diff options
Diffstat (limited to 'numpy/add_newdocs.py')
| -rw-r--r-- | numpy/add_newdocs.py | 174 |
1 files changed, 98 insertions, 76 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index 055c23480..2834c963b 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -262,7 +262,7 @@ add_newdoc('numpy.core', 'nditer', has_multi_index : bool If True, the iterator was created with the "multi_index" flag, and the property `multi_index` can be used to retrieve it. - index : + index When the "c_index" or "f_index" flag was used, this property provides access to the index. Raises a ValueError if accessed and `has_index` is False. @@ -273,10 +273,10 @@ add_newdoc('numpy.core', 'nditer', An index which matches the order of iteration. itersize : int Size of the iterator. - itviews : + itviews Structured view(s) of `operands` in memory, matching the reordered and optimized iterator access pattern. - multi_index : + multi_index When the "multi_index" flag was used, this property provides access to the index. Raises a ValueError if accessed accessed and `has_multi_index` is False. @@ -288,7 +288,7 @@ add_newdoc('numpy.core', 'nditer', The array(s) to be iterated over. shape : tuple of ints Shape tuple, the shape of the iterator. - value : + value Value of `operands` at current iteration. Normally, this is a tuple of array scalars, but if the flag "external_loop" is used, it is a tuple of one dimensional arrays. @@ -296,7 +296,7 @@ add_newdoc('numpy.core', 'nditer', Notes ----- `nditer` supersedes `flatiter`. The iterator implementation behind - `nditer` is also exposed by the Numpy C API. + `nditer` is also exposed by the NumPy C API. The Python exposure supplies two iteration interfaces, one which follows the Python iterator protocol, and another which mirrors the C-style @@ -481,6 +481,11 @@ add_newdoc('numpy.core', 'broadcast', Amongst others, it has ``shape`` and ``nd`` properties, and may be used as an iterator. + See Also + -------- + broadcast_arrays + broadcast_to + Examples -------- Manually adding two vectors, using broadcasting: @@ -547,9 +552,26 @@ add_newdoc('numpy.core', 'broadcast', ('iters', """)) +add_newdoc('numpy.core', 'broadcast', ('ndim', + """ + Number of dimensions of broadcasted result. Alias for `nd`. + + .. versionadded:: 1.12.0 + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.ndim + 2 + + """)) + add_newdoc('numpy.core', 'broadcast', ('nd', """ - Number of dimensions of broadcasted result. + Number of dimensions of broadcasted result. For code intended for NumPy + 1.12.0 and later the more consistent `ndim` is preferred. Examples -------- @@ -642,35 +664,43 @@ add_newdoc('numpy.core', 'broadcast', ('reset', add_newdoc('numpy.core.multiarray', 'array', """ - array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) + array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0) Create an array. Parameters ---------- object : array_like - An array, any object exposing the array interface, an - object whose __array__ method returns an array, or any - (nested) sequence. + An array, any object exposing the array interface, an object whose + __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional - The desired data-type for the array. If not given, then - the type will be determined as the minimum type required - to hold the objects in the sequence. This argument can only - be used to 'upcast' the array. For downcasting, use the - .astype(t) method. + The desired data-type for the array. If not given, then the type will + be determined as the minimum type required to hold the objects in the + sequence. This argument can only be used to 'upcast' the array. For + downcasting, use the .astype(t) method. copy : bool, optional - If true (default), then the object is copied. Otherwise, a copy - will only be made if __array__ returns a copy, if obj is a - nested sequence, or if a copy is needed to satisfy any of the other - requirements (`dtype`, `order`, etc.). - order : {'C', 'F', 'A'}, optional - Specify the order of the array. If order is 'C', then the array - will be in C-contiguous order (last-index varies the fastest). - If order is 'F', then the returned array will be in - Fortran-contiguous order (first-index varies the fastest). - If order is 'A' (default), then the returned array may be - in any order (either C-, Fortran-contiguous, or even discontiguous), - unless a copy is required, in which case it will be C-contiguous. + If true (default), then the object is copied. Otherwise, a copy will + only be made if __array__ returns a copy, if obj is a nested sequence, + or if a copy is needed to satisfy any of the other requirements + (`dtype`, `order`, etc.). + order : {'K', 'A', 'C', 'F'}, optional + Specify the memory layout of the array. If object is not an array, the + newly created array will be in C order (row major) unless 'F' is + specified, in which case it will be in Fortran order (column major). + If object is an array the following holds. + + ===== ========= =================================================== + order no copy copy=True + ===== ========= =================================================== + 'K' unchanged F & C order preserved, otherwise most similar order + 'A' unchanged F order if input is F and not C, otherwise C order + 'C' C order C order + 'F' F order F order + ===== ========= =================================================== + + When ``copy=False`` and a copy is made for other reasons, the result is + the same as if ``copy=True``, with some exceptions for `A`, see the + Notes section. The default order is 'K'. subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). @@ -688,6 +718,12 @@ add_newdoc('numpy.core.multiarray', 'array', -------- empty, empty_like, zeros, zeros_like, ones, ones_like, full, full_like + Notes + ----- + When order is 'A' and `object` is an array in neither 'C' nor 'F' order, + and a copy is forced by a change in dtype, then the order of the result is + not necessarily 'C' as expected. This is likely a bug. + Examples -------- >>> np.array([1, 2, 3]) @@ -906,34 +942,6 @@ add_newdoc('numpy.core.multiarray', 'zeros', """) -add_newdoc('numpy.core.multiarray', 'count_nonzero', - """ - count_nonzero(a) - - Counts the number of non-zero values in the array ``a``. - - Parameters - ---------- - a : array_like - The array for which to count non-zeros. - - Returns - ------- - count : int or array of int - Number of non-zero values in the array. - - See Also - -------- - nonzero : Return the coordinates of all the non-zero values. - - Examples - -------- - >>> np.count_nonzero(np.eye(4)) - 4 - >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) - 5 - """) - add_newdoc('numpy.core.multiarray', 'set_typeDict', """set_typeDict(dict) @@ -1118,7 +1126,7 @@ add_newdoc('numpy.core.multiarray', 'frombuffer', count : int, optional Number of items to read. ``-1`` means all data in the buffer. offset : int, optional - Start reading the buffer from this offset; default: 0. + Start reading the buffer from this offset (in bytes); default: 0. Notes ----- @@ -2006,7 +2014,7 @@ add_newdoc('numpy.core', 'matmul', were elements. .. warning:: - This function is preliminary and included in Numpy 1.10 for testing + This function is preliminary and included in NumPy 1.10.0 for testing and documentation. Its semantics will not change, but the number and order of the optional arguments will. @@ -2100,9 +2108,9 @@ add_newdoc('numpy.core', 'matmul', """) -add_newdoc('numpy.core', 'einsum', +add_newdoc('numpy.core', 'c_einsum', """ - einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe') + c_einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe') Evaluates the Einstein summation convention on the operands. @@ -2112,6 +2120,8 @@ add_newdoc('numpy.core', 'einsum', function is to try the examples below, which show how many common NumPy functions can be implemented as calls to `einsum`. + This is the core C function. + Parameters ---------- subscripts : str @@ -2120,10 +2130,10 @@ add_newdoc('numpy.core', 'einsum', These are the arrays for the operation. out : ndarray, optional If provided, the calculation is done into this array. - dtype : data-type, optional + dtype : {data-type, None}, optional If provided, forces the calculation to use the data type specified. Note that you may have to also give a more liberal `casting` - parameter to allow the conversions. + parameter to allow the conversions. Default is None. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the output. 'C' means it should be C contiguous. 'F' means it should be Fortran contiguous, @@ -2142,6 +2152,8 @@ add_newdoc('numpy.core', 'einsum', like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. + Default is 'safe'. + Returns ------- output : ndarray @@ -2149,7 +2161,7 @@ add_newdoc('numpy.core', 'einsum', See Also -------- - dot, inner, outer, tensordot + einsum, dot, inner, outer, tensordot Notes ----- @@ -2406,7 +2418,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', a low-level method (`ndarray(...)`) for instantiating an array. For more information, refer to the `numpy` module and examine the - the methods and attributes of an array. + methods and attributes of an array. Parameters ---------- @@ -4115,6 +4127,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', ValueError If `a` does not own its own data or references or views to it exist, and the data memory must be changed. + PyPy only: will always raise if the data memory must be changed, since + there is no reliable way to determine if references or views to it + exist. SystemError If the `order` keyword argument is specified. This behaviour is a @@ -4437,7 +4452,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('partition', Examples -------- >>> a = np.array([3, 4, 2, 1]) - >>> a.partition(a, 3) + >>> a.partition(3) >>> a array([2, 1, 3, 4]) @@ -4833,7 +4848,7 @@ add_newdoc('numpy.core.umath', 'frompyfunc', """ frompyfunc(func, nin, nout) - Takes an arbitrary Python function and returns a Numpy ufunc. + Takes an arbitrary Python function and returns a NumPy ufunc. Can be used, for example, to add broadcasting to a built-in Python function (see Examples section). @@ -4850,7 +4865,7 @@ add_newdoc('numpy.core.umath', 'frompyfunc', Returns ------- out : ufunc - Returns a Numpy universal function (``ufunc``) object. + Returns a NumPy universal function (``ufunc``) object. See Also -------- @@ -4880,7 +4895,7 @@ add_newdoc('numpy.core.umath', 'geterrobj', Return the current object that defines floating-point error handling. The error object contains all information that defines the error handling - behavior in Numpy. `geterrobj` is used internally by the other + behavior in NumPy. `geterrobj` is used internally by the other functions that get and set error handling behavior (`geterr`, `seterr`, `geterrcall`, `seterrcall`). @@ -4944,7 +4959,7 @@ add_newdoc('numpy.core.umath', 'seterrobj', Set the object that defines floating-point error handling. The error object contains all information that defines the error handling - behavior in Numpy. `seterrobj` is used internally by the other + behavior in NumPy. `seterrobj` is used internally by the other functions that set error handling behavior (`seterr`, `seterrcall`). Parameters @@ -5020,7 +5035,7 @@ add_newdoc('numpy.core.multiarray', 'digitize', Parameters ---------- x : array_like - Input array to be binned. Prior to Numpy 1.10.0, this array had to + Input array to be binned. Prior to NumPy 1.10.0, this array had to be 1-dimensional, but can now have any shape. bins : array_like Array of bins. It has to be 1-dimensional and monotonic. @@ -5304,7 +5319,8 @@ add_newdoc('numpy.core.multiarray', 'packbits', Parameters ---------- myarray : array_like - An integer type array whose elements should be packed to bits. + An array of integers or booleans whose elements should be packed to + bits. axis : int, optional The dimension over which bit-packing is done. ``None`` implies packing the flattened array. @@ -5705,7 +5721,7 @@ add_newdoc('numpy.core', 'ufunc', ('reduce', add_newdoc('numpy.core', 'ufunc', ('accumulate', """ - accumulate(array, axis=0, dtype=None, out=None) + accumulate(array, axis=0, dtype=None, out=None, keepdims=None) Accumulate the result of applying the operator to all elements. @@ -5737,6 +5753,8 @@ add_newdoc('numpy.core', 'ufunc', ('accumulate', out : ndarray, optional A location into which the result is stored. If not provided a freshly-allocated array is returned. + keepdims : bool + Has no effect. Deprecated, and will be removed in future. Returns ------- @@ -5881,7 +5899,7 @@ add_newdoc('numpy.core', 'ufunc', ('reduceat', add_newdoc('numpy.core', 'ufunc', ('outer', """ - outer(A, B) + outer(A, B, **kwargs) Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. @@ -5904,6 +5922,8 @@ add_newdoc('numpy.core', 'ufunc', ('outer', First array B : array_like Second array + kwargs : any + Arguments to pass on to the ufunc. Typically `dtype` or `out`. Returns ------- @@ -6156,11 +6176,13 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('char', add_newdoc('numpy.core.multiarray', 'dtype', ('descr', """ - Array-interface compliant full description of the data-type. + PEP3118 interface description of the data-type. The format is that required by the 'descr' key in the - `__array_interface__` attribute. + PEP3118 `__array_interface__` attribute. + Warning: This attribute exists specifically for PEP3118 compliance, and + is not a datatype description compatible with `np.dtype`. """)) add_newdoc('numpy.core.multiarray', 'dtype', ('fields', @@ -6227,7 +6249,7 @@ add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', 2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to extend numpy to handle a new array type. See - :ref:`user.user-defined-data-types` in the Numpy manual. + :ref:`user.user-defined-data-types` in the NumPy manual. = ======================================================================== Examples @@ -7615,7 +7637,7 @@ add_newdoc('numpy.core.numerictypes', 'generic', ('view', ############################################################################## add_newdoc('numpy.core.numerictypes', 'bool_', - """Numpy's Boolean type. Character code: ``?``. Alias: bool8""") + """NumPy's Boolean type. Character code: ``?``. Alias: bool8""") add_newdoc('numpy.core.numerictypes', 'complex64', """ |
