elements, otherwise it's + size is determined by the generator. + + """) + +add_newdoc('numpy.core.multiarray','fromfile', + """fromfile(file=, dtype=float, count=-1, sep='') -> array. + + Required arguments: + file -- open file object or string containing file name. + + Keyword arguments: + dtype -- type and order of the returned array (default float) + count -- number of items to input (default all) + sep -- separater between items if file is a text file (default "") + + Return an array of the given data type from a text or binary file. The + 'file' argument can be an open file or a string with the name of a file to + read from. If 'count' == -1 the entire file is read, otherwise count is the + number of items of the given type to read in. If 'sep' is "" it means to + read binary data from the file using the specified dtype, otherwise it gives + the separator between elements in a text file. The 'dtype' value is also + used to determine the size and order of the items in binary files. + + + Data written using the tofile() method can be conveniently recovered using + this function. + + WARNING: This function should be used sparingly as the binary files are not + platform independent. In particular, they contain no endianess or datatype + information. Nevertheless it can be useful for reading in simply formatted + or binary data quickly. + + """) + +add_newdoc('numpy.core.multiarray','frombuffer', + """frombuffer(buffer=, dtype=float, count=-1, offset=0) + + Returns a 1-d array of data type dtype from buffer. The buffer + argument must be an object that exposes the buffer interface. If + count is -1 then the entire buffer is used, otherwise, count is the + size of the output. If offset is given then jump that far into the + buffer. If the buffer has data that is out not in machine byte-order, + than use a propert data type descriptor. The data will not be + byteswapped, but the array will manage it in future operations. + + """) + +add_newdoc('numpy.core.multiarray','concatenate', + """concatenate((a1, a2, ...), axis=0) + + Join arrays together. + + The tuple of sequences (a1, a2, ...) are joined along the given axis + (default is the first one) into a single numpy array. + + Example: + + >>> concatenate( ([0,1,2], [5,6,7]) ) + array([0, 1, 2, 5, 6, 7]) + + """) + +add_newdoc('numpy.core.multiarray','inner', + """inner(a,b) + + Returns the dot product of two arrays, which has shape a.shape[:-1] + + b.shape[:-1] with elements computed by the product of the elements + from the last dimensions of a and b. + + """) + +add_newdoc('numpy.core','fastCopyAndTranspose', + """_fastCopyAndTranspose(a)""") + +add_newdoc('numpy.core.multiarray','correlate', + """cross_correlate(a,v, mode=0)""") + +add_newdoc('numpy.core.multiarray','arange', + """arange([start,] stop[, step,], dtype=None) + + For integer arguments, just like range() except it returns an array + whose type can be specified by the keyword argument dtype. If dtype + is not specified, the type of the result is deduced from the type of + the arguments. + + For floating point arguments, the length of the result is ceil((stop - + start)/step). This rule may result in the last element of the result + being greater than stop. + + """) + +add_newdoc('numpy.core.multiarray','_get_ndarray_c_version', + """_get_ndarray_c_version() + + Return the compile time NDARRAY_VERSION number. + + """) + +add_newdoc('numpy.core.multiarray','_reconstruct', + """_reconstruct(subtype, shape, dtype) + + Construct an empty array. Used by Pickles. + + """) + + +add_newdoc('numpy.core.multiarray','set_string_function', + """set_string_function(f, repr=1) + + Set the python function f to be the function used to obtain a pretty + printable string version of an array whenever an array is printed. + f(M) should expect an array argument M, and should return a string + consisting of the desired representation of M for printing. + + """) + +add_newdoc('numpy.core.multiarray','set_numeric_ops', + """set_numeric_ops(op=func, ...) + + Set some or all of the number methods for all array objects. Do not + forget **dict can be used as the argument list. Return the functions + that were replaced, which can be stored and set later. + + """) + +add_newdoc('numpy.core.multiarray','where', + """where(condition, | x, y) + + The result is shaped like condition and has elements of x and y where + condition is respectively true or false. If x or y are not given, + then it is equivalent to condition.nonzero(). + + To group the indices by element, rather than dimension, use + + transpose(where(condition, | x, y)) + + instead. This always results in a 2d array, with a row of indices for + each element that satisfies the condition. + + """) + + +add_newdoc('numpy.core.multiarray','lexsort', + """lexsort(keys=, axis=-1) -> array of indices. Argsort with list of keys. + + Perform an indirect sort using a list of keys. The first key is sorted, + then the second, and so on through the list of keys. At each step the + previous order is preserved when equal keys are encountered. The result is + a sort on multiple keys. If the keys represented columns of a spreadsheet, + for example, this would sort using multiple columns (the last key being + used for the primary sort order, the second-to-last key for the secondary + sort order, and so on). The keys argument must be a sequence of things + that can be converted to arrays of the same shape. + + :Parameters: + + a : array type + Array containing values that the returned indices should sort. + + axis : integer + Axis to be indirectly sorted. None indicates that the flattened + array should be used. Default is -1. + + :Returns: + + indices : integer array + Array of indices that sort the keys along the specified axis. The + array has the same shape as the keys. + + :SeeAlso: + + - argsort : indirect sort + - sort : inplace sort + + """) + +add_newdoc('numpy.core.multiarray','can_cast', + """can_cast(from=d1, to=d2) + + Returns True if data type d1 can be cast to data type d2 without + losing precision. + + """) + +add_newdoc('numpy.core.multiarray','newbuffer', + """newbuffer(size) + + Return a new uninitialized buffer object of size bytes + + """) + +add_newdoc('numpy.core.multiarray','getbuffer', + """getbuffer(obj [,offset[, size]]) + + Create a buffer object from the given object referencing a slice of + length size starting at offset. Default is the entire buffer. A + read-write buffer is attempted followed by a read-only buffer. + + """) + +############################################################################## +# +# Documentation for ndarray attributes and methods +# +############################################################################## + + +############################################################################## +# +# ndarray object +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', + """An array object represents a multidimensional, homogeneous array + of fixed-size items. An associated data-type-descriptor object + details the data-type in an array (including byteorder and any + fields). An array can be constructed using the numpy.array + command. Arrays are sequence, mapping and numeric objects. + More information is available in the numpy module and by looking + at the methods and attributes of an array. + + ndarray.__new__(subtype, shape=, dtype=float, buffer=None, + offset=0, strides=None, order=None) + + There are two modes of creating an array using __new__: + 1) If buffer is None, then only shape, dtype, and order + are used + 2) If buffer is an object exporting the buffer interface, then + all keywords are interpreted. + The dtype parameter can be any object that can be interpreted + as a numpy.dtype object. + + No __init__ method is needed because the array is fully + initialized after the __new__ method. + + """) + + +############################################################################## +# +# ndarray attributes +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', + """Array protocol: Python side.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', + """None.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', + """Array priority.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', + """Array protocol: C-struct side.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_', + """Allow the array to be interpreted as a ctypes object by returning the + data-memory location as an integer + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('base', + """Base object if memory is from some other object. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', + """A ctypes interface object. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('data', + """Buffer object pointing to the start of the data. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', + """Data-type for the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', + """Imaginary part of the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', + """Length of one element in bytes. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', + """Special object providing array flags. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', + """A 1-d flat iterator. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', + """Number of bytes in the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', + """Number of array dimensions. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('real', + """Real part of the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', + """Tuple of array dimensions. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('size', + """Number of elements in the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', + """Tuple of bytes to step in each dimension. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('T', + """Same as self.transpose() except self is returned for self.ndim < 2. + + """)) + + +############################################################################## +# +# ndarray methods +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', + """ a.__array__(|dtype) -> reference if type unchanged, copy otherwise. + + Returns either a new reference to self if dtype is not given or a new array + of provided data type if dtype is different from the current dtype of the + array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', + """a.__array_wrap__(obj) -> Object of same type as a from ndarray obj. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', + """a.__copy__(|order) -> copy, possibly with different order. + + Return a copy of the array. + + Argument: + order -- Order of returned copy (default 'C') + If order is 'C' (False) then the result is contiguous (default). + If order is 'Fortran' (True) then the result has fortran order. + If order is 'Any' (None) then the result has fortran order + only if m is already in fortran order.; + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', + """a.__deepcopy__() -> Deep copy of array. + + Used if copy.deepcopy is called on an array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', + """a.__reduce__() + + For pickling. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', + """a.__setstate__(version, shape, typecode, isfortran, rawdata) + + For unpickling. + + Arguments: + version -- optional pickle version. If omitted defaults to 0. + shape -- a tuple giving the shape + typecode -- a typecode + isFortran -- a bool stating if Fortran or no + rawdata -- a binary string with the data (or a list if Object array) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('all', + """ a.all(axis=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('any', + """ a.any(axis=None, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', + """ a.argmax(axis=None, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', + """ a.argmin(axis=None, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', + """a.argsort(axis=-1, kind='quicksort', order=None) -> indices + + Perform an indirect sort along the given axis using the algorithm specified + by the kind keyword. It returns an array of indices of the same shape as + 'a' that index data along the given axis in sorted order. + + :Parameters: + + axis : integer + Axis to be indirectly sorted. None indicates that the flattened + array should be used. Default is -1. + + kind : string + Sorting algorithm to use. Possible values are 'quicksort', + 'mergesort', or 'heapsort'. Default is 'quicksort'. + + order : list type or None + When a is an array with fields defined, this argument specifies + which fields to compare first, second, etc. Not all fields need be + specified. + + :Returns: + + indices : integer array + Array of indices that sort 'a' along the specified axis. + + :SeeAlso: + + - lexsort : indirect stable sort with multiple keys + - sort : inplace sort + + :Notes: + ------ + + The various sorts are characterized by average speed, worst case + performance, need for work space, and whether they are stable. A stable + sort keeps items with the same key in the same relative order. The three + available algorithms have the following properties: + + |------------------------------------------------------| + | kind | speed | worst case | work space | stable| + |------------------------------------------------------| + |'quicksort'| 1 | O(n^2) | 0 | no | + |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | + |'heapsort' | 3 | O(n*log(n)) | 0 | no | + |------------------------------------------------------| + + All the sort algorithms make temporary copies of the data when the sort is not + along the last axis. Consequently, sorts along the last axis are faster and use + less space than sorts along other axis. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', + """a.astype(t) -> Copy of array cast to type t. + + Cast array m to type t. t can be either a string representing a typecode, + or a python type object of type int, float, or complex. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', + """a.byteswap(False) -> View or copy. Swap the bytes in the array. + + Swap the bytes in the array. Return the byteswapped array. If the first + argument is True, byteswap in-place and return a reference to self. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', + """ a.choose(b0, b1, ..., bn, out=None, mode='raise') + + Return an array that merges the b_i arrays together using 'a' as + the index The b_i arrays and 'a' must all be broadcastable to the + same shape. The output at a particular position is the input + array b_i at that position depending on the value of 'a' at that + position. Therefore, 'a' must be an integer array with entries + from 0 to n+1.; + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', + """a.clip(min=, max=, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', + """a.compress(condition=, axis=None, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', + """a.conj() + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', + """a.conjugate() + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', + """a.copy(|order) -> copy, possibly with different order. + + Return a copy of the array. + + Argument: + order -- Order of returned copy (default 'C') + If order is 'C' (False) then the result is contiguous (default). + If order is 'Fortran' (True) then the result has fortran order. + If order is 'Any' (None) then the result has fortran order + only if m is already in fortran order.; + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', + """a.cumprod(axis=None, dtype=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', + """a.cumsum(axis=None, dtype=None, out=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', + """a.diagonal(offset=0, axis1=0, axis2=1) -> diagonals + + If a is 2-d, return the diagonal of self with the given offset, i.e., the + collection of elements of the form a[i,i+offset]. If a is n-d with n > 2, + then the axes specified by axis1 and axis2 are used to determine the 2-d + subarray whose diagonal is returned. The shape of the resulting array can + be determined by removing axis1 and axis2 and appending an index to the + right equal to the size of the resulting diagonals. + + :Parameters: + offset : integer + Offset of the diagonal from the main diagonal. Can be both positive + and negative. Defaults to main diagonal. + axis1 : integer + Axis to be used as the first axis of the 2-d subarrays from which + the diagonals should be taken. Defaults to first index. + axis2 : integer + Axis to be used as the second axis of the 2-d subarrays from which + the diagonals should be taken. Defaults to second index. + + :Returns: + array_of_diagonals : same type as original array + If a is 2-d, then a 1-d array containing the diagonal is returned. + If a is n-d, n > 2, then an array of diagonals is returned. + + :SeeAlso: + - diag : matlab workalike for 1-d and 2-d arrays. + - diagflat : creates diagonal arrays + - trace : sum along diagonals + + Examples + -------- + + >>> a = arange(4).reshape(2,2) + >>> a + array([[0, 1], + [2, 3]]) + >>> a.diagonal() + array([0, 3]) + >>> a.diagonal(1) + array([1]) + + >>> a = arange(8).reshape(2,2,2) + >>> a + array([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]) + >>> a.diagonal(0,-2,-1) + array([[0, 3], + [4, 7]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', + """a.dump(file) Dump a pickle of the array to the specified file. + + The array can be read back with pickle.load or numpy.load + + Arguments: + file -- string naming the dump file. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', + """a.dumps() returns the pickle of the array as a string. + + pickle.loads or numpy.loads will convert the string back to an array. + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', + """a.fill(value) -> None. Fill the array with the scalar value. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', + """a.flatten([fortran]) return a 1-d array (always copy) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', + """a.getfield(dtype, offset) -> field of array as given type. + + Returns a field of the given array as a certain type. A field is a view of + the array data with each itemsize determined by the given type and the + offset into the current array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('item', + """a.item() -> copy of first array item as Python scalar. + + Copy the first element of array to a standard Python scalar and return + it. The array must be of size one. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('max', + """a.max(axis=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', + """a.mean(axis=None, dtype=None, out=None) -> mean + + Returns the average of the array elements. The average is taken over the + flattened array by default, otherwise over the specified axis. + + :Parameters: + + axis : integer + Axis along which the means are computed. The default is + to compute the standard deviation of the flattened array. + + dtype : type + Type to use in computing the means. For arrays of + integer type the default is float32, for arrays of float types it + is the same as the array type. + + out : ndarray + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type will be cast if + necessary. + + :Returns: + + mean : The return type varies, see above. + A new array holding the result is returned unless out is specified, + in which case a reference to out is returned. + + :SeeAlso: + + - var : variance + - std : standard deviation + + Notes + ----- + + The mean is the sum of the elements along the axis divided by the + number of elements. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('min', + """a.min(axis=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', + """a.newbyteorder(<byteorder>) is equivalent to + a.view(a.dtype.newbytorder(<byteorder>)) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', + """a.nonzero() returns a tuple of arrays + + Returns a tuple of arrays, one for each dimension of a, + containing the indices of the non-zero elements in that + dimension. The corresponding non-zero values can be obtained + with + a[a.nonzero()]. + + To group the indices by element, rather than dimension, use + transpose(a.nonzero()) + instead. The result of this is always a 2d array, with a row for + each non-zero element.; + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', + """a.prod(axis=None, dtype=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', + """a.ptp(axis=None) a.max(axis)-a.min(axis) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('put', + """a.put(indices, values, mode) sets a.flat[n] = values[n] for + each n in indices. If values is shorter than indices then it + will repeat. + """)) + + +add_newdoc('numpy.core.multiarray', 'putmask', + """putmask(a, mask, values) sets a.flat[n] = values[n] for each n where + mask.flat[n] is true. If values is not the same size of a and mask then + it will repeat. This gives different behavior than a[mask] = values. + """) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', + """a.ravel([fortran]) return a 1-d array (copy only if needed) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', + """a.repeat(repeats=, axis=none) + + copy elements of a, repeats times. the repeats argument must be a sequence + of length a.shape[axis] or a scalar. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', + """a.reshape(d1, d2, ..., dn, order='c') + + Return a new array from this one. The new array must have the same number + of elements as self. Also always returns a view or raises a ValueError if + that is impossible. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', + """a.resize(new_shape, refcheck=True, order=False) -> None. Change array shape. + + Change size and shape of self inplace. Array must own its own memory and + not be referenced by other arrays. Returns None. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('round', + """a.round(decimals=0, out=None) -> out (a). Rounds to 'decimals' places. + + Keyword arguments: + decimals -- number of decimals to round to (default 0). May be negative. + out -- existing array to use for output (default a). + + Return: + Reference to out, where None specifies the original array a. + + Round to the specified number of decimals. When 'decimals' is negative it + specifies the number of positions to the left of the decimal point. The + real and imaginary parts of complex numbers are rounded separately. Nothing + is done if the array is not of float type and 'decimals' is >= 0. + + The keyword 'out' may be used to specify a different array to hold the + result rather than the default 'a'. If the type of the array specified by + 'out' differs from that of 'a', the result is cast to the new type, + otherwise the original type is kept. Floats round to floats by default. + + Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to + 0.0, etc. Results may also be surprising due to the inexact representation + of decimal fractions in IEEE floating point and the errors introduced in + scaling the numbers when 'decimals' is something other than 0. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', + """a.searchsorted(v, side='left') -> index array. + + Find the indices into a sorted array such that if the corresponding keys in + v were inserted before the indices the order of a would be preserved. If + side='left', then the first such index is returned. If side='right', then + the last such index is returned. If there is no such index because the key + is out of bounds, then the length of a is returned, i.e., the key would + need to be appended. The returned index array has the same shape as v. + + :Parameters: + + v : array or list type + Array of keys to be searched for in a. + + side : string + Possible values are : 'left', 'right'. Default is 'left'. Return + the first or last index where the key could be inserted. + + :Returns: + + indices : integer array + The returned array has the same shape as v. + + :SeeAlso: + + - sort + - histogram + + :Notes: + ------- + + The array a must be 1-d and is assumed to be sorted in ascending order. + Searchsorted uses binary search to find the required insertion points. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', + """m.setfield(value, dtype, offset) -> None. + places val into field of the given array defined by the data type and offset. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', + """a.setflags(write=None, align=None, uic=None) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', + """a.sort(axis=-1, kind='quicksort', order=None) -> None. + + Perform an inplace sort along the given axis using the algorithm specified + by the kind keyword. + + :Parameters: + + axis : integer + Axis to be sorted along. None indicates that the flattened array + should be used. Default is -1. + + kind : string + Sorting algorithm to use. Possible values are 'quicksort', + 'mergesort', or 'heapsort'. Default is 'quicksort'. + + order : list type or None + When a is an array with fields defined, this argument specifies + which fields to compare first, second, etc. Not all fields need be + specified. + + :Returns: + + None + + :SeeAlso: + + - argsort : indirect sort + - lexsort : indirect stable sort on multiple keys + - searchsorted : find keys in sorted array + + :Notes: + ------ + + The various sorts are characterized by average speed, worst case + performance, need for work space, and whether they are stable. A stable + sort keeps items with the same key in the same relative order. The three + available algorithms have the following properties: + + |------------------------------------------------------| + | kind | speed | worst case | work space | stable| + |------------------------------------------------------| + |'quicksort'| 1 | O(n^2) | 0 | no | + |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | + |'heapsort' | 3 | O(n*log(n)) | 0 | no | + |------------------------------------------------------| + + All the sort algorithms make temporary copies of the data when the sort is not + along the last axis. Consequently, sorts along the last axis are faster and use + less space than sorts along other axis. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', + """m.squeeze() eliminate all length-1 dimensions + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('std', + """a.std(axis=None, dtype=None, out=None) -> standard deviation. + + Returns the standard deviation of the array elements, a measure of the + spread of a distribution. The standard deviation is computed for the + flattened array by default, otherwise over the specified axis. + + :Parameters: + + axis : integer + Axis along which the standard deviation is computed. The default is + to compute the standard deviation of the flattened array. + + dtype : type + Type to use in computing the standard deviation. For arrays of + integer type the default is float32, for arrays of float types it + is the same as the array type. + + out : ndarray + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type will be cast if + necessary. + + :Returns: + + standard deviation : The return type varies, see above. + A new array holding the result is returned unless out is specified, + in which case a reference to out is returned. + + :SeeAlso: + + - var : variance + - mean : average + + Notes + ----- + + The standard deviation is the square root of the average of the squared + deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)). The + computed standard deviation is biased, i.e., the mean is computed by + dividing by the number of elements, N, rather than by N-1. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', + """a.sum(axis=None, dtype=None) -> Sum of array over given axis. + + Sum the array over the given axis. If the axis is None, sum over + all dimensions of the array. + + The optional dtype argument is the data type for the returned + value and intermediate calculations. The default is to upcast + (promote) smaller integer types to the platform-dependent int. + For example, on 32-bit platforms: + + a.dtype default sum dtype + --------------------------------------------------- + bool, int8, int16, int32 int32 + + Warning: The arithmetic is modular and no error is raised on overflow. + + Examples: + + >>> array([0.5, 1.5]).sum() + 2.0 + >>> array([0.5, 1.5]).sum(dtype=int32) + 1 + >>> array([[0, 1], [0, 5]]).sum(axis=0) + array([0, 6]) + >>> array([[0, 1], [0, 5]]).sum(axis=1) + array([1, 5]) + >>> ones(128, dtype=int8).sum(dtype=int8) # overflow! + -128 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', + """a.swapaxes(axis1, axis2) -> new view with axes swapped. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('take', + """a.take(indices, axis=None, out=None, mode='raise') -> new array. + + The new array is formed from the elements of a indexed by indices along the + given axis. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', + """a.tofile(fid, sep="", format="%s") -> None. Write the data to a file. + + Required arguments: + file -- an open file object or a string containing a filename + + Keyword arguments: + sep -- separator for text output. Write binary if empty (default "") + format -- format string for text file output (default "%s") + + A convenience function for quick storage of array data. Information on + endianess and precision is lost, so this method is not a good choice for + files intended to archive data or transport data between machines with + different endianess. Some of these problems can be overcome by outputting + the data as text files at the expense of speed and file size. + + If 'sep' is empty this method is equivalent to file.write(a.tostring()). If + 'sep' is not empty each data item is converted to the nearest Python type + and formatted using "format"%item. The resulting strings are written to the + file separated by the contents of 'sep'. The data is always written in "C" + (row major) order independent of the order of 'a'. + + The data produced by this method can be recovered by using the function + fromfile(). + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', + """a.tolist() -> Array as hierarchical list. + + Copy the data portion of the array to a hierarchical python list and return + that list. Data items are converted to the nearest compatible Python type. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', + """a.tostring(order='C') -> raw copy of array data as a Python string. + + Keyword arguments: + order -- order of the data item in the copy {"C","F","A"} (default "C") + + Construct a Python string containing the raw bytes in the array. The order + of the data in arrays with ndim > 1 is specified by the 'order' keyword and + this keyword overrides the order of the array. The + choices are: + + "C" -- C order (row major) + "Fortran" -- Fortran order (column major) + "Any" -- Current order of array. + None -- Same as "Any" + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', + """a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) + return the sum along the offset diagonal of the array's indicated + axis1 and axis2. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', + """a.transpose(*axes) + + Returns a view of 'a' with axes transposed. If no axes are given, + or None is passed, switches the order of the axes. For a 2-d + array, this is the usual matrix transpose. If axes are given, + they describe how the axes are permuted. + + Example: + >>> a = array([[1,2],[3,4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.transpose() + array([[1, 3], + [2, 4]]) + >>> a.transpose((1,0)) + array([[1, 3], + [2, 4]]) + >>> a.transpose(1,0) + array([[1, 3], + [2, 4]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('var', + """a.var(axis=None, dtype=None, out=None) -> variance + + Returns the variance of the array elements, a measure of the spread of a + distribution. The variance is computed for the flattened array by default, + otherwise over the specified axis. + + :Parameters: + + axis : integer + Axis along which the variance is computed. The default is to + compute the variance of the flattened array. + + dtype : type + Type to use in computing the variance. For arrays of integer type + the default is float32, for arrays of float types it is the same as + the array type. + + out : ndarray + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type will be cast if + necessary. + + :Returns: + + variance : The return type varies, see above. + A new array holding the result is returned unless out is specified, + in which case a reference to out is returned. + + :SeeAlso: + + - std : standard deviation + - mean: average + + Notes + ----- + + The variance is the average of the squared deviations from the mean, i.e. + var = mean((x - x.mean())**2). The computed variance is biased, i.e., + the mean is computed by dividing by the number of elements, N, rather + than by N-1. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('view', + """a.view(<type>) -> new view of array with same data. + + Type can be either a new sub-type object or a data-descriptor object + + """)) |