diff options
Diffstat (limited to 'numpy/doc/subclassing.py')
-rw-r--r-- | numpy/doc/subclassing.py | 36 |
1 files changed, 18 insertions, 18 deletions
diff --git a/numpy/doc/subclassing.py b/numpy/doc/subclassing.py index a62fc2d6d..85327feab 100644 --- a/numpy/doc/subclassing.py +++ b/numpy/doc/subclassing.py @@ -123,13 +123,13 @@ For example, consider the following Python code: class C(object): def __new__(cls, *args): - print 'Cls in __new__:', cls - print 'Args in __new__:', args + print('Cls in __new__:', cls) + print('Args in __new__:', args) return object.__new__(cls, *args) def __init__(self, *args): - print 'type(self) in __init__:', type(self) - print 'Args in __init__:', args + print('type(self) in __init__:', type(self)) + print('Args in __init__:', args) meaning that we get: @@ -159,13 +159,13 @@ of some other class. Consider the following: class D(C): def __new__(cls, *args): - print 'D cls is:', cls - print 'D args in __new__:', args + print('D cls is:', cls) + print('D args in __new__:', args) return C.__new__(C, *args) def __init__(self, *args): # we never get here - print 'In D __init__' + print('In D __init__') meaning that: @@ -242,18 +242,18 @@ The following code allows us to look at the call sequences and arguments: class C(np.ndarray): def __new__(cls, *args, **kwargs): - print 'In __new__ with class %s' % cls + print('In __new__ with class %s' % cls) return np.ndarray.__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): # in practice you probably will not need or want an __init__ # method for your subclass - print 'In __init__ with class %s' % self.__class__ + print('In __init__ with class %s' % self.__class__) def __array_finalize__(self, obj): - print 'In array_finalize:' - print ' self type is %s' % type(self) - print ' obj type is %s' % type(obj) + print('In array_finalize:') + print(' self type is %s' % type(self)) + print(' obj type is %s' % type(obj)) Now: @@ -441,16 +441,16 @@ some print statements: return obj def __array_finalize__(self, obj): - print 'In __array_finalize__:' - print ' self is %s' % repr(self) - print ' obj is %s' % repr(obj) + print('In __array_finalize__:') + print(' self is %s' % repr(self)) + print(' obj is %s' % repr(obj)) if obj is None: return self.info = getattr(obj, 'info', None) def __array_wrap__(self, out_arr, context=None): - print 'In __array_wrap__:' - print ' self is %s' % repr(self) - print ' arr is %s' % repr(out_arr) + print('In __array_wrap__:') + print(' self is %s' % repr(self)) + print(' arr is %s' % repr(out_arr)) # then just call the parent return np.ndarray.__array_wrap__(self, out_arr, context) |