diff options
Diffstat (limited to 'numpy/doc/pyrex/numpyx.pyx')
-rw-r--r-- | numpy/doc/pyrex/numpyx.pyx | 97 |
1 files changed, 97 insertions, 0 deletions
diff --git a/numpy/doc/pyrex/numpyx.pyx b/numpy/doc/pyrex/numpyx.pyx new file mode 100644 index 000000000..8089fbc38 --- /dev/null +++ b/numpy/doc/pyrex/numpyx.pyx @@ -0,0 +1,97 @@ +# -*- Mode: Python -*- Not really, but close enough + +cimport c_python +cimport c_numpy +import numpy + +# Numpy must be initialized +c_numpy.import_array() + +def print_array_info(c_numpy.ndarray arr): + cdef int i + + print '-='*10 + print 'printing array info for ndarray at 0x%0lx'%(<c_python.Py_intptr_t>arr,) + print 'print number of dimensions:',arr.nd + print 'address of strides: 0x%0lx'%(<c_python.Py_intptr_t>arr.strides,) + print 'strides:' + for i from 0<=i<arr.nd: + # print each stride + print ' stride %d:'%i,<c_python.Py_intptr_t>arr.strides[i] + print 'memory dump:' + print_elements( arr.data, arr.strides, arr.dimensions, + arr.nd, sizeof(double), arr.dtype ) + print '-='*10 + print + +cdef print_elements(char *data, + c_python.Py_intptr_t* strides, + c_python.Py_intptr_t* dimensions, + int nd, + int elsize, + object dtype): + cdef c_python.Py_intptr_t i,j + cdef void* elptr + + if dtype not in [numpy.dtype(numpy.object_), + numpy.dtype(numpy.float64)]: + print ' print_elements() not (yet) implemented for dtype %s'%dtype.name + return + + if nd ==0: + if dtype==numpy.dtype(numpy.object_): + elptr = (<void**>data)[0] #[0] dereferences pointer in Pyrex + print ' ',<object>elptr + elif dtype==numpy.dtype(numpy.float64): + print ' ',(<double*>data)[0] + elif nd == 1: + for i from 0<=i<dimensions[0]: + if dtype==numpy.dtype(numpy.object_): + elptr = (<void**>data)[0] + print ' ',<object>elptr + elif dtype==numpy.dtype(numpy.float64): + print ' ',(<double*>data)[0] + data = data + strides[0] + else: + for i from 0<=i<dimensions[0]: + print_elements(data, strides+1, dimensions+1, nd-1, elsize, dtype) + data = data + strides[0] + +def test_methods(c_numpy.ndarray arr): + """Test a few attribute accesses for an array. + + This illustrates how the pyrex-visible object is in practice a strange + hybrid of the C PyArrayObject struct and the python object. Some + properties (like .nd) are visible here but not in python, while others + like flags behave very differently: in python flags appears as a separate, + object while here we see the raw int holding the bit pattern. + + This makes sense when we think of how pyrex resolves arr.foo: if foo is + listed as a field in the c_numpy.ndarray struct description, it will be + directly accessed as a C variable without going through Python at all. + This is why for arr.flags, we see the actual int which holds all the flags + as bit fields. However, for any other attribute not listed in the struct, + it simply forwards the attribute lookup to python at runtime, just like + python would (which means that AttributeError can be raised for + non-existent attributes, for example).""" + + print 'arr.any() :',arr.any() + print 'arr.nd :',arr.nd + print 'arr.flags :',arr.flags + +def test(): + """this function is pure Python""" + arr1 = numpy.array(-1e-30,dtype=numpy.float64) + arr2 = numpy.array([1.0,2.0,3.0],dtype=numpy.float64) + + arr3 = numpy.arange(9,dtype=numpy.float64) + arr3.shape = 3,3 + + four = 4 + arr4 = numpy.array(['one','two',3,four],dtype=numpy.object_) + + arr5 = numpy.array([1,2,3]) # int types not (yet) supported by print_elements + + for arr in [arr1,arr2,arr3,arr4,arr5]: + print_array_info(arr) + |