diff options
Diffstat (limited to 'numpy/doc/swig')
-rw-r--r-- | numpy/doc/swig/Makefile | 62 | ||||
-rw-r--r-- | numpy/doc/swig/Matrix.cxx | 112 | ||||
-rw-r--r-- | numpy/doc/swig/Matrix.h | 52 | ||||
-rw-r--r-- | numpy/doc/swig/Matrix.i | 45 | ||||
-rw-r--r-- | numpy/doc/swig/README | 121 | ||||
-rw-r--r-- | numpy/doc/swig/Tensor.cxx | 131 | ||||
-rw-r--r-- | numpy/doc/swig/Tensor.h | 52 | ||||
-rw-r--r-- | numpy/doc/swig/Tensor.i | 49 | ||||
-rw-r--r-- | numpy/doc/swig/Vector.cxx | 100 | ||||
-rw-r--r-- | numpy/doc/swig/Vector.h | 58 | ||||
-rw-r--r-- | numpy/doc/swig/Vector.i | 47 | ||||
-rw-r--r-- | numpy/doc/swig/numpy.i | 975 | ||||
-rw-r--r-- | numpy/doc/swig/numpy_swig.html | 1061 | ||||
-rw-r--r-- | numpy/doc/swig/numpy_swig.pdf | bin | 0 -> 148220 bytes | |||
-rw-r--r-- | numpy/doc/swig/numpy_swig.txt | 774 | ||||
-rwxr-xr-x | numpy/doc/swig/setup.py | 43 | ||||
-rwxr-xr-x | numpy/doc/swig/testMatrix.py | 365 | ||||
-rwxr-xr-x | numpy/doc/swig/testTensor.py | 405 | ||||
-rwxr-xr-x | numpy/doc/swig/testVector.py | 384 | ||||
-rw-r--r-- | numpy/doc/swig/testing.html | 482 | ||||
-rw-r--r-- | numpy/doc/swig/testing.pdf | bin | 0 -> 72391 bytes | |||
-rw-r--r-- | numpy/doc/swig/testing.txt | 173 |
22 files changed, 5491 insertions, 0 deletions
diff --git a/numpy/doc/swig/Makefile b/numpy/doc/swig/Makefile new file mode 100644 index 000000000..fc99a959f --- /dev/null +++ b/numpy/doc/swig/Makefile @@ -0,0 +1,62 @@ +# SWIG +INTERFACES = Vector.i Matrix.i Tensor.i +WRAPPERS = $(INTERFACES:.i=_wrap.cxx) +PROXIES = $(INTERFACES:.i=.py ) + +# ReStructured Text +RST2HTML = rst2html.py +RST2LATEX = rst2latex.py +RFLAGS = --generator --time +HTML_FLAGS = --no-xml-declaration +LATEX_FLAGS = +LATEX = pdflatex + +# Web pages that need to be made +WEB_PAGES = numpy_swig.html testing.html + +# LaTeX files that need to be made +LATEX_FILES = numpy_swig.tex testing.tex + +# PDF files that need to be made +PDF_FILES = numpy_swig.pdf testing.pdf + +# List all of the subdirectories here for recursive make +SUBDIRS = + +all: $(WRAPPERS) Vector.cxx Vector.h Matrix.cxx Matrix.h Tensor.cxx Tensor.h + ./setup.py build + +test: all + testVector.py + testMatrix.py + testTensor.py + +doc: html pdf + +%_wrap.cxx: %.i %.h numpy.i + swig -c++ -python $< + +html: $(WEB_PAGES) + +%.html: %.txt + $(RST2HTML) $(RFLAGS) $(HTML_FLAGS) $< $@ + +tex: $(LATEX_FILES) + +%.tex: %.txt + $(RST2LATEX) $(RFLAGS) $(LATEX_FLAGS) $< $@ + +pdf: $(PDF_FILES) + +%.pdf: %.tex + $(LATEX) $< + $(LATEX) $< + +clean: + $(RM) -r build + $(RM) $(WRAPPERS) + $(RM) $(PROXIES) + $(RM) $(LATEX_FILES) + $(RM) *.pyc *.aux *.dvi *.log *.out *~ + +.PHONY : all test doc html tex pdf clean diff --git a/numpy/doc/swig/Matrix.cxx b/numpy/doc/swig/Matrix.cxx new file mode 100644 index 000000000..b953d7017 --- /dev/null +++ b/numpy/doc/swig/Matrix.cxx @@ -0,0 +1,112 @@ +#include <stdlib.h> +#include <math.h> +#include <iostream> +#include "Matrix.h" + +// The following macro defines a family of functions that work with 2D +// arrays with the forms +// +// TYPE SNAMEDet( TYPE matrix[2][2]); +// TYPE SNAMEMax( TYPE * matrix, int rows, int cols); +// TYPE SNAMEMin( int rows, int cols, TYPE * matrix); +// void SNAMEScale( TYPE matrix[3][3]); +// void SNAMEFloor( TYPE * array, int rows, int cols, TYPE floor); +// void SNAMECeil( int rows, int cols, TYPE * array, TYPE ceil); +// void SNAMELUSplit(TYPE in[3][3], TYPE lower[3][3], TYPE upper[3][3]); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 2D input arrays, hard-coded length +// * 2D input arrays +// * 2D input arrays, data last +// * 2D in-place arrays, hard-coded lengths +// * 2D in-place arrays +// * 2D in-place arrays, data last +// * 2D argout arrays, hard-coded length +// +#define TEST_FUNCS(TYPE, SNAME) \ +\ +TYPE SNAME ## Det(TYPE matrix[2][2]) { \ + return matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]; \ +} \ +\ +TYPE SNAME ## Max(TYPE * matrix, int rows, int cols) { \ + int i, j, index; \ + TYPE result = matrix[0]; \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = j*rows + i; \ + if (matrix[index] > result) result = matrix[index]; \ + } \ + } \ + return result; \ +} \ +\ +TYPE SNAME ## Min(int rows, int cols, TYPE * matrix) { \ + int i, j, index; \ + TYPE result = matrix[0]; \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = j*rows + i; \ + if (matrix[index] < result) result = matrix[index]; \ + } \ + } \ + return result; \ +} \ +\ +void SNAME ## Scale(TYPE array[3][3], TYPE val) { \ + for (int i=0; i<3; ++i) \ + for (int j=0; j<3; ++j) \ + array[i][j] *= val; \ +} \ +\ +void SNAME ## Floor(TYPE * array, int rows, int cols, TYPE floor) { \ + int i, j, index; \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = j*rows + i; \ + if (array[index] < floor) array[index] = floor; \ + } \ + } \ +} \ +\ +void SNAME ## Ceil(int rows, int cols, TYPE * array, TYPE ceil) { \ + int i, j, index; \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = j*rows + i; \ + if (array[index] > ceil) array[index] = ceil; \ + } \ + } \ +} \ +\ +void SNAME ## LUSplit(TYPE matrix[3][3], TYPE lower[3][3], TYPE upper[3][3]) { \ + for (int i=0; i<3; ++i) { \ + for (int j=0; j<3; ++j) { \ + if (i >= j) { \ + lower[i][j] = matrix[i][j]; \ + upper[i][j] = 0; \ + } else { \ + lower[i][j] = 0; \ + upper[i][j] = matrix[i][j]; \ + } \ + } \ + } \ +} + +TEST_FUNCS(signed char , schar ) +TEST_FUNCS(unsigned char , uchar ) +TEST_FUNCS(short , short ) +TEST_FUNCS(unsigned short , ushort ) +TEST_FUNCS(int , int ) +TEST_FUNCS(unsigned int , uint ) +TEST_FUNCS(long , long ) +TEST_FUNCS(unsigned long , ulong ) +TEST_FUNCS(long long , longLong ) +TEST_FUNCS(unsigned long long, ulongLong) +TEST_FUNCS(float , float ) +TEST_FUNCS(double , double ) diff --git a/numpy/doc/swig/Matrix.h b/numpy/doc/swig/Matrix.h new file mode 100644 index 000000000..f37836cc4 --- /dev/null +++ b/numpy/doc/swig/Matrix.h @@ -0,0 +1,52 @@ +#ifndef MATRIX_H +#define MATRIX_H + +// The following macro defines the prototypes for a family of +// functions that work with 2D arrays with the forms +// +// TYPE SNAMEDet( TYPE matrix[2][2]); +// TYPE SNAMEMax( TYPE * matrix, int rows, int cols); +// TYPE SNAMEMin( int rows, int cols, TYPE * matrix); +// void SNAMEScale( TYPE array[3][3]); +// void SNAMEFloor( TYPE * array, int rows, int cols, TYPE floor); +// void SNAMECeil( int rows, int cols, TYPE * array, TYPE ceil ); +// void SNAMELUSplit(TYPE in[3][3], TYPE lower[3][3], TYPE upper[3][3]); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 2D input arrays, hard-coded lengths +// * 2D input arrays +// * 2D input arrays, data last +// * 2D in-place arrays, hard-coded lengths +// * 2D in-place arrays +// * 2D in-place arrays, data last +// * 2D argout arrays, hard-coded length +// +#define TEST_FUNC_PROTOS(TYPE, SNAME) \ +\ +TYPE SNAME ## Det( TYPE matrix[2][2]); \ +TYPE SNAME ## Max( TYPE * matrix, int rows, int cols); \ +TYPE SNAME ## Min( int rows, int cols, TYPE * matrix); \ +void SNAME ## Scale( TYPE array[3][3], TYPE val); \ +void SNAME ## Floor( TYPE * array, int rows, int cols, TYPE floor); \ +void SNAME ## Ceil( int rows, int cols, TYPE * array, TYPE ceil ); \ +void SNAME ## LUSplit(TYPE matrix[3][3], TYPE lower[3][3], TYPE upper[3][3]); + +TEST_FUNC_PROTOS(signed char , schar ) +TEST_FUNC_PROTOS(unsigned char , uchar ) +TEST_FUNC_PROTOS(short , short ) +TEST_FUNC_PROTOS(unsigned short , ushort ) +TEST_FUNC_PROTOS(int , int ) +TEST_FUNC_PROTOS(unsigned int , uint ) +TEST_FUNC_PROTOS(long , long ) +TEST_FUNC_PROTOS(unsigned long , ulong ) +TEST_FUNC_PROTOS(long long , longLong ) +TEST_FUNC_PROTOS(unsigned long long, ulongLong) +TEST_FUNC_PROTOS(float , float ) +TEST_FUNC_PROTOS(double , double ) + +#endif diff --git a/numpy/doc/swig/Matrix.i b/numpy/doc/swig/Matrix.i new file mode 100644 index 000000000..4e14b138d --- /dev/null +++ b/numpy/doc/swig/Matrix.i @@ -0,0 +1,45 @@ +// -*- c++ -*- +%module Matrix + +%{ +#define SWIG_FILE_WITH_INIT +#include "Matrix.h" +%} + +// Get the NumPy typemaps +%include "numpy.i" + +%init %{ + import_array(); +%} + +%define %apply_numpy_typemaps(TYPE) + +%apply (TYPE IN_ARRAY2[ANY][ANY]) {(TYPE matrix[ANY][ANY])}; +%apply (TYPE* IN_ARRAY2, int DIM1, int DIM2) {(TYPE* matrix, int rows, int cols)}; +%apply (int DIM1, int DIM2, TYPE* IN_ARRAY2) {(int rows, int cols, TYPE* matrix)}; + +%apply (TYPE INPLACE_ARRAY2[ANY][ANY]) {(TYPE array[3][3])}; +%apply (TYPE* INPLACE_ARRAY2, int DIM1, int DIM2) {(TYPE* array, int rows, int cols)}; +%apply (int DIM1, int DIM2, TYPE* INPLACE_ARRAY2) {(int rows, int cols, TYPE* array)}; + +%apply (TYPE ARGOUT_ARRAY2[ANY][ANY]) {(TYPE lower[3][3])}; +%apply (TYPE ARGOUT_ARRAY2[ANY][ANY]) {(TYPE upper[3][3])}; + +%enddef /* %apply_numpy_typemaps() macro */ + +%apply_numpy_typemaps(signed char ) +%apply_numpy_typemaps(unsigned char ) +%apply_numpy_typemaps(short ) +%apply_numpy_typemaps(unsigned short ) +%apply_numpy_typemaps(int ) +%apply_numpy_typemaps(unsigned int ) +%apply_numpy_typemaps(long ) +%apply_numpy_typemaps(unsigned long ) +%apply_numpy_typemaps(long long ) +%apply_numpy_typemaps(unsigned long long) +%apply_numpy_typemaps(float ) +%apply_numpy_typemaps(double ) + +// Include the header file to be wrapped +%include "Matrix.h" diff --git a/numpy/doc/swig/README b/numpy/doc/swig/README new file mode 100644 index 000000000..40d7f9636 --- /dev/null +++ b/numpy/doc/swig/README @@ -0,0 +1,121 @@ +Notes for the numpy/doc/swig directory +====================================== + +This set of files is for developing and testing file numpy.i, which is +intended to be a set of typemaps for helping SWIG interface between C +and C++ code that uses C arrays and the python module NumPy. It is +ultimately hoped that numpy.i will be included as part of the SWIG +distribution. + +In the spirit of "writing your tests first", I will begin by +describing the tests, as they are a good example of what we are trying +to do with numpy.i. The files related to testing are:: + + Vector.h + Vector.cxx + Vector.i + testVector.py + + Matrix.h + Matrix.cxx + Matrix.i + testMatrix.py + + Tensor.h + Tensor.cxx + Tensor.i + testTensor.py + +The header files contain prototypes for functions that illustrate the +wrapping issues we wish to address. Right now, this consists of +functions with argument signatures of the following forms. Vector.h:: + + (type IN_ARRAY1[ANY]) + (type* IN_ARRAY1, int DIM1) + (int DIM1, type* IN_ARRAY1) + + (type INPLACE_ARRAY1[ANY]) + (type* INPLACE_ARRAY1, int DIM1) + (int DIM1, type* INPLACE_ARRAY1) + + (type ARGOUT_ARRAY1[ANY]) + (type* ARGOUT_ARRAY1, int DIM1) + (int DIM1, type* ARGOUT_ARRAY1) + +Matrix.h:: + + (type IN_ARRAY2[ANY][ANY]) + (type* IN_ARRAY2, int DIM1, int DIM2) + (int DIM1, int DIM2, type* IN_ARRAY2) + + (type INPLACE_ARRAY2[ANY][ANY]) + (type* INPLACE_ARRAY2, int DIM1, int DIM2) + (int DIM1, int DIM2, type* INPLACE_ARRAY2) + + (type ARGOUT_ARRAY2[ANY][ANY]) + +Tensor.h:: + + (type IN_ARRAY3[ANY][ANY][ANY]) + (type* IN_ARRAY3, int DIM1, int DIM2, int DIM3) + (int DIM1, int DIM2, int DIM3, type* IN_ARRAY3) + + (type INPLACE_ARRAY3[ANY][ANY][ANY]) + (type* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) + (int DIM1, int DIM2, int DIM3, type* INPLACE_ARRAY3) + + (type ARGOUT_ARRAY3[ANY][ANY][ANY]) + +These function signatures take a pointer to an array of type "type", +whose length is specified by the integer(s) DIM1 (and DIM2, and DIM3). + +The objective for the IN_ARRAY signatures is for SWIG to generate +python wrappers that take a container that constitutes a valid +argument to the numpy array constructor, and can be used to build an +array of type "type". Currently, types "signed char", "unsigned +char", "short", "unsigned short", "int", "unsigned int", "long", +"unsigned long", "long long", "unsigned long long", "float", and +"double" are supported and tested. + +The objective for the INPLACE_ARRAY signatures is for SWIG to generate +python wrappers that accept a numpy array of any of the above-listed +types. + +The source files Vector.cxx, Matrix.cxx and Tensor.cxx contain the +actual implementations of the functions described in Vector.h, +Matrix.h and Tensor.h. The python scripts testVector.py, +testMatrix.py and testTensor.py test the resulting python wrappers +using the unittest module. + +The SWIG interface files Vector.i, Matrix.i and Tensor.i are used to +generate the wrapper code. The SWIG_FILE_WITH_INIT macro allows +numpy.i to be used with multiple python modules. If it is specified, +then the %init block found in Vector.i, Matrix.i and Tensor.i are +required. The other things done in Vector.i, Matrix.i and Tensor.i +are the inclusion of the appropriate header file and numpy.i file, and +the "%apply" directives to force the functions to use the typemaps. + +The setup.py script is a standard python distutils script. It defines +_Vector, _Matrix and _Tensor extension modules and Vector, Matrix and +Tensor python modules. The Makefile automates everything, setting up +the dependencies, calling swig to generate the wrappers, and calling +setup.py to compile the wrapper code and generate the shared objects. +Targets "all" (default), "test", "doc" and "clean" are supported. The +"doc" target creates HTML documentation (with make target "html"), and +PDF documentation (with make targets "tex" and "pdf"). + +To build and run the test code, simply execute from the shell:: + + $ make + $ make test + +================================================================================ + +ToDo +---- + + * Add ARGOUT typemaps that assume the function allocates the buffers + internally. + + * Add "naked" typemaps for argument lists that do not specify + dimensions. diff --git a/numpy/doc/swig/Tensor.cxx b/numpy/doc/swig/Tensor.cxx new file mode 100644 index 000000000..dce595291 --- /dev/null +++ b/numpy/doc/swig/Tensor.cxx @@ -0,0 +1,131 @@ +#include <stdlib.h> +#include <math.h> +#include <iostream> +#include "Tensor.h" + +// The following macro defines a family of functions that work with 3D +// arrays with the forms +// +// TYPE SNAMENorm( TYPE tensor[2][2][2]); +// TYPE SNAMEMax( TYPE * tensor, int rows, int cols, int num); +// TYPE SNAMEMin( int rows, int cols, int num, TYPE * tensor); +// void SNAMEScale( TYPE tensor[3][3][3]); +// void SNAMEFloor( TYPE * array, int rows, int cols, int num, TYPE floor); +// void SNAMECeil( int rows, int cols, int num, TYPE * array, TYPE ceil); +// void SNAMELUSplit(TYPE in[2][2][2], TYPE lower[2][2][2], TYPE upper[2][2][2]); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 3D input arrays, hard-coded length +// * 3D input arrays +// * 3D input arrays, data last +// * 3D in-place arrays, hard-coded lengths +// * 3D in-place arrays +// * 3D in-place arrays, data last +// * 3D argout arrays, hard-coded length +// +#define TEST_FUNCS(TYPE, SNAME) \ +\ +TYPE SNAME ## Norm(TYPE tensor[2][2][2]) { \ + double result = 0; \ + for (int k=0; k<2; ++k) \ + for (int j=0; j<2; ++j) \ + for (int i=0; i<2; ++i) \ + result += tensor[i][j][k] * tensor[i][j][k]; \ + return (TYPE)sqrt(result/8); \ +} \ +\ +TYPE SNAME ## Max(TYPE * tensor, int rows, int cols, int num) { \ + int i, j, k, index; \ + TYPE result = tensor[0]; \ + for (k=0; k<num; ++k) { \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = k*rows*cols + j*rows + i; \ + if (tensor[index] > result) result = tensor[index]; \ + } \ + } \ + } \ + return result; \ +} \ +\ +TYPE SNAME ## Min(int rows, int cols, int num, TYPE * tensor) { \ + int i, j, k, index; \ + TYPE result = tensor[0]; \ + for (k=0; k<num; ++k) { \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = k*rows*cols + j*rows + i; \ + if (tensor[index] < result) result = tensor[index]; \ + } \ + } \ + } \ + return result; \ +} \ +\ +void SNAME ## Scale(TYPE array[3][3][3], TYPE val) { \ + for (int i=0; i<3; ++i) \ + for (int j=0; j<3; ++j) \ + for (int k=0; k<3; ++k) \ + array[i][j][k] *= val; \ +} \ +\ +void SNAME ## Floor(TYPE * array, int rows, int cols, int num, TYPE floor) { \ + int i, j, k, index; \ + for (k=0; k<num; ++k) { \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = k*cols*rows + j*rows + i; \ + if (array[index] < floor) array[index] = floor; \ + } \ + } \ + } \ +} \ +\ +void SNAME ## Ceil(int rows, int cols, int num, TYPE * array, TYPE ceil) { \ + int i, j, k, index; \ + for (k=0; k<num; ++k) { \ + for (j=0; j<cols; ++j) { \ + for (i=0; i<rows; ++i) { \ + index = j*rows + i; \ + if (array[index] > ceil) array[index] = ceil; \ + } \ + } \ + } \ +} \ +\ +void SNAME ## LUSplit(TYPE tensor[2][2][2], TYPE lower[2][2][2], \ + TYPE upper[2][2][2]) { \ + int sum; \ + for (int k=0; k<2; ++k) { \ + for (int j=0; j<2; ++j) { \ + for (int i=0; i<2; ++i) { \ + sum = i + j + k; \ + if (sum < 2) { \ + lower[i][j][k] = tensor[i][j][k]; \ + upper[i][j][k] = 0; \ + } else { \ + upper[i][j][k] = tensor[i][j][k]; \ + lower[i][j][k] = 0; \ + } \ + } \ + } \ + } \ +} + +TEST_FUNCS(signed char , schar ) +TEST_FUNCS(unsigned char , uchar ) +TEST_FUNCS(short , short ) +TEST_FUNCS(unsigned short , ushort ) +TEST_FUNCS(int , int ) +TEST_FUNCS(unsigned int , uint ) +TEST_FUNCS(long , long ) +TEST_FUNCS(unsigned long , ulong ) +TEST_FUNCS(long long , longLong ) +TEST_FUNCS(unsigned long long, ulongLong) +TEST_FUNCS(float , float ) +TEST_FUNCS(double , double ) diff --git a/numpy/doc/swig/Tensor.h b/numpy/doc/swig/Tensor.h new file mode 100644 index 000000000..d60eb2d2e --- /dev/null +++ b/numpy/doc/swig/Tensor.h @@ -0,0 +1,52 @@ +#ifndef TENSOR_H +#define TENSOR_H + +// The following macro defines the prototypes for a family of +// functions that work with 3D arrays with the forms +// +// TYPE SNAMENorm( TYPE tensor[2][2][2]); +// TYPE SNAMEMax( TYPE * tensor, int rows, int cols, int num); +// TYPE SNAMEMin( int rows, int cols, int num, TYPE * tensor); +// void SNAMEScale( TYPE array[3][3][3]); +// void SNAMEFloor( TYPE * array, int rows, int cols, int num, TYPE floor); +// void SNAMECeil( int rows, int cols, int num, TYPE * array, TYPE ceil ); +// void SNAMELUSplit(TYPE in[3][3][3], TYPE lower[3][3][3], TYPE upper[3][3][3]); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 3D input arrays, hard-coded lengths +// * 3D input arrays +// * 3D input arrays, data last +// * 3D in-place arrays, hard-coded lengths +// * 3D in-place arrays +// * 3D in-place arrays, data last +// * 3D argout arrays, hard-coded length +// +#define TEST_FUNC_PROTOS(TYPE, SNAME) \ +\ +TYPE SNAME ## Norm( TYPE tensor[2][2][2]); \ +TYPE SNAME ## Max( TYPE * tensor, int rows, int cols, int num); \ +TYPE SNAME ## Min( int rows, int cols, int num, TYPE * tensor); \ +void SNAME ## Scale( TYPE array[3][3][3], TYPE val); \ +void SNAME ## Floor( TYPE * array, int rows, int cols, int num, TYPE floor); \ +void SNAME ## Ceil( int rows, int cols, int num, TYPE * array, TYPE ceil ); \ +void SNAME ## LUSplit(TYPE tensor[2][2][2], TYPE lower[2][2][2], TYPE upper[2][2][2]); + +TEST_FUNC_PROTOS(signed char , schar ) +TEST_FUNC_PROTOS(unsigned char , uchar ) +TEST_FUNC_PROTOS(short , short ) +TEST_FUNC_PROTOS(unsigned short , ushort ) +TEST_FUNC_PROTOS(int , int ) +TEST_FUNC_PROTOS(unsigned int , uint ) +TEST_FUNC_PROTOS(long , long ) +TEST_FUNC_PROTOS(unsigned long , ulong ) +TEST_FUNC_PROTOS(long long , longLong ) +TEST_FUNC_PROTOS(unsigned long long, ulongLong) +TEST_FUNC_PROTOS(float , float ) +TEST_FUNC_PROTOS(double , double ) + +#endif diff --git a/numpy/doc/swig/Tensor.i b/numpy/doc/swig/Tensor.i new file mode 100644 index 000000000..24c906d29 --- /dev/null +++ b/numpy/doc/swig/Tensor.i @@ -0,0 +1,49 @@ +// -*- c++ -*- +%module Tensor + +%{ +#define SWIG_FILE_WITH_INIT +#include "Tensor.h" +%} + +// Get the NumPy typemaps +%include "numpy.i" + +%init %{ + import_array(); +%} + +%define %apply_numpy_typemaps(TYPE) + +%apply (TYPE IN_ARRAY3[ANY][ANY][ANY]) {(TYPE tensor[ANY][ANY][ANY])}; +%apply (TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3) + {(TYPE* tensor, int rows, int cols, int num)}; +%apply (int DIM1, int DIM2, int DIM3, TYPE* IN_ARRAY3) + {(int rows, int cols, int num, TYPE* tensor)}; + +%apply (TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) {(TYPE array[3][3][3])}; +%apply (TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) + {(TYPE* array, int rows, int cols, int num)}; +%apply (int DIM1, int DIM2, int DIM3, TYPE* INPLACE_ARRAY3) + {(int rows, int cols, int num, TYPE* array)}; + +%apply (TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) {(TYPE lower[2][2][2])}; +%apply (TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) {(TYPE upper[2][2][2])}; + +%enddef /* %apply_numpy_typemaps() macro */ + +%apply_numpy_typemaps(signed char ) +%apply_numpy_typemaps(unsigned char ) +%apply_numpy_typemaps(short ) +%apply_numpy_typemaps(unsigned short ) +%apply_numpy_typemaps(int ) +%apply_numpy_typemaps(unsigned int ) +%apply_numpy_typemaps(long ) +%apply_numpy_typemaps(unsigned long ) +%apply_numpy_typemaps(long long ) +%apply_numpy_typemaps(unsigned long long) +%apply_numpy_typemaps(float ) +%apply_numpy_typemaps(double ) + +// Include the header file to be wrapped +%include "Tensor.h" diff --git a/numpy/doc/swig/Vector.cxx b/numpy/doc/swig/Vector.cxx new file mode 100644 index 000000000..2c90404da --- /dev/null +++ b/numpy/doc/swig/Vector.cxx @@ -0,0 +1,100 @@ +#include <stdlib.h> +#include <math.h> +#include <iostream> +#include "Vector.h" + +// The following macro defines a family of functions that work with 1D +// arrays with the forms +// +// TYPE SNAMELength( TYPE vector[3]); +// TYPE SNAMEProd( TYPE * series, int size); +// TYPE SNAMESum( int size, TYPE * series); +// void SNAMEReverse(TYPE array[3]); +// void SNAMEOnes( TYPE * array, int size); +// void SNAMEZeros( int size, TYPE * array); +// void SNAMEEOSplit(TYPE vector[3], TYPE even[3], odd[3]); +// void SNAMETwos( TYPE * twoVec, int size); +// void SNAMEThrees( int size, TYPE * threeVec); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 1D input arrays, hard-coded length +// * 1D input arrays +// * 1D input arrays, data last +// * 1D in-place arrays, hard-coded length +// * 1D in-place arrays +// * 1D in-place arrays, data last +// * 1D argout arrays, hard-coded length +// * 1D argout arrays +// * 1D argout arrays, data last +// +#define TEST_FUNCS(TYPE, SNAME) \ +\ +TYPE SNAME ## Length(TYPE vector[3]) { \ + double result = 0; \ + for (int i=0; i<3; ++i) result += vector[i]*vector[i]; \ + return (TYPE)sqrt(result); \ +} \ +\ +TYPE SNAME ## Prod(TYPE * series, int size) { \ + TYPE result = 1; \ + for (int i=0; i<size; ++i) result *= series[i]; \ + return result; \ +} \ +\ +TYPE SNAME ## Sum(int size, TYPE * series) { \ + TYPE result = 0; \ + for (int i=0; i<size; ++i) result += series[i]; \ + return result; \ +} \ +\ +void SNAME ## Reverse(TYPE array[3]) { \ + TYPE temp = array[0]; \ + array[0] = array[2]; \ + array[2] = temp; \ +} \ +\ +void SNAME ## Ones(TYPE * array, int size) { \ + for (int i=0; i<size; ++i) array[i] = 1; \ +} \ +\ +void SNAME ## Zeros(int size, TYPE * array) { \ + for (int i=0; i<size; ++i) array[i] = 0; \ +} \ +\ +void SNAME ## EOSplit(TYPE vector[3], TYPE even[3], TYPE odd[3]) { \ + for (int i=0; i<3; ++i) { \ + if (i % 2 == 0) { \ + even[i] = vector[i]; \ + odd[ i] = 0; \ + } else { \ + even[i] = 0; \ + odd[ i] = vector[i]; \ + } \ + } \ +} \ +\ +void SNAME ## Twos(TYPE* twoVec, int size) { \ + for (int i=0; i<size; ++i) twoVec[i] = 2; \ +} \ +\ +void SNAME ## Threes(int size, TYPE* threeVec) { \ + for (int i=0; i<size; ++i) threeVec[i] = 3; \ +} + +TEST_FUNCS(signed char , schar ) +TEST_FUNCS(unsigned char , uchar ) +TEST_FUNCS(short , short ) +TEST_FUNCS(unsigned short , ushort ) +TEST_FUNCS(int , int ) +TEST_FUNCS(unsigned int , uint ) +TEST_FUNCS(long , long ) +TEST_FUNCS(unsigned long , ulong ) +TEST_FUNCS(long long , longLong ) +TEST_FUNCS(unsigned long long, ulongLong) +TEST_FUNCS(float , float ) +TEST_FUNCS(double , double ) diff --git a/numpy/doc/swig/Vector.h b/numpy/doc/swig/Vector.h new file mode 100644 index 000000000..01da361c6 --- /dev/null +++ b/numpy/doc/swig/Vector.h @@ -0,0 +1,58 @@ +#ifndef VECTOR_H +#define VECTOR_H + +// The following macro defines the prototypes for a family of +// functions that work with 1D arrays with the forms +// +// TYPE SNAMELength( TYPE vector[3]); +// TYPE SNAMEProd( TYPE * series, int size); +// TYPE SNAMESum( int size, TYPE * series); +// void SNAMEReverse(TYPE array[3]); +// void SNAMEOnes( TYPE * array, int size); +// void SNAMEZeros( int size, TYPE * array); +// void SNAMEEOSplit(TYPE vector[3], TYPE even[3], TYPE odd[3]); +// void SNAMETwos( TYPE * twoVec, int size); +// void SNAMEThrees( int size, TYPE * threeVec); +// +// for any specified type TYPE (for example: short, unsigned int, long +// long, etc.) with given short name SNAME (for example: short, uint, +// longLong, etc.). The macro is then expanded for the given +// TYPE/SNAME pairs. The resulting functions are for testing numpy +// interfaces, respectively, for: +// +// * 1D input arrays, hard-coded length +// * 1D input arrays +// * 1D input arrays, data last +// * 1D in-place arrays, hard-coded length +// * 1D in-place arrays +// * 1D in-place arrays, data last +// * 1D argout arrays, hard-coded length +// * 1D argout arrays +// * 1D argout arrays, data last +// +#define TEST_FUNC_PROTOS(TYPE, SNAME) \ +\ +TYPE SNAME ## Length( TYPE vector[3]); \ +TYPE SNAME ## Prod( TYPE * series, int size); \ +TYPE SNAME ## Sum( int size, TYPE * series); \ +void SNAME ## Reverse(TYPE array[3]); \ +void SNAME ## Ones( TYPE * array, int size); \ +void SNAME ## Zeros( int size, TYPE * array); \ +void SNAME ## EOSplit(TYPE vector[3], TYPE even[3], TYPE odd[3]); \ +void SNAME ## Twos( TYPE * twoVec, int size); \ +void SNAME ## Threes( int size, TYPE * threeVec); \ + +TEST_FUNC_PROTOS(signed char , schar ) +TEST_FUNC_PROTOS(unsigned char , uchar ) +TEST_FUNC_PROTOS(short , short ) +TEST_FUNC_PROTOS(unsigned short , ushort ) +TEST_FUNC_PROTOS(int , int ) +TEST_FUNC_PROTOS(unsigned int , uint ) +TEST_FUNC_PROTOS(long , long ) +TEST_FUNC_PROTOS(unsigned long , ulong ) +TEST_FUNC_PROTOS(long long , longLong ) +TEST_FUNC_PROTOS(unsigned long long, ulongLong) +TEST_FUNC_PROTOS(float , float ) +TEST_FUNC_PROTOS(double , double ) + +#endif diff --git a/numpy/doc/swig/Vector.i b/numpy/doc/swig/Vector.i new file mode 100644 index 000000000..1cb689250 --- /dev/null +++ b/numpy/doc/swig/Vector.i @@ -0,0 +1,47 @@ +// -*- c++ -*- +%module Vector + +%{ +#define SWIG_FILE_WITH_INIT +#include "Vector.h" +%} + +// Get the NumPy typemaps +%include "numpy.i" + +%init %{ + import_array(); +%} + +%define %apply_numpy_typemaps(TYPE) + +%apply (TYPE IN_ARRAY1[ANY]) {(TYPE vector[3])}; +%apply (TYPE* IN_ARRAY1, int DIM1) {(TYPE* series, int size)}; +%apply (int DIM1, TYPE* IN_ARRAY1) {(int size, TYPE* series)}; + +%apply (TYPE INPLACE_ARRAY1[ANY]) {(TYPE array[3])}; +%apply (TYPE* INPLACE_ARRAY1, int DIM1) {(TYPE* array, int size)}; +%apply (int DIM1, TYPE* INPLACE_ARRAY1) {(int size, TYPE* array)}; + +%apply (TYPE ARGOUT_ARRAY1[ANY]) {(TYPE even[3])}; +%apply (TYPE ARGOUT_ARRAY1[ANY]) {(TYPE odd[ 3])}; +%apply (TYPE* ARGOUT_ARRAY1, int DIM1) {(TYPE* twoVec, int size)}; +%apply (int DIM1, TYPE* ARGOUT_ARRAY1) {(int size, TYPE* threeVec)}; + +%enddef /* %apply_numpy_typemaps() macro */ + +%apply_numpy_typemaps(signed char ) +%apply_numpy_typemaps(unsigned char ) +%apply_numpy_typemaps(short ) +%apply_numpy_typemaps(unsigned short ) +%apply_numpy_typemaps(int ) +%apply_numpy_typemaps(unsigned int ) +%apply_numpy_typemaps(long ) +%apply_numpy_typemaps(unsigned long ) +%apply_numpy_typemaps(long long ) +%apply_numpy_typemaps(unsigned long long) +%apply_numpy_typemaps(float ) +%apply_numpy_typemaps(double ) + +// Include the header file to be wrapped +%include "Vector.h" diff --git a/numpy/doc/swig/numpy.i b/numpy/doc/swig/numpy.i new file mode 100644 index 000000000..69c947af3 --- /dev/null +++ b/numpy/doc/swig/numpy.i @@ -0,0 +1,975 @@ +/* -*- C -*- (not really, but good for syntax highlighting) */ +#ifdef SWIGPYTHON + +%{ +#ifndef SWIG_FILE_WITH_INIT +# define NO_IMPORT_ARRAY +#endif +#include "stdio.h" +#include <numpy/arrayobject.h> + +/* The following code originally appeared in + * enthought/kiva/agg/src/numeric.i written by Eric Jones. It was + * translated from C++ to C by John Hunter. Bill Spotz has modified + * it slightly to fix some minor bugs, upgrade to numpy (all + * versions), add some comments and some functionality. + */ + +/* Macros to extract array attributes. + */ +#define is_array(a) ((a) && PyArray_Check((PyArrayObject *)a)) +#define array_type(a) (int)(PyArray_TYPE(a)) +#define array_numdims(a) (((PyArrayObject *)a)->nd) +#define array_dimensions(a) (((PyArrayObject *)a)->dimensions) +#define array_size(a,i) (((PyArrayObject *)a)->dimensions[i]) +#define array_data(a) (((PyArrayObject *)a)->data) +#define array_is_contiguous(a) (PyArray_ISCONTIGUOUS(a)) +#define array_is_native(a) (PyArray_ISNOTSWAPPED(a)) + +/* Support older NumPy data type names +*/ +#if NDARRAY_VERSION < 0x01000000 +#define NPY_BOOL PyArray_BOOL +#define NPY_BYTE PyArray_BYTE +#define NPY_UBYTE PyArray_UBYTE +#define NPY_SHORT PyArray_SHORT +#define NPY_USHORT PyArray_USHORT +#define NPY_INT PyArray_INT +#define NPY_UINT PyArray_UINT +#define NPY_LONG PyArray_LONG +#define NPY_ULONG PyArray_ULONG +#define NPY_LONGLONG PyArray_LONGLONG +#define NPY_ULONGLONG PyArray_ULONGLONG +#define NPY_FLOAT PyArray_FLOAT +#define NPY_DOUBLE PyArray_DOUBLE +#define NPY_LONGDOUBLE PyArray_LONGDOUBLE +#define NPY_CFLOAT PyArray_CFLOAT +#define NPY_CDOUBLE PyArray_CDOUBLE +#define NPY_CLONGDOUBLE PyArray_CLONGDOUBLE +#define NPY_OBJECT PyArray_OBJECT +#define NPY_STRING PyArray_STRING +#define NPY_UNICODE PyArray_UNICODE +#define NPY_VOID PyArray_VOID +#define NPY_NTYPES PyArray_NTYPES +#define NPY_NOTYPE PyArray_NOTYPE +#define NPY_CHAR PyArray_CHAR +#define NPY_USERDEF PyArray_USERDEF +#define npy_intp intp +#endif + +/* Given a PyObject, return a string describing its type. + */ +char* pytype_string(PyObject* py_obj) { + if (py_obj == NULL ) return "C NULL value"; + if (py_obj == Py_None ) return "Python None" ; + if (PyCallable_Check(py_obj)) return "callable" ; + if (PyString_Check( py_obj)) return "string" ; + if (PyInt_Check( py_obj)) return "int" ; + if (PyFloat_Check( py_obj)) return "float" ; + if (PyDict_Check( py_obj)) return "dict" ; + if (PyList_Check( py_obj)) return "list" ; + if (PyTuple_Check( py_obj)) return "tuple" ; + if (PyFile_Check( py_obj)) return "file" ; + if (PyModule_Check( py_obj)) return "module" ; + if (PyInstance_Check(py_obj)) return "instance" ; + + return "unkown type"; +} + +/* Given a NumPy typecode, return a string describing the type. + */ +char* typecode_string(int typecode) { + static char* type_names[25] = {"bool", "byte", "unsigned byte", + "short", "unsigned short", "int", + "unsigned int", "long", "unsigned long", + "long long", "unsigned long long", + "float", "double", "long double", + "complex float", "complex double", + "complex long double", "object", + "string", "unicode", "void", "ntypes", + "notype", "char", "unknown"}; + return typecode < 24 ? type_names[typecode] : type_names[24]; +} + +/* Make sure input has correct numpy type. Allow character and byte + * to match. Also allow int and long to match. This is deprecated. + * You should use PyArray_EquivTypenums() instead. + */ +int type_match(int actual_type, int desired_type) { + return PyArray_EquivTypenums(actual_type, desired_type); +} + +/* Given a PyObject pointer, cast it to a PyArrayObject pointer if + * legal. If not, set the python error string appropriately and + * return NULL. + */ +PyArrayObject* obj_to_array_no_conversion(PyObject* input, int typecode) { + PyArrayObject* ary = NULL; + if (is_array(input) && (typecode == NPY_NOTYPE || + PyArray_EquivTypenums(array_type(input), typecode))) { + ary = (PyArrayObject*) input; + } + else if is_array(input) { + char* desired_type = typecode_string(typecode); + char* actual_type = typecode_string(array_type(input)); + PyErr_Format(PyExc_TypeError, + "Array of type '%s' required. Array of type '%s' given", + desired_type, actual_type); + ary = NULL; + } + else { + char * desired_type = typecode_string(typecode); + char * actual_type = pytype_string(input); + PyErr_Format(PyExc_TypeError, + "Array of type '%s' required. A '%s' was given", + desired_type, actual_type); + ary = NULL; + } + return ary; +} + +/* Convert the given PyObject to a NumPy array with the given + * typecode. On success, return a valid PyArrayObject* with the + * correct type. On failure, the python error string will be set and + * the routine returns NULL. + */ +PyArrayObject* obj_to_array_allow_conversion(PyObject* input, int typecode, + int* is_new_object) { + PyArrayObject* ary = NULL; + PyObject* py_obj; + if (is_array(input) && (typecode == NPY_NOTYPE || + PyArray_EquivTypenums(array_type(input),typecode))) { + ary = (PyArrayObject*) input; + *is_new_object = 0; + } + else { + py_obj = PyArray_FromObject(input, typecode, 0, 0); + /* If NULL, PyArray_FromObject will have set python error value.*/ + ary = (PyArrayObject*) py_obj; + *is_new_object = 1; + } + return ary; +} + +/* Given a PyArrayObject, check to see if it is contiguous. If so, + * return the input pointer and flag it as not a new object. If it is + * not contiguous, create a new PyArrayObject using the original data, + * flag it as a new object and return the pointer. + */ +PyArrayObject* make_contiguous(PyArrayObject* ary, int* is_new_object, + int min_dims, int max_dims) { + PyArrayObject* result; + if (array_is_contiguous(ary)) { + result = ary; + *is_new_object = 0; + } + else { + result = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*)ary, + array_type(ary), + min_dims, + max_dims); + *is_new_object = 1; + } + return result; +} + +/* Convert a given PyObject to a contiguous PyArrayObject of the + * specified type. If the input object is not a contiguous + * PyArrayObject, a new one will be created and the new object flag + * will be set. + */ +PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input, + int typecode, + int* is_new_object) { + int is_new1 = 0; + int is_new2 = 0; + PyArrayObject* ary2; + PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode, + &is_new1); + if (ary1) { + ary2 = make_contiguous(ary1, &is_new2, 0, 0); + if ( is_new1 && is_new2) { + Py_DECREF(ary1); + } + ary1 = ary2; + } + *is_new_object = is_new1 || is_new2; + return ary1; +} + +/* Test whether a python object is contiguous. If array is + * contiguous, return 1. Otherwise, set the python error string and + * return 0. + */ +int require_contiguous(PyArrayObject* ary) { + int contiguous = 1; + if (!array_is_contiguous(ary)) { + PyErr_SetString(PyExc_TypeError, + "Array must be contiguous. A non-contiguous array was given"); + contiguous = 0; + } + return contiguous; +} + +/* Require that a numpy array is not byte-swapped. If the array is + * not byte-swapped, return 1. Otherwise, set the python error string + * and return 0. + */ +int require_native(PyArrayObject* ary) { + int native = 1; + if (!array_is_native(ary)) { + PyErr_SetString(PyExc_TypeError, + "Array must have native byteorder. A byte-swapped array was given"); + native = 0; + } + return native; +} + +/* Require the given PyArrayObject to have a specified number of + * dimensions. If the array has the specified number of dimensions, + * return 1. Otherwise, set the python error string and return 0. + */ +int require_dimensions(PyArrayObject* ary, int exact_dimensions) { + int success = 1; + if (array_numdims(ary) != exact_dimensions) { + PyErr_Format(PyExc_TypeError, + "Array must have %d dimensions. Given array has %d dimensions", + exact_dimensions, array_numdims(ary)); + success = 0; + } + return success; +} + +/* Require the given PyArrayObject to have one of a list of specified + * number of dimensions. If the array has one of the specified number + * of dimensions, return 1. Otherwise, set the python error string + * and return 0. + */ +int require_dimensions_n(PyArrayObject* ary, int* exact_dimensions, int n) { + int success = 0; + int i; + char dims_str[255] = ""; + char s[255]; + for (i = 0; i < n && !success; i++) { + if (array_numdims(ary) == exact_dimensions[i]) { + success = 1; + } + } + if (!success) { + for (i = 0; i < n-1; i++) { + sprintf(s, "%d, ", exact_dimensions[i]); + strcat(dims_str,s); + } + sprintf(s, " or %d", exact_dimensions[n-1]); + strcat(dims_str,s); + PyErr_Format(PyExc_TypeError, + "Array must be have %s dimensions. Given array has %d dimensions", + dims_str, array_numdims(ary)); + } + return success; +} + +/* Require the given PyArrayObject to have a specified shape. If the + * array has the specified shape, return 1. Otherwise, set the python + * error string and return 0. + */ +int require_size(PyArrayObject* ary, npy_intp* size, int n) { + int i; + int success = 1; + int len; + char desired_dims[255] = "["; + char s[255]; + char actual_dims[255] = "["; + for(i=0; i < n;i++) { + if (size[i] != -1 && size[i] != array_size(ary,i)) { + success = 0; + } + } + if (!success) { + for (i = 0; i < n; i++) { + if (size[i] == -1) { + sprintf(s, "*,"); + } + else + { + sprintf(s, "%d,", size[i]); + } + strcat(desired_dims,s); + } + len = strlen(desired_dims); + desired_dims[len-1] = ']'; + for (i = 0; i < n; i++) { + sprintf(s, "%d,", array_size(ary,i)); + strcat(actual_dims,s); + } + len = strlen(actual_dims); + actual_dims[len-1] = ']'; + PyErr_Format(PyExc_TypeError, + "Array must be have shape of %s. Given array has shape of %s", + desired_dims, actual_dims); + } + return success; +} + +/* End John Hunter translation (with modifications by Bill Spotz) + */ + +%} + +/* %numpy_typemaps() macro + * + * This macro defines a family of typemaps that allow pure input C + * arguments of the form + * + * (DATA_TYPE IN_ARRAY1[ANY]) + * (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + * (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + * + * (DATA_TYPE IN_ARRAY2[ANY][ANY]) + * (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + * + * (DATA_TYPE INPLACE_ARRAY1[ANY]) + * (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + * (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + * + * (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + * (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + * + * (DATA_TYPE ARGOUT_ARRAY1[ANY]) + * (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + * (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + * + * (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + * + * where "DATA_TYPE" is any type supported by the NumPy module, and + * "DIM_TYPE" is any int-like type suitable for specifying dimensions. + * In python, the dimensions will not need to be specified (except for + * the "DATA_TYPE* ARGOUT_ARRAY1" typemaps). The IN_ARRAYs can be a + * numpy array or any sequence that can be converted to a numpy array + * of the specified type. The INPLACE_ARRAYs must be numpy arrays of + * the appropriate type. The ARGOUT_ARRAYs will be returned as numpy + * arrays of the appropriate type. + * + * These typemaps can be applied to existing functions using the + * %apply directive: + * + * %apply (double IN_ARRAY1[ANY]) {(double vector[ANY])}; + * double length(double vector[3]); + * + * %apply (double* IN_ARRAY1, int DIM1) {(double* series, int length)}; + * double prod(double* series, int length); + * + * %apply (int DIM1, double* IN_ARRAY1) {(int length, double* series)} + * double sum(int length, double* series) + * + * %apply (double IN_ARRAY2[ANY][ANY]) {(double matrix[2][2])}; + * double det(double matrix[2][2]); + * + * %apply (double* IN_ARRAY2, int DIM1, int DIM2) {(double* matrix, int rows, int cols)}; + * double max(double* matrix, int rows, int cols); + * + * %apply (int DIM1, int DIM2, double* IN_ARRAY2) {(int rows, int cols, double* matrix)} + * double min(int length, double* series) + * + * %apply (double INPLACE_ARRAY1[ANY]) {(double vector[3])}; + * void reverse(double vector[3]); + * + * %apply (double* INPLACE_ARRAY1, int DIM1) {(double* series, int length)}; + * void ones(double* series, int length); + * + * %apply (int DIM1, double* INPLACE_ARRAY1) {(int length, double* series)} + * double zeros(int length, double* series) + * + * %apply (double INPLACE_ARRAY2[ANY][ANY]) {(double matrix[3][3])}; + * void scale(double matrix[3][3]); + * + * %apply (double* INPLACE_ARRAY2, int DIM1, int DIM2) {(double* matrix, int rows, int cols)}; + * void floor(double* matrix, int rows, int cols); + * + * %apply (int DIM1, int DIM2, double* INPLACE_ARRAY2) {(int rows, int cols, double* matrix)}; + * void ceil(int rows, int cols, double* matrix); + * + * %apply (double IN_ARRAY1[ANY] ) {(double vector[ANY])}; + * %apply (double ARGOUT_ARRAY1[ANY]) {(double even[ 3])}; + * %apply (double ARGOUT_ARRAY1[ANY]) {(double odd[ 3])}; + * void eoSplit(double vector[3], double even[3], double odd[3]); + * + * %apply (double* ARGOUT_ARRAY1, int DIM1) {(double* twoVec, int size)}; + * void twos(double* twoVec, int size); + * + * %apply (int DIM1, double* ARGOUT_ARRAY1) {(int size, double* threeVec)}; + * void threes(int size, double* threeVec); + * + * %apply (double IN_ARRAY2[ANY][ANY]) {(double matrix[2][2])}; + * %apply (double ARGOUT_ARRAY2[ANY][ANY]) {(double upper[ 3][3])}; + * %apply (double ARGOUT_ARRAY2[ANY][ANY]) {(double lower[ 3][3])}; + * void luSplit(double matrix[3][3], double upper[3][3], double lower[3][3]); + * + * or directly with + * + * double length(double IN_ARRAY1[ANY]); + * double prod(double* IN_ARRAY1, int DIM1); + * double sum( int DIM1, double* IN_ARRAY1) + * + * double det(double IN_ARRAY2[ANY][ANY]); + * double max(double* IN_ARRAY2, int DIM1, int DIM2); + * double min(int DIM1, int DIM2, double* IN_ARRAY2) + * + * void reverse(double INPLACE_ARRAY1[ANY]); + * void ones( double* INPLACE_ARRAY1, int DIM1); + * void zeros(int DIM1, double* INPLACE_ARRAY1) + * + * void scale(double INPLACE_ARRAY2[ANY][ANY]); + * void floor(double* INPLACE_ARRAY2, int DIM1, int DIM2, double floor); + * void ceil( int DIM1, int DIM2, double* INPLACE_ARRAY2, double ceil ); + * + * void eoSplit(double IN_ARRAY1[ANY], double ARGOUT_ARRAY1[ANY], + * double ARGOUT_ARRAY1[ANY]); + * void twos(double* ARGOUT_ARRAY1, int DIM1) + * void threes(int DIM1, double* ARGOUT_ARRAY1) + * + * void luSplit(double IN_ARRAY2[ANY][ANY], double ARGOUT_ARRAY2[ANY][ANY], + * double ARGOUT_ARRAY2[ANY][ANY]); + */ + +%define %numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE) + +/************************/ +/* Input Array Typemaps */ +/************************/ + +/* Typemap suite for (DATA_TYPE IN_ARRAY1[ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE IN_ARRAY1[ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE IN_ARRAY1[ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[1] = { $1_dim0 }; + if (!array || !require_dimensions(array, 1) || !require_size(array, size, 1)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY1[ANY]) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[1] = { -1 }; + if (!array || !require_dimensions(array, 1) || !require_size(array, size, 1)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[1] = {-1}; + if (!array || !require_dimensions(array, 1) || !require_size(array, size, 1)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DATA_TYPE IN_ARRAY2[ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE IN_ARRAY2[ANY][ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE IN_ARRAY2[ANY][ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[2] = { $1_dim0, $1_dim1 }; + if (!array || !require_dimensions(array, 2) || !require_size(array, size, 2)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY2[ANY][ANY]) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[2] = { -1, -1 }; + if (!array || !require_dimensions(array, 2) || !require_size(array, size, 2)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[2] = { -1, -1 }; + if (!array || !require_dimensions(array, 2) || !require_size(array, size, 2)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 }; + if (!array || !require_dimensions(array, 3) || !require_size(array, size, 3)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} +%typemap(freearg) + (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY]) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[3] = { -1, -1, -1 }; + if (!array || !require_dimensions(array, 3) || !require_size(array, size, 3)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} +%typemap(freearg) + (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* IN_ARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) +{ + $1 = is_array($input) || PySequence_Check($input); +} +%typemap(in) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) + (PyArrayObject* array=NULL, int is_new_object=0) +{ + array = obj_to_array_contiguous_allow_conversion($input, DATA_TYPECODE, &is_new_object); + npy_intp size[3] = { -1, -1, -1 }; + if (!array || !require_dimensions(array, 3) || !require_size(array, size, 3)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} +%typemap(freearg) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3) +{ + if (is_new_object$argnum && array$argnum) Py_DECREF(array$argnum); +} + +/***************************/ +/* In-Place Array Typemaps */ +/***************************/ + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY1[ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE INPLACE_ARRAY1[ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE INPLACE_ARRAY1[ANY]) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + npy_intp size[1] = { $1_dim0 }; + if (!array || !require_dimensions(array,1) || !require_size(array, size, 1) + || !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,1) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = 1; + for (int i=0; i < array_numdims(array); ++i) $2 *= array_size(array,i); +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,1) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = 1; + for (int i=0; i < array_numdims(array); ++i) $1 *= array_size(array,i); + $2 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE INPLACE_ARRAY2[ANY][ANY]) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + npy_intp size[2] = { $1_dim0, $1_dim1 }; + if (!array || !require_dimensions(array,2) || !require_size(array, size, 2) + || !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,2) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DATA_TYPE*) array_data(array); +} + +/* Typemap suite for (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY]) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 }; + if (!array || !require_dimensions(array,3) || !require_size(array, size, 3) + || !require_contiguous(array) || !require_native(array)) SWIG_fail; + $1 = ($1_ltype) array_data(array); +} + +/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, + * DIM_TYPE DIM3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DATA_TYPE*) array_data(array); + $2 = (DIM_TYPE) array_size(array,0); + $3 = (DIM_TYPE) array_size(array,1); + $4 = (DIM_TYPE) array_size(array,2); +} + +/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, + * DATA_TYPE* INPLACE_ARRAY3) + */ +%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3) +{ + $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),DATA_TYPECODE); +} +%typemap(in) + (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3) + (PyArrayObject* array=NULL) +{ + array = obj_to_array_no_conversion($input, DATA_TYPECODE); + if (!array || !require_dimensions(array,3) || !require_contiguous(array) + || !require_native(array)) SWIG_fail; + $1 = (DIM_TYPE) array_size(array,0); + $2 = (DIM_TYPE) array_size(array,1); + $3 = (DIM_TYPE) array_size(array,2); + $4 = (DATA_TYPE*) array_data(array); +} + +/*************************/ +/* Argout Array Typemaps */ +/*************************/ + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY1[ANY]) + */ +%typemap(in,numinputs=0) + (DATA_TYPE ARGOUT_ARRAY1[ANY]) + (PyObject * array = NULL) +{ + npy_intp dims[1] = { $1_dim0 }; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY1[ANY]) +{ + $result = SWIG_Python_AppendOutput($result,array$argnum); +} + +/* Typemap suite for (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + */ +%typemap(in,numinputs=1) + (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) + (PyObject * array = NULL) +{ + if (!PyInt_Check($input)) { + char* typestring = pytype_string($input); + PyErr_Format(PyExc_TypeError, + "Int dimension expected. '%s' given.", + typestring); + SWIG_fail; + } + $2 = (DIM_TYPE) PyInt_AsLong($input); + npy_intp dims[1] = { (npy_intp) $2 }; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + $1 = (DATA_TYPE*) array_data(array); +} +%typemap(argout) + (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1) +{ + $result = SWIG_Python_AppendOutput($result,array$argnum); +} + +/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + */ +%typemap(in,numinputs=1) + (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) + (PyObject * array = NULL) +{ + if (!PyInt_Check($input)) { + char* typestring = pytype_string($input); + PyErr_Format(PyExc_TypeError, + "Int dimension expected. '%s' given.", + typestring); + SWIG_fail; + } + $1 = (DIM_TYPE) PyInt_AsLong($input); + npy_intp dims[1] = { (npy_intp) $1 }; + array = PyArray_SimpleNew(1, dims, DATA_TYPECODE); + $2 = (DATA_TYPE*) array_data(array); +} +%typemap(argout) + (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1) +{ + $result = SWIG_Python_AppendOutput($result,array$argnum); +} + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + */ +%typemap(in,numinputs=0) + (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) + (PyObject * array = NULL) +{ + npy_intp dims[2] = { $1_dim0, $1_dim1 }; + array = PyArray_SimpleNew(2, dims, DATA_TYPECODE); + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY]) +{ + $result = SWIG_Python_AppendOutput($result,array$argnum); +} + +/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) + */ +%typemap(in,numinputs=0) + (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) + (PyObject * array = NULL) +{ + npy_intp dims[3] = { $1_dim0, $1_dim1, $1_dim2 }; + array = PyArray_SimpleNew(3, dims, DATA_TYPECODE); + $1 = ($1_ltype) array_data(array); +} +%typemap(argout) + (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY]) +{ + $result = SWIG_Python_AppendOutput($result,array$argnum); +} + +%enddef /* %numpy_typemaps() macro */ + + +/* Concrete instances of the %numpy_typemaps() macro: Each invocation + * below applies all of the typemaps above to the specified data type. + */ +%numpy_typemaps(signed char , NPY_BYTE , int) +%numpy_typemaps(unsigned char , NPY_UBYTE , int) +%numpy_typemaps(short , NPY_SHORT , int) +%numpy_typemaps(unsigned short , NPY_USHORT , int) +%numpy_typemaps(int , NPY_INT , int) +%numpy_typemaps(unsigned int , NPY_UINT , int) +%numpy_typemaps(long , NPY_LONG , int) +%numpy_typemaps(unsigned long , NPY_ULONG , int) +%numpy_typemaps(long long , NPY_LONGLONG , int) +%numpy_typemaps(unsigned long long, NPY_ULONGLONG, int) +%numpy_typemaps(float , NPY_FLOAT , int) +%numpy_typemaps(double , NPY_DOUBLE , int) + +/* *************************************************************** + * The follow macro expansion does not work, because C++ bool is 4 + * bytes and NPY_BOOL is 1 byte + */ +/*%numpy_typemaps(bool, NPY_BOOL) + */ + +/* *************************************************************** + * On my Mac, I get the following warning for this macro expansion: + * 'swig/python detected a memory leak of type 'long double *', no destructor found.' + */ +/*%numpy_typemaps(long double, NPY_LONGDOUBLE) + */ + +/* *************************************************************** + * Swig complains about a syntax error for the following macros + * expansions: + */ +/*%numpy_typemaps(complex float, NPY_CFLOAT , int) + */ +/*%numpy_typemaps(complex double, NPY_CDOUBLE, int) + */ +/*%numpy_typemaps(complex long double, NPY_CLONGDOUBLE) + */ + +#endif /* SWIGPYTHON */ diff --git a/numpy/doc/swig/numpy_swig.html b/numpy/doc/swig/numpy_swig.html new file mode 100644 index 000000000..90706ac84 --- /dev/null +++ b/numpy/doc/swig/numpy_swig.html @@ -0,0 +1,1061 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> +<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="Docutils 0.4: http://docutils.sourceforge.net/" /> +<title>numpy.i: a SWIG Interface File for NumPy</title> +<meta name="author" content="Bill Spotz" /> +<meta name="date" content="13 April, 2007" /> +<style type="text/css"> + +/* +:Author: David Goodger +:Contact: goodger@users.sourceforge.net +:Date: $Date: 2005-12-18 01:56:14 +0100 (Sun, 18 Dec 2005) $ +:Revision: $Revision: 4224 $ +:Copyright: This stylesheet has been placed in the public domain. + +Default cascading style sheet for the HTML output of Docutils. + +See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to +customize this style sheet. +*/ + +/* used to remove borders from tables and images */ +.borderless, table.borderless td, table.borderless th { + border: 0 } + +table.borderless td, table.borderless th { + /* Override padding for "table.docutils td" with "! important". + The right padding separates the table cells. */ + padding: 0 0.5em 0 0 ! important } + +.first { + /* Override more specific margin styles with "! important". */ + margin-top: 0 ! important } + +.last, .with-subtitle { + margin-bottom: 0 ! important } + +.hidden { + display: none } + +a.toc-backref { + text-decoration: none ; + color: black } + +blockquote.epigraph { + margin: 2em 5em ; } + +dl.docutils dd { + margin-bottom: 0.5em } + +/* Uncomment (and remove this text!) to get bold-faced definition list terms +dl.docutils dt { + font-weight: bold } +*/ + +div.abstract { + margin: 2em 5em } + +div.abstract p.topic-title { + font-weight: bold ; + text-align: center } + +div.admonition, div.attention, div.caution, div.danger, div.error, +div.hint, div.important, div.note, div.tip, div.warning { + margin: 2em ; + border: medium outset ; + padding: 1em } + +div.admonition p.admonition-title, div.hint p.admonition-title, +div.important p.admonition-title, div.note p.admonition-title, +div.tip p.admonition-title { + font-weight: bold ; + font-family: sans-serif } + +div.attention p.admonition-title, div.caution p.admonition-title, +div.danger p.admonition-title, div.error p.admonition-title, +div.warning p.admonition-title { + color: red ; + font-weight: bold ; + font-family: sans-serif } + +/* Uncomment (and remove this text!) to get reduced vertical space in + compound paragraphs. +div.compound .compound-first, div.compound .compound-middle { + margin-bottom: 0.5em } + +div.compound .compound-last, div.compound .compound-middle { + margin-top: 0.5em } +*/ + +div.dedication { + margin: 2em 5em ; + text-align: center ; + font-style: italic } + +div.dedication p.topic-title { + font-weight: bold ; + font-style: normal } + +div.figure { + margin-left: 2em ; + margin-right: 2em } + +div.footer, div.header { + clear: both; + font-size: smaller } + +div.line-block { + display: block ; + margin-top: 1em ; + margin-bottom: 1em } + +div.line-block div.line-block { + margin-top: 0 ; + margin-bottom: 0 ; + margin-left: 1.5em } + +div.sidebar { + margin-left: 1em ; + border: medium outset ; + padding: 1em ; + background-color: #ffffee ; + width: 40% ; + float: right ; + clear: right } + +div.sidebar p.rubric { + font-family: sans-serif ; + font-size: medium } + +div.system-messages { + margin: 5em } + +div.system-messages h1 { + color: red } + +div.system-message { + border: medium outset ; + padding: 1em } + +div.system-message p.system-message-title { + color: red ; + font-weight: bold } + +div.topic { + margin: 2em } + +h1.section-subtitle, h2.section-subtitle, h3.section-subtitle, +h4.section-subtitle, h5.section-subtitle, h6.section-subtitle { + margin-top: 0.4em } + +h1.title { + text-align: center } + +h2.subtitle { + text-align: center } + +hr.docutils { + width: 75% } + +img.align-left { + clear: left } + +img.align-right { + clear: right } + +ol.simple, ul.simple { + margin-bottom: 1em } + +ol.arabic { + list-style: decimal } + +ol.loweralpha { + list-style: lower-alpha } + +ol.upperalpha { + list-style: upper-alpha } + +ol.lowerroman { + list-style: lower-roman } + +ol.upperroman { + list-style: upper-roman } + +p.attribution { + text-align: right ; + margin-left: 50% } + +p.caption { + font-style: italic } + +p.credits { + font-style: italic ; + font-size: smaller } + +p.label { + white-space: nowrap } + +p.rubric { + font-weight: bold ; + font-size: larger ; + color: maroon ; + text-align: center } + +p.sidebar-title { + font-family: sans-serif ; + font-weight: bold ; + font-size: larger } + +p.sidebar-subtitle { + font-family: sans-serif ; + font-weight: bold } + +p.topic-title { + font-weight: bold } + +pre.address { + margin-bottom: 0 ; + margin-top: 0 ; + font-family: serif ; + font-size: 100% } + +pre.literal-block, pre.doctest-block { + margin-left: 2em ; + margin-right: 2em ; + background-color: #eeeeee } + +span.classifier { + font-family: sans-serif ; + font-style: oblique } + +span.classifier-delimiter { + font-family: sans-serif ; + font-weight: bold } + +span.interpreted { + font-family: sans-serif } + +span.option { + white-space: nowrap } + +span.pre { + white-space: pre } + +span.problematic { + color: red } + +span.section-subtitle { + /* font-size relative to parent (h1..h6 element) */ + font-size: 80% } + +table.citation { + border-left: solid 1px gray; + margin-left: 1px } + +table.docinfo { + margin: 2em 4em } + +table.docutils { + margin-top: 0.5em ; + margin-bottom: 0.5em } + +table.footnote { + border-left: solid 1px black; + margin-left: 1px } + +table.docutils td, table.docutils th, +table.docinfo td, table.docinfo th { + padding-left: 0.5em ; + padding-right: 0.5em ; + vertical-align: top } + +table.docutils th.field-name, table.docinfo th.docinfo-name { + font-weight: bold ; + text-align: left ; + white-space: nowrap ; + padding-left: 0 } + +h1 tt.docutils, h2 tt.docutils, h3 tt.docutils, +h4 tt.docutils, h5 tt.docutils, h6 tt.docutils { + font-size: 100% } + +tt.docutils { + background-color: #eeeeee } + +ul.auto-toc { + list-style-type: none } + +</style> +</head> +<body> +<div class="document" id="numpy-i-a-swig-interface-file-for-numpy"> +<h1 class="title">numpy.i: a SWIG Interface File for NumPy</h1> +<table class="docinfo" frame="void" rules="none"> +<col class="docinfo-name" /> +<col class="docinfo-content" /> +<tbody valign="top"> +<tr><th class="docinfo-name">Author:</th> +<td>Bill Spotz</td></tr> +<tr class="field"><th class="docinfo-name">Institution:</th><td class="field-body">Sandia National Laboratories</td> +</tr> +<tr><th class="docinfo-name">Date:</th> +<td>13 April, 2007</td></tr> +</tbody> +</table> +<div class="contents topic"> +<p class="topic-title first"><a id="contents" name="contents">Contents</a></p> +<ul class="simple"> +<li><a class="reference" href="#introduction" id="id1" name="id1">Introduction</a></li> +<li><a class="reference" href="#using-numpy-i" id="id2" name="id2">Using numpy.i</a></li> +<li><a class="reference" href="#available-typemaps" id="id3" name="id3">Available Typemaps</a><ul> +<li><a class="reference" href="#input-arrays" id="id4" name="id4">Input Arrays</a></li> +<li><a class="reference" href="#in-place-arrays" id="id5" name="id5">In-Place Arrays</a></li> +<li><a class="reference" href="#argout-arrays" id="id6" name="id6">Argout Arrays</a></li> +<li><a class="reference" href="#output-arrays" id="id7" name="id7">Output Arrays</a></li> +<li><a class="reference" href="#other-common-types-bool" id="id8" name="id8">Other Common Types: bool</a></li> +<li><a class="reference" href="#other-common-types-complex" id="id9" name="id9">Other Common Types: complex</a></li> +</ul> +</li> +<li><a class="reference" href="#helper-functions" id="id10" name="id10">Helper Functions</a><ul> +<li><a class="reference" href="#macros" id="id11" name="id11">Macros</a></li> +<li><a class="reference" href="#routines" id="id12" name="id12">Routines</a></li> +</ul> +</li> +<li><a class="reference" href="#beyond-the-provided-typemaps" id="id13" name="id13">Beyond the Provided Typemaps</a><ul> +<li><a class="reference" href="#a-common-example" id="id14" name="id14">A Common Example</a></li> +<li><a class="reference" href="#other-situations" id="id15" name="id15">Other Situations</a></li> +<li><a class="reference" href="#a-final-note" id="id16" name="id16">A Final Note</a></li> +</ul> +</li> +<li><a class="reference" href="#summary" id="id17" name="id17">Summary</a></li> +<li><a class="reference" href="#acknowledgements" id="id18" name="id18">Acknowledgements</a></li> +</ul> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id1" id="introduction" name="introduction">Introduction</a></h1> +<p>The Simple Wrapper and Interface Generator (or <a class="reference" href="http://www.swig.org">SWIG</a>) is a powerful tool for generating wrapper +code for interfacing to a wide variety of scripting languages. +<a class="reference" href="http://www.swig.org">SWIG</a> can parse header files, and using only the code prototypes, +create an interface to the target language. But <a class="reference" href="http://www.swig.org">SWIG</a> is not +omnipotent. For example, it cannot know from the prototype:</p> +<pre class="literal-block"> +double rms(double* seq, int n); +</pre> +<p>what exactly <tt class="docutils literal"><span class="pre">seq</span></tt> is. Is it a single value to be altered in-place? +Is it an array, and if so what is its length? Is it input-only? +Output-only? Input-output? <a class="reference" href="http://www.swig.org">SWIG</a> cannot determine these details, +and does not attempt to do so.</p> +<p>Making an educated guess, humans can conclude that this is probably a +routine that takes an input-only array of length <tt class="docutils literal"><span class="pre">n</span></tt> of <tt class="docutils literal"><span class="pre">double</span></tt> +values called <tt class="docutils literal"><span class="pre">seq</span></tt> and returns the root mean square. The default +behavior of <a class="reference" href="http://www.swig.org">SWIG</a>, however, will be to create a wrapper function +that compiles, but is nearly impossible to use from the scripting +language in the way the C routine was intended.</p> +<p>For <a class="reference" href="http://www.python.org">python</a>, the preferred way of handling +contiguous (or technically, <em>strided</em>) blocks of homogeneous data is +with the module <a class="reference" href="http://numpy.scipy.org">NumPy</a>, which provides full +object-oriented access to arrays of data. Therefore, the most logical +<a class="reference" href="http://www.python.org">python</a> interface for the <tt class="docutils literal"><span class="pre">rms</span></tt> function would be (including doc +string):</p> +<pre class="literal-block"> +def rms(seq): + """ + rms: return the root mean square of a sequence + rms(numpy.ndarray) -> double + rms(list) -> double + rms(tuple) -> double + """ +</pre> +<p>where <tt class="docutils literal"><span class="pre">seq</span></tt> would be a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array of <tt class="docutils literal"><span class="pre">double</span></tt> values, and its +length <tt class="docutils literal"><span class="pre">n</span></tt> would be extracted from <tt class="docutils literal"><span class="pre">seq</span></tt> internally before being +passed to the C routine. Even better, since <a class="reference" href="http://numpy.scipy.org">NumPy</a> supports +construction of arrays from arbitrary <a class="reference" href="http://www.python.org">python</a> sequences, <tt class="docutils literal"><span class="pre">seq</span></tt> +itself could be a nearly arbitrary sequence (so long as each element +can be converted to a <tt class="docutils literal"><span class="pre">double</span></tt>) and the wrapper code would +internally convert it to a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array before extracting its data +and length.</p> +<p><a class="reference" href="http://www.swig.org">SWIG</a> allows these types of conversions to be defined via a +mechanism called typemaps. This document provides information on how +to use <tt class="docutils literal"><span class="pre">numpy.i</span></tt>, a <a class="reference" href="http://www.swig.org">SWIG</a> interface file that defines a series of +typemaps intended to make the type of array-related conversions +described above relatively simple to implement. For example, suppose +that the <tt class="docutils literal"><span class="pre">rms</span></tt> function prototype defined above was in a header file +named <tt class="docutils literal"><span class="pre">rms.h</span></tt>. To obtain the <a class="reference" href="http://www.python.org">python</a> interface discussed above, +your <a class="reference" href="http://www.swig.org">SWIG</a> interface file would need the following:</p> +<pre class="literal-block"> +%{ +#define SWIG_FILE_WITH_INIT +#include "rms.h" +%} + +%include "numpy.i" + +%init %{ +import_array(); +%} + +%apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)}; +%include "rms.h" +</pre> +<p>Typemaps are keyed off a list of one or more function arguments, +either by type or by type and name. We will refer to such lists as +<em>signatures</em>. One of the many typemaps defined by <tt class="docutils literal"><span class="pre">numpy.i</span></tt> is used +above and has the signature <tt class="docutils literal"><span class="pre">(double*</span> <span class="pre">IN_ARRAY1,</span> <span class="pre">int</span> <span class="pre">DIM1)</span></tt>. The +argument names are intended to suggest that the <tt class="docutils literal"><span class="pre">double*</span></tt> argument +is an input array of one dimension and that the <tt class="docutils literal"><span class="pre">int</span></tt> represents +that dimension. This is precisely the pattern in the <tt class="docutils literal"><span class="pre">rms</span></tt> +prototype.</p> +<p>Most likely, no actual prototypes to be wrapped will have the argument +names <tt class="docutils literal"><span class="pre">IN_ARRAY1</span></tt> and <tt class="docutils literal"><span class="pre">DIM1</span></tt>. We use the <tt class="docutils literal"><span class="pre">%apply</span></tt> directive to +apply the typemap for one-dimensional input arrays of type <tt class="docutils literal"><span class="pre">double</span></tt> +to the actual prototype used by <tt class="docutils literal"><span class="pre">rms</span></tt>. Using <tt class="docutils literal"><span class="pre">numpy.i</span></tt> +effectively, therefore, requires knowing what typemaps are available +and what they do.</p> +<p>A <a class="reference" href="http://www.swig.org">SWIG</a> interface file that includes the <a class="reference" href="http://www.swig.org">SWIG</a> directives given +above will produce wrapper code that looks something like:</p> +<pre class="literal-block"> + 1 PyObject *_wrap_rms(PyObject *args) { + 2 PyObject *resultobj = 0; + 3 double *arg1 = (double *) 0 ; + 4 int arg2 ; + 5 double result; + 6 PyArrayObject *array1 = NULL ; + 7 int is_new_object1 = 0 ; + 8 PyObject * obj0 = 0 ; + 9 +10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail; +11 { +12 array1 = obj_to_array_contiguous_allow_conversion( +13 obj0, NPY_DOUBLE, &is_new_object1); +14 npy_intp size[1] = { +15 -1 +16 }; +17 if (!array1 || !require_dimensions(array1, 1) || +18 !require_size(array1, size, 1)) SWIG_fail; +19 arg1 = (double*) array1->data; +20 arg2 = (int) array1->dimensions[0]; +21 } +22 result = (double)rms(arg1,arg2); +23 resultobj = SWIG_From_double((double)(result)); +24 { +25 if (is_new_object1 && array1) Py_DECREF(array1); +26 } +27 return resultobj; +28 fail: +29 { +30 if (is_new_object1 && array1) Py_DECREF(array1); +31 } +32 return NULL; +33 } +</pre> +<p>The typemaps from <tt class="docutils literal"><span class="pre">numpy.i</span></tt> are responsible for the following lines +of code: 12--20, 25 and 30. Line 10 parses the input to the <tt class="docutils literal"><span class="pre">rms</span></tt> +function. From the format string <tt class="docutils literal"><span class="pre">"O:rms"</span></tt>, we can see that the +argument list is expected to be a single <a class="reference" href="http://www.python.org">python</a> object (specified +by the <tt class="docutils literal"><span class="pre">O</span></tt> before the colon) and whose pointer is stored in +<tt class="docutils literal"><span class="pre">obj0</span></tt>. A number of functions, supplied by <tt class="docutils literal"><span class="pre">numpy.i</span></tt>, are called +to make and check the (possible) conversion from a generic <a class="reference" href="http://www.python.org">python</a> +object to a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array. These functions are explained in the +section <a class="reference" href="#helper-functions">Helper Functions</a>, but hopefully their names are +self-explanatory. At line 12 we use <tt class="docutils literal"><span class="pre">obj0</span></tt> to construct a <a class="reference" href="http://numpy.scipy.org">NumPy</a> +array. At line 17, we check the validity of the result: that it is +non-null and that it has a single dimension of arbitrary length. Once +these states are verified, we extract the data buffer and length in +lines 19 and 20 so that we can call the underlying C function at line +22. Line 25 performs memory management for the case where we have +created a new array that is no longer needed.</p> +<p>This code has a significant amount of error handling. Note the +<tt class="docutils literal"><span class="pre">SWIG_fail</span></tt> is a macro for <tt class="docutils literal"><span class="pre">goto</span> <span class="pre">fail</span></tt>, refering to the label at +line 28. If the user provides the wrong number of arguments, this +will be caught at line 10. If construction of the <a class="reference" href="http://numpy.scipy.org">NumPy</a> array +fails or produces an array with the wrong number of dimensions, these +errors are caught at line 17. And finally, if an error is detected, +memory is still managed correctly at line 30.</p> +<p>Note that if the C function signature was in a different order:</p> +<pre class="literal-block"> +double rms(int n, double* seq); +</pre> +<p>that <a class="reference" href="http://www.swig.org">SWIG</a> would not match the typemap signature given above with +the argument list for <tt class="docutils literal"><span class="pre">rms</span></tt>. Fortunately, <tt class="docutils literal"><span class="pre">numpy.i</span></tt> has a set of +typemaps with the data pointer given last:</p> +<pre class="literal-block"> +%apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)}; +</pre> +<p>This simply has the effect of switching the definitions of <tt class="docutils literal"><span class="pre">arg1</span></tt> +and <tt class="docutils literal"><span class="pre">arg2</span></tt> in lines 3 and 4 of the generated code above, and their +assignments in lines 19 and 20.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id2" id="using-numpy-i" name="using-numpy-i">Using numpy.i</a></h1> +<p>The <tt class="docutils literal"><span class="pre">numpy.i</span></tt> file is currently located in the <tt class="docutils literal"><span class="pre">numpy/docs/swig</span></tt> +sub-directory under the <tt class="docutils literal"><span class="pre">numpy</span></tt> installation directory. Typically, +you will want to copy it to the directory where you are developing +your wrappers. If it is ever adopted by <a class="reference" href="http://www.swig.org">SWIG</a> developers, then it +will be installed in a standard place where <a class="reference" href="http://www.swig.org">SWIG</a> can find it.</p> +<p>A simple module that only uses a single <a class="reference" href="http://www.swig.org">SWIG</a> interface file should +include the following:</p> +<pre class="literal-block"> +%{ +#define SWIG_FILE_WITH_INIT +%} +%include "numpy.i" +%init %{ +import_array(); +%} +</pre> +<p>Within a compiled <a class="reference" href="http://www.python.org">python</a> module, <tt class="docutils literal"><span class="pre">import_array()</span></tt> should only get +called once. This could be in a C/C++ file that you have written and +is linked to the module. If this is the case, then none of your +interface files should <tt class="docutils literal"><span class="pre">#define</span> <span class="pre">SWIG_FILE_WITH_INIT</span></tt> or call +<tt class="docutils literal"><span class="pre">import_array()</span></tt>. Or, this initialization call could be in a +wrapper file generated by <a class="reference" href="http://www.swig.org">SWIG</a> from an interface file that has the +<tt class="docutils literal"><span class="pre">%init</span></tt> block as above. If this is the case, and you have more than +one <a class="reference" href="http://www.swig.org">SWIG</a> interface file, then only one interface file should +<tt class="docutils literal"><span class="pre">#define</span> <span class="pre">SWIG_FILE_WITH_INIT</span></tt> and call <tt class="docutils literal"><span class="pre">import_array()</span></tt>.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id3" id="available-typemaps" name="available-typemaps">Available Typemaps</a></h1> +<p>The typemap directives provided by <tt class="docutils literal"><span class="pre">numpy.i</span></tt> for arrays of different +data types, say <tt class="docutils literal"><span class="pre">double</span></tt> and <tt class="docutils literal"><span class="pre">int</span></tt>, and dimensions of different +types, say <tt class="docutils literal"><span class="pre">int</span></tt> or <tt class="docutils literal"><span class="pre">long</span></tt>, are identical to one another except +for the C and <a class="reference" href="http://numpy.scipy.org">NumPy</a> type specifications. The typemaps are +therefore implemented (typically behind the scenes) via a macro:</p> +<pre class="literal-block"> +%numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE) +</pre> +<p>that can be invoked for appropriate <tt class="docutils literal"><span class="pre">(DATA_TYPE,</span> <span class="pre">DATA_TYPECODE,</span> +<span class="pre">DIM_TYPE)</span></tt> triplets. For example:</p> +<pre class="literal-block"> +%numpy_typemaps(double, NPY_DOUBLE, int) +%numpy_typemaps(int, NPY_INT , int) +</pre> +<p>The <tt class="docutils literal"><span class="pre">numpy.i</span></tt> interface file uses the <tt class="docutils literal"><span class="pre">%numpy_typemaps</span></tt> macro to +implement typemaps for the following C data types and <tt class="docutils literal"><span class="pre">int</span></tt> +dimension types:</p> +<blockquote> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">signed</span> <span class="pre">char</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></tt></li> +<li><tt class="docutils literal"><span class="pre">short</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt></li> +<li><tt class="docutils literal"><span class="pre">int</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt></li> +<li><tt class="docutils literal"><span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">long</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">float</span></tt></li> +<li><tt class="docutils literal"><span class="pre">double</span></tt></li> +</ul> +</blockquote> +<p>In the following descriptions, we reference a generic <tt class="docutils literal"><span class="pre">DATA_TYPE</span></tt>, which +could be any of the C data types listed above.</p> +<div class="section"> +<h2><a class="toc-backref" href="#id4" id="input-arrays" name="input-arrays">Input Arrays</a></h2> +<p>Input arrays are defined as arrays of data that are passed into a +routine but are not altered in-place or returned to the user. The +<a class="reference" href="http://www.python.org">python</a> input array is therefore allowed to be almost any <a class="reference" href="http://www.python.org">python</a> +sequence (such as a list) that can be converted to the requested type +of array. The input array signatures are</p> +<blockquote> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">IN_ARRAY1[ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">IN_ARRAY1,</span> <span class="pre">int</span> <span class="pre">DIM1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">IN_ARRAY1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">IN_ARRAY2[ANY][ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">IN_ARRAY2,</span> <span class="pre">int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">IN_ARRAY2)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">IN_ARRAY3[ANY][ANY][ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">IN_ARRAY3,</span> <span class="pre">int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">int</span> <span class="pre">DIM3)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">int</span> <span class="pre">DIM3,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">IN_ARRAY3)</span></tt></li> +</ul> +</blockquote> +<p>The first signature listed, <tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">IN_ARRAY[ANY])</span></tt> is for +one-dimensional arrays with hard-coded dimensions. Likewise, +<tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">IN_ARRAY2[ANY][ANY])</span></tt> is for two-dimensional arrays with +hard-coded dimensions, and similarly for three-dimensional.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id5" id="in-place-arrays" name="in-place-arrays">In-Place Arrays</a></h2> +<p>In-place arrays are defined as arrays that are modified in-place. The +input values may or may not be used, but the values at the time the +function returns are significant. The provided <a class="reference" href="http://www.python.org">python</a> argument +must therefore be a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array of the required type. The in-place +signatures are</p> +<blockquote> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">INPLACE_ARRAY1[ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY1,</span> <span class="pre">int</span> <span class="pre">DIM1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">INPLACE_ARRAY2[ANY][ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY2,</span> <span class="pre">int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY2)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">INPLACE_ARRAY3[ANY][ANY][ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY3,</span> <span class="pre">int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">int</span> <span class="pre">DIM3)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">int</span> <span class="pre">DIM2,</span> <span class="pre">int</span> <span class="pre">DIM3,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">INPLACE_ARRAY3)</span></tt></li> +</ul> +</blockquote> +<p>These typemaps now check to make sure that the <tt class="docutils literal"><span class="pre">INPLACE_ARRAY</span></tt> +arguments use native byte ordering. If not, an exception is raised.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id6" id="argout-arrays" name="argout-arrays">Argout Arrays</a></h2> +<p>Argout arrays are arrays that appear in the input arguments in C, but +are in fact output arrays. This pattern occurs often when there is +more than one output variable and the single return argument is +therefore not sufficient. In <a class="reference" href="http://www.python.org">python</a>, the convential way to return +multiple arguments is to pack them into a sequence (tuple, list, etc.) +and return the sequence. This is what the argout typemaps do. If a +wrapped function that uses these argout typemaps has more than one +return argument, they are packed into a tuple or list, depending on +the version of <a class="reference" href="http://www.python.org">python</a>. The <a class="reference" href="http://www.python.org">python</a> user does not pass these +arrays in, they simply get returned. The argout signatures are</p> +<blockquote> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">ARGOUT_ARRAY1[ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE*</span> <span class="pre">ARGOUT_ARRAY1,</span> <span class="pre">int</span> <span class="pre">DIM1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(int</span> <span class="pre">DIM1,</span> <span class="pre">DATA_TYPE*</span> <span class="pre">ARGOUT_ARRAY1)</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">ARGOUT_ARRAY2[ANY][ANY])</span></tt></li> +<li><tt class="docutils literal"><span class="pre">(DATA_TYPE</span> <span class="pre">ARGOUT_ARRAY3[ANY][ANY][ANY])</span></tt></li> +</ul> +</blockquote> +<p>These are typically used in situations where in C/C++, you would +allocate a(n) array(s) on the heap, and call the function to fill the +array(s) values. In <a class="reference" href="http://www.python.org">python</a>, the arrays are allocated for you and +returned as new array objects.</p> +<p>Note that we support <tt class="docutils literal"><span class="pre">DATA_TYPE*</span></tt> argout typemaps in 1D, but not 2D +or 3D. This because of a quirk with the <a class="reference" href="http://www.swig.org">SWIG</a> typemap syntax and +cannot be avoided. Note that for these types of 1D typemaps, the +<a class="reference" href="http://www.python.org">python</a> function will take a single argument representing <tt class="docutils literal"><span class="pre">DIM1</span></tt>.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id7" id="output-arrays" name="output-arrays">Output Arrays</a></h2> +<p>The <tt class="docutils literal"><span class="pre">numpy.i</span></tt> interface file does not support typemaps for output +arrays, for several reasons. First, C/C++ function return arguments +do not have names, so signatures for <tt class="docutils literal"><span class="pre">%typemap(out)</span></tt> do not include +names. This means that if <tt class="docutils literal"><span class="pre">numpy.i</span></tt> supported them, they would +apply to all pointer return arguments for the supported numeric +types. This seems too dangerous. Second, C/C++ return arguments are +limited to a single value. This prevents obtaining dimension +information in a general way. Third, arrays with hard-coded lengths +are not permitted as return arguments. In other words:</p> +<pre class="literal-block"> +double[3] newVector(double x, double y, double z); +</pre> +<p>is not legal C/C++ syntax. Therefore, we cannot provide typemaps of +the form:</p> +<pre class="literal-block"> +%typemap(out) (TYPE[ANY]); +</pre> +<p>If you run into a situation where a function or method is returning a +pointer to an array, your best bet is to write your own version of the +function to be wrapped, either with <tt class="docutils literal"><span class="pre">%extend</span></tt> for the case of class +methods or <tt class="docutils literal"><span class="pre">%ignore</span></tt> and <tt class="docutils literal"><span class="pre">%rename</span></tt> for the case of functions.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id8" id="other-common-types-bool" name="other-common-types-bool">Other Common Types: bool</a></h2> +<p>Note that C++ type <tt class="docutils literal"><span class="pre">bool</span></tt> is not supported in the list in the +<a class="reference" href="#available-typemaps">Available Typemaps</a> section. NumPy bools are a single byte, while +the C++ <tt class="docutils literal"><span class="pre">bool</span></tt> is four bytes (at least on my system). Therefore:</p> +<pre class="literal-block"> +%numpy_typemaps(bool, NPY_BOOL, int) +</pre> +<p>will result in typemaps that will produce code that reference +improper data lengths. You can implement the following macro +expansion:</p> +<pre class="literal-block"> +%numpy_typemaps(bool, NPY_UINT, int) +</pre> +<p>to fix the data length problem, and <a class="reference" href="#input-arrays">Input Arrays</a> will work fine, +but <a class="reference" href="#in-place-arrays">In-Place Arrays</a> might fail type-checking.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id9" id="other-common-types-complex" name="other-common-types-complex">Other Common Types: complex</a></h2> +<p>Typemap conversions for complex floating-point types is also not +supported automatically. This is because <a class="reference" href="http://www.python.org">python</a> and <a class="reference" href="http://numpy.scipy.org">NumPy</a> are +written in C, which does not have native complex types. Both +<a class="reference" href="http://www.python.org">python</a> and <a class="reference" href="http://numpy.scipy.org">NumPy</a> implement their own (essentially equivalent) +<tt class="docutils literal"><span class="pre">struct</span></tt> definitions for complex variables:</p> +<pre class="literal-block"> +/* Python */ +typedef struct {double real; double imag;} Py_complex; + +/* NumPy */ +typedef struct {float real, imag;} npy_cfloat; +typedef struct {double real, imag;} npy_cdouble; +</pre> +<p>We could have implemented:</p> +<pre class="literal-block"> +%numpy_typemaps(Py_complex , NPY_CDOUBLE, int) +%numpy_typemaps(npy_cfloat , NPY_CFLOAT , int) +%numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int) +</pre> +<p>which would have provided automatic type conversions for arrays of +type <tt class="docutils literal"><span class="pre">Py_complex</span></tt>, <tt class="docutils literal"><span class="pre">npy_cfloat</span></tt> and <tt class="docutils literal"><span class="pre">npy_cdouble</span></tt>. However, it +seemed unlikely that there would be any independent (non-<a class="reference" href="http://www.python.org">python</a>, +non-<a class="reference" href="http://numpy.scipy.org">NumPy</a>) application code that people would be using <a class="reference" href="http://www.swig.org">SWIG</a> to +generate a <a class="reference" href="http://www.python.org">python</a> interface to, that also used these definitions +for complex types. More likely, these application codes will define +their own complex types, or in the case of C++, use <tt class="docutils literal"><span class="pre">std::complex</span></tt>. +Assuming these data structures are compatible with <a class="reference" href="http://www.python.org">python</a> and +<a class="reference" href="http://numpy.scipy.org">NumPy</a> complex types, <tt class="docutils literal"><span class="pre">%numpy_typemap</span></tt> expansions as above (with +the user's complex type substituted for the first argument) should +work.</p> +</div> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id10" id="helper-functions" name="helper-functions">Helper Functions</a></h1> +<p>The <tt class="docutils literal"><span class="pre">numpy.i</span></tt> file containes several macros and routines that it +uses internally to build its typemaps. However, these functions may +be useful elsewhere in your interface file.</p> +<div class="section"> +<h2><a class="toc-backref" href="#id11" id="macros" name="macros">Macros</a></h2> +<blockquote> +<dl class="docutils"> +<dt><strong>is_array(a)</strong></dt> +<dd>Evaluates as true if <tt class="docutils literal"><span class="pre">a</span></tt> is non-<tt class="docutils literal"><span class="pre">NULL</span></tt> and can be cast to a +<tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_type(a)</strong></dt> +<dd>Evaluates to the integer data type code of <tt class="docutils literal"><span class="pre">a</span></tt>, assuming <tt class="docutils literal"><span class="pre">a</span></tt> can +be cast to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_numdims(a)</strong></dt> +<dd>Evaluates to the integer number of dimensions of <tt class="docutils literal"><span class="pre">a</span></tt>, assuming +<tt class="docutils literal"><span class="pre">a</span></tt> can be cast to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_dimensions(a)</strong></dt> +<dd>Evaluates to an array of type <tt class="docutils literal"><span class="pre">npy_intp</span></tt> and length +<tt class="docutils literal"><span class="pre">array_numdims(a)</span></tt>, giving the lengths of all of the dimensions +of <tt class="docutils literal"><span class="pre">a</span></tt>, assuming <tt class="docutils literal"><span class="pre">a</span></tt> can be cast to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_size(a,i)</strong></dt> +<dd>Evaluates to the <tt class="docutils literal"><span class="pre">i</span></tt>-th dimension size of <tt class="docutils literal"><span class="pre">a</span></tt>, assuming <tt class="docutils literal"><span class="pre">a</span></tt> +can be cast to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_data(a)</strong></dt> +<dd>Evaluates to a pointer of type <tt class="docutils literal"><span class="pre">void*</span></tt> that points to the data +buffer of <tt class="docutils literal"><span class="pre">a</span></tt>, assuming <tt class="docutils literal"><span class="pre">a</span></tt> can be cast to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>.</dd> +<dt><strong>array_is_contiguous(a)</strong></dt> +<dd>Evaluates as true if <tt class="docutils literal"><span class="pre">a</span></tt> is a contiguous array. Equivalent to +<tt class="docutils literal"><span class="pre">(PyArray_ISCONTIGUOUS(a))</span></tt>.</dd> +<dt><strong>array_is_native(a)</strong></dt> +<dd>Evaluates as true if the data buffer of <tt class="docutils literal"><span class="pre">a</span></tt> uses native byte +order. Equivalent to <tt class="docutils literal"><span class="pre">(PyArray_ISNOTSWAPPED(a))</span></tt>.</dd> +</dl> +</blockquote> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id12" id="routines" name="routines">Routines</a></h2> +<blockquote> +<p><strong>pytype_string()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">char*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyObject*</span> <span class="pre">py_obj</span></tt>, a general <a class="reference" href="http://www.python.org">python</a> object.</li> +</ul> +<p>Return a string describing the type of <tt class="docutils literal"><span class="pre">py_obj</span></tt>.</p> +</blockquote> +<p><strong>typecode_string()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">char*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">typecode</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> integer typecode.</li> +</ul> +<p>Return a string describing the type corresponding to the <a class="reference" href="http://numpy.scipy.org">NumPy</a> +<tt class="docutils literal"><span class="pre">typecode</span></tt>.</p> +</blockquote> +<p><strong>type_match()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">actual_type</span></tt>, the <a class="reference" href="http://numpy.scipy.org">NumPy</a> typecode of a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">desired_type</span></tt>, the desired <a class="reference" href="http://numpy.scipy.org">NumPy</a> typecode.</li> +</ul> +<p>Make sure that <tt class="docutils literal"><span class="pre">actual_type</span></tt> is compatible with +<tt class="docutils literal"><span class="pre">desired_type</span></tt>. For example, this allows character and +byte types, or int and long types, to match. This is now +equivalent to <tt class="docutils literal"><span class="pre">PyArray_EquivTypenums()</span></tt>.</p> +</blockquote> +<p><strong>obj_to_array_no_conversion()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyObject*</span> <span class="pre">input</span></tt>, a general <a class="reference" href="http://www.python.org">python</a> object.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">typecode</span></tt>, the desired <a class="reference" href="http://numpy.scipy.org">NumPy</a> typecode.</li> +</ul> +<p>Cast <tt class="docutils literal"><span class="pre">input</span></tt> to a <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt> if legal, and ensure that +it is of type <tt class="docutils literal"><span class="pre">typecode</span></tt>. If <tt class="docutils literal"><span class="pre">input</span></tt> cannot be cast, or the +<tt class="docutils literal"><span class="pre">typecode</span></tt> is wrong, set a <a class="reference" href="http://www.python.org">python</a> error and return <tt class="docutils literal"><span class="pre">NULL</span></tt>.</p> +</blockquote> +<p><strong>obj_to_array_allow_conversion()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyObject*</span> <span class="pre">input</span></tt>, a general <a class="reference" href="http://www.python.org">python</a> object.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">typecode</span></tt>, the desired <a class="reference" href="http://numpy.scipy.org">NumPy</a> typecode of the resulting +array.</li> +<li><tt class="docutils literal"><span class="pre">int*</span> <span class="pre">is_new_object</span></tt>, returns a value of 0 if no conversion +performed, else 1.</li> +</ul> +<p>Convert <tt class="docutils literal"><span class="pre">input</span></tt> to a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array with the given <tt class="docutils literal"><span class="pre">typecode</span></tt>. +On success, return a valid <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt> with the correct +type. On failure, the <a class="reference" href="http://www.python.org">python</a> error string will be set and the +routine returns <tt class="docutils literal"><span class="pre">NULL</span></tt>.</p> +</blockquote> +<p><strong>make_contiguous()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArrayObject*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +<li><tt class="docutils literal"><span class="pre">int*</span> <span class="pre">is_new_object</span></tt>, returns a value of 0 if no conversion +performed, else 1.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">min_dims</span></tt>, minimum allowable dimensions.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">max_dims</span></tt>, maximum allowable dimensions.</li> +</ul> +<p>Check to see if <tt class="docutils literal"><span class="pre">ary</span></tt> is contiguous. If so, return the input +pointer and flag it as not a new object. If it is not contiguous, +create a new <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt> using the original data, flag it +as a new object and return the pointer.</p> +</blockquote> +<p><strong>obj_to_array_contiguous_allow_conversion()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyObject*</span> <span class="pre">input</span></tt>, a general <a class="reference" href="http://www.python.org">python</a> object.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">typecode</span></tt>, the desired <a class="reference" href="http://numpy.scipy.org">NumPy</a> typecode of the resulting +array.</li> +<li><tt class="docutils literal"><span class="pre">int*</span> <span class="pre">is_new_object</span></tt>, returns a value of 0 if no conversion +performed, else 1.</li> +</ul> +<p>Convert <tt class="docutils literal"><span class="pre">input</span></tt> to a contiguous <tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt> of the +specified type. If the input object is not a contiguous +<tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>, a new one will be created and the new object +flag will be set.</p> +</blockquote> +<p><strong>require_contiguous()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArrayObject*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +</ul> +<p>Test whether <tt class="docutils literal"><span class="pre">ary</span></tt> is contiguous. If so, return 1. Otherwise, +set a <a class="reference" href="http://www.python.org">python</a> error and return 0.</p> +</blockquote> +<p><strong>require_native()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArray_Object*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +</ul> +<p>Require that <tt class="docutils literal"><span class="pre">ary</span></tt> is not byte-swapped. If the array is not +byte-swapped, return 1. Otherwise, set a <a class="reference" href="http://www.python.org">python</a> error and +return 0.</p> +</blockquote> +<p><strong>require_dimensions()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArrayObject*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">exact_dimensions</span></tt>, the desired number of dimensions.</li> +</ul> +<p>Require <tt class="docutils literal"><span class="pre">ary</span></tt> to have a specified number of dimensions. If the +array has the specified number of dimensions, return 1. +Otherwise, set a <a class="reference" href="http://www.python.org">python</a> error and return 0.</p> +</blockquote> +<p><strong>require_dimensions_n()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArrayObject*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +<li><tt class="docutils literal"><span class="pre">int*</span> <span class="pre">exact_dimensions</span></tt>, an array of integers representing +acceptable numbers of dimensions.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">n</span></tt>, the length of <tt class="docutils literal"><span class="pre">exact_dimensions</span></tt>.</li> +</ul> +<p>Require <tt class="docutils literal"><span class="pre">ary</span></tt> to have one of a list of specified number of +dimensions. If the array has one of the specified number of +dimensions, return 1. Otherwise, set the <a class="reference" href="http://www.python.org">python</a> error string +and return 0.</p> +</blockquote> +<p><strong>require_size()</strong></p> +<blockquote> +<p>Return type: <tt class="docutils literal"><span class="pre">int</span></tt></p> +<p>Arguments:</p> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">PyArrayObject*</span> <span class="pre">ary</span></tt>, a <a class="reference" href="http://numpy.scipy.org">NumPy</a> array.</li> +<li><tt class="docutils literal"><span class="pre">npy_int*</span> <span class="pre">size</span></tt>, an array representing the desired lengths of +each dimension.</li> +<li><tt class="docutils literal"><span class="pre">int</span> <span class="pre">n</span></tt>, the length of <tt class="docutils literal"><span class="pre">size</span></tt>.</li> +</ul> +<p>Require <tt class="docutils literal"><span class="pre">ary</span></tt> to have a specified shape. If the array has the +specified shape, return 1. Otherwise, set the <a class="reference" href="http://www.python.org">python</a> error +string and return 0.</p> +</blockquote> +</blockquote> +</div> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id13" id="beyond-the-provided-typemaps" name="beyond-the-provided-typemaps">Beyond the Provided Typemaps</a></h1> +<p>There are many C or C++ array/<a class="reference" href="http://numpy.scipy.org">NumPy</a> array situations not covered by +a simple <tt class="docutils literal"><span class="pre">%include</span> <span class="pre">"numpy.i"</span></tt> and subsequent <tt class="docutils literal"><span class="pre">%apply</span></tt> directives.</p> +<div class="section"> +<h2><a class="toc-backref" href="#id14" id="a-common-example" name="a-common-example">A Common Example</a></h2> +<p>Consider a reasonable prototype for a dot product function:</p> +<pre class="literal-block"> +double dot(int len, double* vec1, double* vec2); +</pre> +<p>The <a class="reference" href="http://www.python.org">python</a> interface that we want is:</p> +<pre class="literal-block"> +def dot(vec1, vec2): + """ + dot(PyObject,PyObject) -> double + """ +</pre> +<p>The problem here is that there is one dimension argument and two array +arguments, and our typemaps are set up for dimensions that apply to a +single array (in fact, <a class="reference" href="http://www.swig.org">SWIG</a> does not provide a mechanism for +associating <tt class="docutils literal"><span class="pre">len</span></tt> with <tt class="docutils literal"><span class="pre">vec2</span></tt> that takes two <a class="reference" href="http://www.python.org">python</a> input +arguments). The recommended solution is the following:</p> +<pre class="literal-block"> +%apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1), + (int len2, double* vec2)} +%rename (dot) my_dot; +%inline %{ +double my_dot(int len1, double* vec1, int len2, double* vec2) { + if (len1 != len2) { + PyErr_Format(PyExc_ValueError, + "Arrays of lengths (%d,%d) given", + len1, len2); + return 0.0; + } + return dot(len1, vec1, vec2); +} +%} +</pre> +<p>If the header file that contains the prototype for <tt class="docutils literal"><span class="pre">double</span> <span class="pre">dot()</span></tt> +also contains other prototypes that you want to wrap, so that you need +to <tt class="docutils literal"><span class="pre">%include</span></tt> this header file, then you will also need a <tt class="docutils literal"><span class="pre">%ignore</span> +<span class="pre">dot;</span></tt> directive, placed after the <tt class="docutils literal"><span class="pre">%rename</span></tt> and before the +<tt class="docutils literal"><span class="pre">%include</span></tt> directives. Or, if the function in question is a class +method, you will want to use <tt class="docutils literal"><span class="pre">%extend</span></tt> rather than <tt class="docutils literal"><span class="pre">%inline</span></tt> in +addition to <tt class="docutils literal"><span class="pre">%ignore</span></tt>.</p> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id15" id="other-situations" name="other-situations">Other Situations</a></h2> +<p>There are other wrapping situations in which <tt class="docutils literal"><span class="pre">numpy.i</span></tt> may be +helpful when you encounter them.</p> +<blockquote> +<ul> +<li><p class="first">In some situations, it is possible that you could use the +<tt class="docutils literal"><span class="pre">%numpy_templates</span></tt> macro to implement typemaps for your own +types. See the <a class="reference" href="#other-common-types-bool">Other Common Types: bool</a> or <a class="reference" href="#other-common-types-complex">Other Common +Types: complex</a> sections for examples. Another situation is if +your dimensions are of a type other than <tt class="docutils literal"><span class="pre">int</span></tt> (say <tt class="docutils literal"><span class="pre">long</span></tt> for +example):</p> +<pre class="literal-block"> +%numpy_typemaps(double, NPY_DOUBLE, long) +</pre> +</li> +<li><p class="first">You can use the code in <tt class="docutils literal"><span class="pre">numpy.i</span></tt> to write your own typemaps. +For example, if you had a four-dimensional array as a function +argument, you could cut-and-paste the appropriate +three-dimensional typemaps into your interface file. The +modifications for the fourth dimension would be trivial.</p> +</li> +<li><p class="first">Sometimes, the best approach is to use the <tt class="docutils literal"><span class="pre">%extend</span></tt> directive +to define new methods for your classes (or overload existing ones) +that take a <tt class="docutils literal"><span class="pre">PyObject*</span></tt> (that either is or can be converted to a +<tt class="docutils literal"><span class="pre">PyArrayObject*</span></tt>) instead of a pointer to a buffer. In this +case, the helper routines in <tt class="docutils literal"><span class="pre">numpy.i</span></tt> can be very useful.</p> +</li> +<li><p class="first">Writing typemaps can be a bit nonintuitive. If you have specific +questions about writing <a class="reference" href="http://www.swig.org">SWIG</a> typemaps for <a class="reference" href="http://numpy.scipy.org">NumPy</a>, the +developers of <tt class="docutils literal"><span class="pre">numpy.i</span></tt> do monitor the +<a class="reference" href="mailto:Numpy-discussion@scipy.org">Numpy-discussion</a> and +<a class="reference" href="mailto:Swig-user@lists.sourceforge.net">Swig-user</a> mail lists.</p> +</li> +</ul> +</blockquote> +</div> +<div class="section"> +<h2><a class="toc-backref" href="#id16" id="a-final-note" name="a-final-note">A Final Note</a></h2> +<p>When you use the <tt class="docutils literal"><span class="pre">%apply</span></tt> directive, as is usually necessary to use +<tt class="docutils literal"><span class="pre">numpy.i</span></tt>, it will remain in effect until you tell <a class="reference" href="http://www.swig.org">SWIG</a> that it +shouldn't be. If the arguments to the functions or methods that you +are wrapping have common names, such as <tt class="docutils literal"><span class="pre">length</span></tt> or <tt class="docutils literal"><span class="pre">vector</span></tt>, +these typemaps may get applied in situations you do not expect or +want. Therefore, it is always a good idea to add a <tt class="docutils literal"><span class="pre">%clear</span></tt> +directive after you are done with a specific typemap:</p> +<pre class="literal-block"> +%apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)} +%include "my_header.h" +%clear (double* vector, int length); +</pre> +<p>In general, you should target these typemap signatures specifically +where you want them, and then clear them after you are done.</p> +</div> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id17" id="summary" name="summary">Summary</a></h1> +<p>Out of the box, <tt class="docutils literal"><span class="pre">numpy.i</span></tt> provides typemaps that support conversion +between <a class="reference" href="http://numpy.scipy.org">NumPy</a> arrays and C arrays:</p> +<blockquote> +<ul class="simple"> +<li>That can be one of 12 different scalar types: <tt class="docutils literal"><span class="pre">signed</span> <span class="pre">char</span></tt>, +<tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></tt>, <tt class="docutils literal"><span class="pre">short</span></tt>, <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt>, <tt class="docutils literal"><span class="pre">int</span></tt>, +<tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt>, <tt class="docutils literal"><span class="pre">long</span></tt>, <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt>, <tt class="docutils literal"><span class="pre">long</span> <span class="pre">long</span></tt>, +<tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span> <span class="pre">long</span></tt>, <tt class="docutils literal"><span class="pre">float</span></tt> and <tt class="docutils literal"><span class="pre">double</span></tt>.</li> +<li>That support 23 different argument signatures for each data type, +including:<ul> +<li>One-dimensional, two-dimensional and three-dimensional arrays.</li> +<li>Input-only, in-place, and argout behavior.</li> +<li>Hard-coded dimensions, data-buffer-then-dimensions +specification, and dimensions-then-data-buffer specification.</li> +</ul> +</li> +</ul> +</blockquote> +<p>The <tt class="docutils literal"><span class="pre">numpy.i</span></tt> interface file also provides additional tools for +wrapper developers, including:</p> +<blockquote> +<ul class="simple"> +<li>A <a class="reference" href="http://www.swig.org">SWIG</a> macro (<tt class="docutils literal"><span class="pre">%numpy_typemaps</span></tt>) with three arguments for +implementing the 23 argument signatures for the user's choice of +(1) C data type, (2) <a class="reference" href="http://numpy.scipy.org">NumPy</a> data type (assuming they match), and +(3) dimension type.</li> +<li>Seven C macros and eleven C functions that can be used to write +specialized typemaps, extensions, or inlined functions that handle +cases not covered by the provided typemaps.</li> +</ul> +</blockquote> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id18" id="acknowledgements" name="acknowledgements">Acknowledgements</a></h1> +<p>Many people have worked to glue <a class="reference" href="http://www.swig.org">SWIG</a> and <a class="reference" href="http://numpy.scipy.org">NumPy</a> together (as well +as <a class="reference" href="http://www.swig.org">SWIG</a> and the predecessors of <a class="reference" href="http://numpy.scipy.org">NumPy</a>, Numeric and numarray). +The effort to standardize this work into <tt class="docutils literal"><span class="pre">numpy.i</span></tt> began at the 2005 +<a class="reference" href="http://scipy.org">SciPy</a> Conference with a conversation between +Fernando Perez and myself. Fernando collected helper functions and +typemaps from Michael Hunter, Anna Omelchenko and Michael Sanner. +Sebastian Hasse has also provided additional error checking and use +cases. The work of these contributors has made this end result +possible.</p> +</div> +</div> +<div class="footer"> +<hr class="footer" /> +Generated on: 2007-04-13 20:43 UTC. +Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source. + +</div> +</body> +</html> diff --git a/numpy/doc/swig/numpy_swig.pdf b/numpy/doc/swig/numpy_swig.pdf Binary files differnew file mode 100644 index 000000000..aadcc9fe4 --- /dev/null +++ b/numpy/doc/swig/numpy_swig.pdf diff --git a/numpy/doc/swig/numpy_swig.txt b/numpy/doc/swig/numpy_swig.txt new file mode 100644 index 000000000..d00ad6ff5 --- /dev/null +++ b/numpy/doc/swig/numpy_swig.txt @@ -0,0 +1,774 @@ +======================================== +numpy.i: a SWIG Interface File for NumPy +======================================== + +:Author: Bill Spotz +:Institution: Sandia National Laboratories +:Date: 13 April, 2007 + +.. contents:: + +Introduction +============ + +The Simple Wrapper and Interface Generator (or `SWIG +<http://www.swig.org>`_) is a powerful tool for generating wrapper +code for interfacing to a wide variety of scripting languages. +`SWIG`_ can parse header files, and using only the code prototypes, +create an interface to the target language. But `SWIG`_ is not +omnipotent. For example, it cannot know from the prototype:: + + double rms(double* seq, int n); + +what exactly ``seq`` is. Is it a single value to be altered in-place? +Is it an array, and if so what is its length? Is it input-only? +Output-only? Input-output? `SWIG`_ cannot determine these details, +and does not attempt to do so. + +Making an educated guess, humans can conclude that this is probably a +routine that takes an input-only array of length ``n`` of ``double`` +values called ``seq`` and returns the root mean square. The default +behavior of `SWIG`_, however, will be to create a wrapper function +that compiles, but is nearly impossible to use from the scripting +language in the way the C routine was intended. + +For `python <http://www.python.org>`_, the preferred way of handling +contiguous (or technically, *strided*) blocks of homogeneous data is +with the module `NumPy <http://numpy.scipy.org>`_, which provides full +object-oriented access to arrays of data. Therefore, the most logical +`python`_ interface for the ``rms`` function would be (including doc +string):: + + def rms(seq): + """ + rms: return the root mean square of a sequence + rms(numpy.ndarray) -> double + rms(list) -> double + rms(tuple) -> double + """ + +where ``seq`` would be a `NumPy`_ array of ``double`` values, and its +length ``n`` would be extracted from ``seq`` internally before being +passed to the C routine. Even better, since `NumPy`_ supports +construction of arrays from arbitrary `python`_ sequences, ``seq`` +itself could be a nearly arbitrary sequence (so long as each element +can be converted to a ``double``) and the wrapper code would +internally convert it to a `NumPy`_ array before extracting its data +and length. + +`SWIG`_ allows these types of conversions to be defined via a +mechanism called typemaps. This document provides information on how +to use ``numpy.i``, a `SWIG`_ interface file that defines a series of +typemaps intended to make the type of array-related conversions +described above relatively simple to implement. For example, suppose +that the ``rms`` function prototype defined above was in a header file +named ``rms.h``. To obtain the `python`_ interface discussed above, +your `SWIG`_ interface file would need the following:: + + %{ + #define SWIG_FILE_WITH_INIT + #include "rms.h" + %} + + %include "numpy.i" + + %init %{ + import_array(); + %} + + %apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)}; + %include "rms.h" + +Typemaps are keyed off a list of one or more function arguments, +either by type or by type and name. We will refer to such lists as +*signatures*. One of the many typemaps defined by ``numpy.i`` is used +above and has the signature ``(double* IN_ARRAY1, int DIM1)``. The +argument names are intended to suggest that the ``double*`` argument +is an input array of one dimension and that the ``int`` represents +that dimension. This is precisely the pattern in the ``rms`` +prototype. + +Most likely, no actual prototypes to be wrapped will have the argument +names ``IN_ARRAY1`` and ``DIM1``. We use the ``%apply`` directive to +apply the typemap for one-dimensional input arrays of type ``double`` +to the actual prototype used by ``rms``. Using ``numpy.i`` +effectively, therefore, requires knowing what typemaps are available +and what they do. + +A `SWIG`_ interface file that includes the `SWIG`_ directives given +above will produce wrapper code that looks something like:: + + 1 PyObject *_wrap_rms(PyObject *args) { + 2 PyObject *resultobj = 0; + 3 double *arg1 = (double *) 0 ; + 4 int arg2 ; + 5 double result; + 6 PyArrayObject *array1 = NULL ; + 7 int is_new_object1 = 0 ; + 8 PyObject * obj0 = 0 ; + 9 + 10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail; + 11 { + 12 array1 = obj_to_array_contiguous_allow_conversion( + 13 obj0, NPY_DOUBLE, &is_new_object1); + 14 npy_intp size[1] = { + 15 -1 + 16 }; + 17 if (!array1 || !require_dimensions(array1, 1) || + 18 !require_size(array1, size, 1)) SWIG_fail; + 19 arg1 = (double*) array1->data; + 20 arg2 = (int) array1->dimensions[0]; + 21 } + 22 result = (double)rms(arg1,arg2); + 23 resultobj = SWIG_From_double((double)(result)); + 24 { + 25 if (is_new_object1 && array1) Py_DECREF(array1); + 26 } + 27 return resultobj; + 28 fail: + 29 { + 30 if (is_new_object1 && array1) Py_DECREF(array1); + 31 } + 32 return NULL; + 33 } + +The typemaps from ``numpy.i`` are responsible for the following lines +of code: 12--20, 25 and 30. Line 10 parses the input to the ``rms`` +function. From the format string ``"O:rms"``, we can see that the +argument list is expected to be a single `python`_ object (specified +by the ``O`` before the colon) and whose pointer is stored in +``obj0``. A number of functions, supplied by ``numpy.i``, are called +to make and check the (possible) conversion from a generic `python`_ +object to a `NumPy`_ array. These functions are explained in the +section `Helper Functions`_, but hopefully their names are +self-explanatory. At line 12 we use ``obj0`` to construct a `NumPy`_ +array. At line 17, we check the validity of the result: that it is +non-null and that it has a single dimension of arbitrary length. Once +these states are verified, we extract the data buffer and length in +lines 19 and 20 so that we can call the underlying C function at line +22. Line 25 performs memory management for the case where we have +created a new array that is no longer needed. + +This code has a significant amount of error handling. Note the +``SWIG_fail`` is a macro for ``goto fail``, refering to the label at +line 28. If the user provides the wrong number of arguments, this +will be caught at line 10. If construction of the `NumPy`_ array +fails or produces an array with the wrong number of dimensions, these +errors are caught at line 17. And finally, if an error is detected, +memory is still managed correctly at line 30. + +Note that if the C function signature was in a different order:: + + double rms(int n, double* seq); + +that `SWIG`_ would not match the typemap signature given above with +the argument list for ``rms``. Fortunately, ``numpy.i`` has a set of +typemaps with the data pointer given last:: + + %apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)}; + +This simply has the effect of switching the definitions of ``arg1`` +and ``arg2`` in lines 3 and 4 of the generated code above, and their +assignments in lines 19 and 20. + +Using numpy.i +============= + +The ``numpy.i`` file is currently located in the ``numpy/docs/swig`` +sub-directory under the ``numpy`` installation directory. Typically, +you will want to copy it to the directory where you are developing +your wrappers. If it is ever adopted by `SWIG`_ developers, then it +will be installed in a standard place where `SWIG`_ can find it. + +A simple module that only uses a single `SWIG`_ interface file should +include the following:: + + %{ + #define SWIG_FILE_WITH_INIT + %} + %include "numpy.i" + %init %{ + import_array(); + %} + +Within a compiled `python`_ module, ``import_array()`` should only get +called once. This could be in a C/C++ file that you have written and +is linked to the module. If this is the case, then none of your +interface files should ``#define SWIG_FILE_WITH_INIT`` or call +``import_array()``. Or, this initialization call could be in a +wrapper file generated by `SWIG`_ from an interface file that has the +``%init`` block as above. If this is the case, and you have more than +one `SWIG`_ interface file, then only one interface file should +``#define SWIG_FILE_WITH_INIT`` and call ``import_array()``. + +Available Typemaps +================== + +The typemap directives provided by ``numpy.i`` for arrays of different +data types, say ``double`` and ``int``, and dimensions of different +types, say ``int`` or ``long``, are identical to one another except +for the C and `NumPy`_ type specifications. The typemaps are +therefore implemented (typically behind the scenes) via a macro:: + + %numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE) + +that can be invoked for appropriate ``(DATA_TYPE, DATA_TYPECODE, +DIM_TYPE)`` triplets. For example:: + + %numpy_typemaps(double, NPY_DOUBLE, int) + %numpy_typemaps(int, NPY_INT , int) + +The ``numpy.i`` interface file uses the ``%numpy_typemaps`` macro to +implement typemaps for the following C data types and ``int`` +dimension types: + + * ``signed char`` + * ``unsigned char`` + * ``short`` + * ``unsigned short`` + * ``int`` + * ``unsigned int`` + * ``long`` + * ``unsigned long`` + * ``long long`` + * ``unsigned long long`` + * ``float`` + * ``double`` + +In the following descriptions, we reference a generic ``DATA_TYPE``, which +could be any of the C data types listed above. + +Input Arrays +------------ + +Input arrays are defined as arrays of data that are passed into a +routine but are not altered in-place or returned to the user. The +`python`_ input array is therefore allowed to be almost any `python`_ +sequence (such as a list) that can be converted to the requested type +of array. The input array signatures are + + * ``(DATA_TYPE IN_ARRAY1[ANY])`` + * ``(DATA_TYPE* IN_ARRAY1, int DIM1)`` + * ``(int DIM1, DATA_TYPE* IN_ARRAY1)`` + * ``(DATA_TYPE IN_ARRAY2[ANY][ANY])`` + * ``(DATA_TYPE* IN_ARRAY2, int DIM1, int DIM2)`` + * ``(int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2)`` + * ``(DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])`` + * ``(DATA_TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3)`` + * ``(int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_ARRAY3)`` + +The first signature listed, ``(DATA_TYPE IN_ARRAY[ANY])`` is for +one-dimensional arrays with hard-coded dimensions. Likewise, +``(DATA_TYPE IN_ARRAY2[ANY][ANY])`` is for two-dimensional arrays with +hard-coded dimensions, and similarly for three-dimensional. + +In-Place Arrays +--------------- + +In-place arrays are defined as arrays that are modified in-place. The +input values may or may not be used, but the values at the time the +function returns are significant. The provided `python`_ argument +must therefore be a `NumPy`_ array of the required type. The in-place +signatures are + + * ``(DATA_TYPE INPLACE_ARRAY1[ANY])`` + * ``(DATA_TYPE* INPLACE_ARRAY1, int DIM1)`` + * ``(int DIM1, DATA_TYPE* INPLACE_ARRAY1)`` + * ``(DATA_TYPE INPLACE_ARRAY2[ANY][ANY])`` + * ``(DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2)`` + * ``(int DIM1, int DIM2, DATA_TYPE* INPLACE_ARRAY2)`` + * ``(DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])`` + * ``(DATA_TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3)`` + * ``(int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_ARRAY3)`` + +These typemaps now check to make sure that the ``INPLACE_ARRAY`` +arguments use native byte ordering. If not, an exception is raised. + +Argout Arrays +------------- + +Argout arrays are arrays that appear in the input arguments in C, but +are in fact output arrays. This pattern occurs often when there is +more than one output variable and the single return argument is +therefore not sufficient. In `python`_, the convential way to return +multiple arguments is to pack them into a sequence (tuple, list, etc.) +and return the sequence. This is what the argout typemaps do. If a +wrapped function that uses these argout typemaps has more than one +return argument, they are packed into a tuple or list, depending on +the version of `python`_. The `python`_ user does not pass these +arrays in, they simply get returned. The argout signatures are + + * ``(DATA_TYPE ARGOUT_ARRAY1[ANY])`` + * ``(DATA_TYPE* ARGOUT_ARRAY1, int DIM1)`` + * ``(int DIM1, DATA_TYPE* ARGOUT_ARRAY1)`` + * ``(DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])`` + * ``(DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])`` + +These are typically used in situations where in C/C++, you would +allocate a(n) array(s) on the heap, and call the function to fill the +array(s) values. In `python`_, the arrays are allocated for you and +returned as new array objects. + +Note that we support ``DATA_TYPE*`` argout typemaps in 1D, but not 2D +or 3D. This because of a quirk with the `SWIG`_ typemap syntax and +cannot be avoided. Note that for these types of 1D typemaps, the +`python`_ function will take a single argument representing ``DIM1``. + +Output Arrays +------------- + +The ``numpy.i`` interface file does not support typemaps for output +arrays, for several reasons. First, C/C++ function return arguments +do not have names, so signatures for ``%typemap(out)`` do not include +names. This means that if ``numpy.i`` supported them, they would +apply to all pointer return arguments for the supported numeric +types. This seems too dangerous. Second, C/C++ return arguments are +limited to a single value. This prevents obtaining dimension +information in a general way. Third, arrays with hard-coded lengths +are not permitted as return arguments. In other words:: + + double[3] newVector(double x, double y, double z); + +is not legal C/C++ syntax. Therefore, we cannot provide typemaps of +the form:: + + %typemap(out) (TYPE[ANY]); + +If you run into a situation where a function or method is returning a +pointer to an array, your best bet is to write your own version of the +function to be wrapped, either with ``%extend`` for the case of class +methods or ``%ignore`` and ``%rename`` for the case of functions. + +Other Common Types: bool +------------------------ + +Note that C++ type ``bool`` is not supported in the list in the +`Available Typemaps`_ section. NumPy bools are a single byte, while +the C++ ``bool`` is four bytes (at least on my system). Therefore:: + + %numpy_typemaps(bool, NPY_BOOL, int) + +will result in typemaps that will produce code that reference +improper data lengths. You can implement the following macro +expansion:: + + %numpy_typemaps(bool, NPY_UINT, int) + +to fix the data length problem, and `Input Arrays`_ will work fine, +but `In-Place Arrays`_ might fail type-checking. + +Other Common Types: complex +--------------------------- + +Typemap conversions for complex floating-point types is also not +supported automatically. This is because `python`_ and `NumPy`_ are +written in C, which does not have native complex types. Both +`python`_ and `NumPy`_ implement their own (essentially equivalent) +``struct`` definitions for complex variables:: + + /* Python */ + typedef struct {double real; double imag;} Py_complex; + + /* NumPy */ + typedef struct {float real, imag;} npy_cfloat; + typedef struct {double real, imag;} npy_cdouble; + +We could have implemented:: + + %numpy_typemaps(Py_complex , NPY_CDOUBLE, int) + %numpy_typemaps(npy_cfloat , NPY_CFLOAT , int) + %numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int) + +which would have provided automatic type conversions for arrays of +type ``Py_complex``, ``npy_cfloat`` and ``npy_cdouble``. However, it +seemed unlikely that there would be any independent (non-`python`_, +non-`NumPy`_) application code that people would be using `SWIG`_ to +generate a `python`_ interface to, that also used these definitions +for complex types. More likely, these application codes will define +their own complex types, or in the case of C++, use ``std::complex``. +Assuming these data structures are compatible with `python`_ and +`NumPy`_ complex types, ``%numpy_typemap`` expansions as above (with +the user's complex type substituted for the first argument) should +work. + +Helper Functions +================ + +The ``numpy.i`` file containes several macros and routines that it +uses internally to build its typemaps. However, these functions may +be useful elsewhere in your interface file. + +Macros +------ + + **is_array(a)** + Evaluates as true if ``a`` is non-``NULL`` and can be cast to a + ``PyArrayObject*``. + + **array_type(a)** + Evaluates to the integer data type code of ``a``, assuming ``a`` can + be cast to a ``PyArrayObject*``. + + **array_numdims(a)** + Evaluates to the integer number of dimensions of ``a``, assuming + ``a`` can be cast to a ``PyArrayObject*``. + + **array_dimensions(a)** + Evaluates to an array of type ``npy_intp`` and length + ``array_numdims(a)``, giving the lengths of all of the dimensions + of ``a``, assuming ``a`` can be cast to a ``PyArrayObject*``. + + **array_size(a,i)** + Evaluates to the ``i``-th dimension size of ``a``, assuming ``a`` + can be cast to a ``PyArrayObject*``. + + **array_data(a)** + Evaluates to a pointer of type ``void*`` that points to the data + buffer of ``a``, assuming ``a`` can be cast to a ``PyArrayObject*``. + + **array_is_contiguous(a)** + Evaluates as true if ``a`` is a contiguous array. Equivalent to + ``(PyArray_ISCONTIGUOUS(a))``. + + **array_is_native(a)** + Evaluates as true if the data buffer of ``a`` uses native byte + order. Equivalent to ``(PyArray_ISNOTSWAPPED(a))``. + +Routines +-------- + + **pytype_string()** + + Return type: ``char*`` + + Arguments: + + * ``PyObject* py_obj``, a general `python`_ object. + + Return a string describing the type of ``py_obj``. + + + **typecode_string()** + + Return type: ``char*`` + + Arguments: + + * ``int typecode``, a `NumPy`_ integer typecode. + + Return a string describing the type corresponding to the `NumPy`_ + ``typecode``. + + **type_match()** + + Return type: ``int`` + + Arguments: + + * ``int actual_type``, the `NumPy`_ typecode of a `NumPy`_ array. + + * ``int desired_type``, the desired `NumPy`_ typecode. + + Make sure that ``actual_type`` is compatible with + ``desired_type``. For example, this allows character and + byte types, or int and long types, to match. This is now + equivalent to ``PyArray_EquivTypenums()``. + + + **obj_to_array_no_conversion()** + + Return type: ``PyArrayObject*`` + + Arguments: + + * ``PyObject* input``, a general `python`_ object. + + * ``int typecode``, the desired `NumPy`_ typecode. + + Cast ``input`` to a ``PyArrayObject*`` if legal, and ensure that + it is of type ``typecode``. If ``input`` cannot be cast, or the + ``typecode`` is wrong, set a `python`_ error and return ``NULL``. + + + **obj_to_array_allow_conversion()** + + Return type: ``PyArrayObject*`` + + Arguments: + + * ``PyObject* input``, a general `python`_ object. + + * ``int typecode``, the desired `NumPy`_ typecode of the resulting + array. + + * ``int* is_new_object``, returns a value of 0 if no conversion + performed, else 1. + + Convert ``input`` to a `NumPy`_ array with the given ``typecode``. + On success, return a valid ``PyArrayObject*`` with the correct + type. On failure, the `python`_ error string will be set and the + routine returns ``NULL``. + + + **make_contiguous()** + + Return type: ``PyArrayObject*`` + + Arguments: + + * ``PyArrayObject* ary``, a `NumPy`_ array. + + * ``int* is_new_object``, returns a value of 0 if no conversion + performed, else 1. + + * ``int min_dims``, minimum allowable dimensions. + + * ``int max_dims``, maximum allowable dimensions. + + Check to see if ``ary`` is contiguous. If so, return the input + pointer and flag it as not a new object. If it is not contiguous, + create a new ``PyArrayObject*`` using the original data, flag it + as a new object and return the pointer. + + + **obj_to_array_contiguous_allow_conversion()** + + Return type: ``PyArrayObject*`` + + Arguments: + + * ``PyObject* input``, a general `python`_ object. + + * ``int typecode``, the desired `NumPy`_ typecode of the resulting + array. + + * ``int* is_new_object``, returns a value of 0 if no conversion + performed, else 1. + + Convert ``input`` to a contiguous ``PyArrayObject*`` of the + specified type. If the input object is not a contiguous + ``PyArrayObject*``, a new one will be created and the new object + flag will be set. + + + **require_contiguous()** + + Return type: ``int`` + + Arguments: + + * ``PyArrayObject* ary``, a `NumPy`_ array. + + Test whether ``ary`` is contiguous. If so, return 1. Otherwise, + set a `python`_ error and return 0. + + + **require_native()** + + Return type: ``int`` + + Arguments: + + * ``PyArray_Object* ary``, a `NumPy`_ array. + + Require that ``ary`` is not byte-swapped. If the array is not + byte-swapped, return 1. Otherwise, set a `python`_ error and + return 0. + + **require_dimensions()** + + Return type: ``int`` + + Arguments: + + * ``PyArrayObject* ary``, a `NumPy`_ array. + + * ``int exact_dimensions``, the desired number of dimensions. + + Require ``ary`` to have a specified number of dimensions. If the + array has the specified number of dimensions, return 1. + Otherwise, set a `python`_ error and return 0. + + + **require_dimensions_n()** + + Return type: ``int`` + + Arguments: + + * ``PyArrayObject* ary``, a `NumPy`_ array. + + * ``int* exact_dimensions``, an array of integers representing + acceptable numbers of dimensions. + + * ``int n``, the length of ``exact_dimensions``. + + Require ``ary`` to have one of a list of specified number of + dimensions. If the array has one of the specified number of + dimensions, return 1. Otherwise, set the `python`_ error string + and return 0. + + + **require_size()** + + Return type: ``int`` + + Arguments: + + * ``PyArrayObject* ary``, a `NumPy`_ array. + + * ``npy_int* size``, an array representing the desired lengths of + each dimension. + + * ``int n``, the length of ``size``. + + Require ``ary`` to have a specified shape. If the array has the + specified shape, return 1. Otherwise, set the `python`_ error + string and return 0. + + +Beyond the Provided Typemaps +============================ + +There are many C or C++ array/`NumPy`_ array situations not covered by +a simple ``%include "numpy.i"`` and subsequent ``%apply`` directives. + +A Common Example +---------------- + +Consider a reasonable prototype for a dot product function:: + + double dot(int len, double* vec1, double* vec2); + +The `python`_ interface that we want is:: + + def dot(vec1, vec2): + """ + dot(PyObject,PyObject) -> double + """ + +The problem here is that there is one dimension argument and two array +arguments, and our typemaps are set up for dimensions that apply to a +single array (in fact, `SWIG`_ does not provide a mechanism for +associating ``len`` with ``vec2`` that takes two `python`_ input +arguments). The recommended solution is the following:: + + %apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1), + (int len2, double* vec2)} + %rename (dot) my_dot; + %inline %{ + double my_dot(int len1, double* vec1, int len2, double* vec2) { + if (len1 != len2) { + PyErr_Format(PyExc_ValueError, + "Arrays of lengths (%d,%d) given", + len1, len2); + return 0.0; + } + return dot(len1, vec1, vec2); + } + %} + +If the header file that contains the prototype for ``double dot()`` +also contains other prototypes that you want to wrap, so that you need +to ``%include`` this header file, then you will also need a ``%ignore +dot;`` directive, placed after the ``%rename`` and before the +``%include`` directives. Or, if the function in question is a class +method, you will want to use ``%extend`` rather than ``%inline`` in +addition to ``%ignore``. + +Other Situations +---------------- + +There are other wrapping situations in which ``numpy.i`` may be +helpful when you encounter them. + + * In some situations, it is possible that you could use the + ``%numpy_templates`` macro to implement typemaps for your own + types. See the `Other Common Types: bool`_ or `Other Common + Types: complex`_ sections for examples. Another situation is if + your dimensions are of a type other than ``int`` (say ``long`` for + example):: + + %numpy_typemaps(double, NPY_DOUBLE, long) + + * You can use the code in ``numpy.i`` to write your own typemaps. + For example, if you had a four-dimensional array as a function + argument, you could cut-and-paste the appropriate + three-dimensional typemaps into your interface file. The + modifications for the fourth dimension would be trivial. + + * Sometimes, the best approach is to use the ``%extend`` directive + to define new methods for your classes (or overload existing ones) + that take a ``PyObject*`` (that either is or can be converted to a + ``PyArrayObject*``) instead of a pointer to a buffer. In this + case, the helper routines in ``numpy.i`` can be very useful. + + * Writing typemaps can be a bit nonintuitive. If you have specific + questions about writing `SWIG`_ typemaps for `NumPy`_, the + developers of ``numpy.i`` do monitor the + `Numpy-discussion <mailto:Numpy-discussion@scipy.org>`_ and + `Swig-user <mailto:Swig-user@lists.sourceforge.net>`_ mail lists. + +A Final Note +------------ + +When you use the ``%apply`` directive, as is usually necessary to use +``numpy.i``, it will remain in effect until you tell `SWIG`_ that it +shouldn't be. If the arguments to the functions or methods that you +are wrapping have common names, such as ``length`` or ``vector``, +these typemaps may get applied in situations you do not expect or +want. Therefore, it is always a good idea to add a ``%clear`` +directive after you are done with a specific typemap:: + + %apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)} + %include "my_header.h" + %clear (double* vector, int length); + +In general, you should target these typemap signatures specifically +where you want them, and then clear them after you are done. + +Summary +======= + +Out of the box, ``numpy.i`` provides typemaps that support conversion +between `NumPy`_ arrays and C arrays: + + * That can be one of 12 different scalar types: ``signed char``, + ``unsigned char``, ``short``, ``unsigned short``, ``int``, + ``unsigned int``, ``long``, ``unsigned long``, ``long long``, + ``unsigned long long``, ``float`` and ``double``. + + * That support 23 different argument signatures for each data type, + including: + + + One-dimensional, two-dimensional and three-dimensional arrays. + + + Input-only, in-place, and argout behavior. + + + Hard-coded dimensions, data-buffer-then-dimensions + specification, and dimensions-then-data-buffer specification. + +The ``numpy.i`` interface file also provides additional tools for +wrapper developers, including: + + * A `SWIG`_ macro (``%numpy_typemaps``) with three arguments for + implementing the 23 argument signatures for the user's choice of + (1) C data type, (2) `NumPy`_ data type (assuming they match), and + (3) dimension type. + + * Seven C macros and eleven C functions that can be used to write + specialized typemaps, extensions, or inlined functions that handle + cases not covered by the provided typemaps. + +Acknowledgements +================ + +Many people have worked to glue `SWIG`_ and `NumPy`_ together (as well +as `SWIG`_ and the predecessors of `NumPy`_, Numeric and numarray). +The effort to standardize this work into ``numpy.i`` began at the 2005 +`SciPy <http://scipy.org>`_ Conference with a conversation between +Fernando Perez and myself. Fernando collected helper functions and +typemaps from Michael Hunter, Anna Omelchenko and Michael Sanner. +Sebastian Hasse has also provided additional error checking and use +cases. The work of these contributors has made this end result +possible. diff --git a/numpy/doc/swig/setup.py b/numpy/doc/swig/setup.py new file mode 100755 index 000000000..13bd7589e --- /dev/null +++ b/numpy/doc/swig/setup.py @@ -0,0 +1,43 @@ +#! /usr/bin/env python + +# System imports +from distutils.core import * +from distutils import sysconfig + +# Third-party modules - we depend on numpy for everything +import numpy + +# Obtain the numpy include directory. This logic works across numpy versions. +try: + numpy_include = numpy.get_include() +except AttributeError: + numpy_include = numpy.get_numpy_include() + +# _Vector extension module +_Vector = Extension("_Vector", + ["Vector_wrap.cxx", + "vector.cxx"], + include_dirs = [numpy_include], + ) + +# _Matrix extension module +_Matrix = Extension("_Matrix", + ["Matrix_wrap.cxx", + "matrix.cxx"], + include_dirs = [numpy_include], + ) + +# _Tensor extension module +_Tensor = Extension("_Tensor", + ["Tensor_wrap.cxx", + "tensor.cxx"], + include_dirs = [numpy_include], + ) + +# NumyTypemapTests setup +setup(name = "NumpyTypemapTests", + description = "Functions that work on arrays", + author = "Bill Spotz", + py_modules = ["Vector", "Matrix", "Tensor"], + ext_modules = [_Vector , _Matrix , _Tensor ] + ) diff --git a/numpy/doc/swig/testMatrix.py b/numpy/doc/swig/testMatrix.py new file mode 100755 index 000000000..933423fe9 --- /dev/null +++ b/numpy/doc/swig/testMatrix.py @@ -0,0 +1,365 @@ +#! /usr/bin/env python + +# System imports +from distutils.util import get_platform +import os +import sys +import unittest + +# Import NumPy +import numpy as N +major, minor = [ int(d) for d in N.__version__.split(".")[:2] ] +if major == 0: BadListError = TypeError +else: BadListError = ValueError + +# Add the distutils-generated build directory to the python search path and then +# import the extension module +libDir = "lib.%s-%s" % (get_platform(), sys.version[:3]) +sys.path.insert(0,os.path.join("build", libDir)) +import Matrix + +###################################################################### + +class MatrixTestCase(unittest.TestCase): + + def __init__(self, methodName="runTests"): + unittest.TestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + + # Test (type IN_ARRAY2[ANY][ANY]) typemap + def testDet(self): + "Test det function" + print >>sys.stderr, self.typeStr, "... ", + det = Matrix.__dict__[self.typeStr + "Det"] + matrix = [[8,7],[6,9]] + self.assertEquals(det(matrix), 30) + + # Test (type IN_ARRAY2[ANY][ANY]) typemap + def testDetBadList(self): + "Test det function with bad list" + print >>sys.stderr, self.typeStr, "... ", + det = Matrix.__dict__[self.typeStr + "Det"] + matrix = [[8,7], ["e", "pi"]] + self.assertRaises(BadListError, det, matrix) + + # Test (type IN_ARRAY2[ANY][ANY]) typemap + def testDetWrongDim(self): + "Test det function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + det = Matrix.__dict__[self.typeStr + "Det"] + matrix = [8,7] + self.assertRaises(TypeError, det, matrix) + + # Test (type IN_ARRAY2[ANY][ANY]) typemap + def testDetWrongSize(self): + "Test det function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + det = Matrix.__dict__[self.typeStr + "Det"] + matrix = [[8,7,6], [5,4,3], [2,1,0]] + self.assertRaises(TypeError, det, matrix) + + # Test (type IN_ARRAY2[ANY][ANY]) typemap + def testDetNonContainer(self): + "Test det function with non-container" + print >>sys.stderr, self.typeStr, "... ", + det = Matrix.__dict__[self.typeStr + "Det"] + self.assertRaises(TypeError, det, None) + + # Test (type* IN_ARRAY2, int DIM1, int DIM2) typemap + def testMax(self): + "Test max function" + print >>sys.stderr, self.typeStr, "... ", + max = Matrix.__dict__[self.typeStr + "Max"] + matrix = [[6,5,4],[3,2,1]] + self.assertEquals(max(matrix), 6) + + # Test (type* IN_ARRAY2, int DIM1, int DIM2) typemap + def testMaxBadList(self): + "Test max function with bad list" + print >>sys.stderr, self.typeStr, "... ", + max = Matrix.__dict__[self.typeStr + "Max"] + matrix = [[6,"five",4], ["three", 2, "one"]] + self.assertRaises(BadListError, max, matrix) + + # Test (type* IN_ARRAY2, int DIM1, int DIM2) typemap + def testMaxNonContainer(self): + "Test max function with non-container" + print >>sys.stderr, self.typeStr, "... ", + max = Matrix.__dict__[self.typeStr + "Max"] + self.assertRaises(TypeError, max, None) + + # Test (type* IN_ARRAY2, int DIM1, int DIM2) typemap + def testMaxWrongDim(self): + "Test max function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + max = Matrix.__dict__[self.typeStr + "Max"] + self.assertRaises(TypeError, max, [0, 1, 2, 3]) + + # Test (int DIM1, int DIM2, type* IN_ARRAY2) typemap + def testMin(self): + "Test min function" + print >>sys.stderr, self.typeStr, "... ", + min = Matrix.__dict__[self.typeStr + "Min"] + matrix = [[9,8],[7,6],[5,4]] + self.assertEquals(min(matrix), 4) + + # Test (int DIM1, int DIM2, type* IN_ARRAY2) typemap + def testMinBadList(self): + "Test min function with bad list" + print >>sys.stderr, self.typeStr, "... ", + min = Matrix.__dict__[self.typeStr + "Min"] + matrix = [["nine","eight"], ["seven","six"]] + self.assertRaises(BadListError, min, matrix) + + # Test (int DIM1, int DIM2, type* IN_ARRAY2) typemap + def testMinWrongDim(self): + "Test min function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + min = Matrix.__dict__[self.typeStr + "Min"] + self.assertRaises(TypeError, min, [1,3,5,7,9]) + + # Test (int DIM1, int DIM2, type* IN_ARRAY2) typemap + def testMinNonContainer(self): + "Test min function with non-container" + print >>sys.stderr, self.typeStr, "... ", + min = Matrix.__dict__[self.typeStr + "Min"] + self.assertRaises(TypeError, min, False) + + # Test (type INPLACE_ARRAY2[ANY][ANY]) typemap + def testScale(self): + "Test scale function" + print >>sys.stderr, self.typeStr, "... ", + scale = Matrix.__dict__[self.typeStr + "Scale"] + matrix = N.array([[1,2,3],[2,1,2],[3,2,1]],self.typeCode) + scale(matrix,4) + self.assertEquals((matrix == [[4,8,12],[8,4,8],[12,8,4]]).all(), True) + + # Test (type INPLACE_ARRAY2[ANY][ANY]) typemap + def testScaleWrongDim(self): + "Test scale function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + scale = Matrix.__dict__[self.typeStr + "Scale"] + matrix = N.array([1,2,2,1],self.typeCode) + self.assertRaises(TypeError, scale, matrix) + + # Test (type INPLACE_ARRAY2[ANY][ANY]) typemap + def testScaleWrongSize(self): + "Test scale function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + scale = Matrix.__dict__[self.typeStr + "Scale"] + matrix = N.array([[1,2],[2,1]],self.typeCode) + self.assertRaises(TypeError, scale, matrix) + + # Test (type INPLACE_ARRAY2[ANY][ANY]) typemap + def testScaleWrongType(self): + "Test scale function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + scale = Matrix.__dict__[self.typeStr + "Scale"] + matrix = N.array([[1,2,3],[2,1,2],[3,2,1]],'c') + self.assertRaises(TypeError, scale, matrix) + + # Test (type INPLACE_ARRAY2[ANY][ANY]) typemap + def testScaleNonArray(self): + "Test scale function with non-array" + print >>sys.stderr, self.typeStr, "... ", + scale = Matrix.__dict__[self.typeStr + "Scale"] + matrix = [[1,2,3],[2,1,2],[3,2,1]] + self.assertRaises(TypeError, scale, matrix) + + # Test (type* INPLACE_ARRAY2, int DIM1, int DIM2) typemap + def testFloor(self): + "Test floor function" + print >>sys.stderr, self.typeStr, "... ", + floor = Matrix.__dict__[self.typeStr + "Floor"] + matrix = N.array([[6,7],[8,9]],self.typeCode) + floor(matrix,7) + N.testing.assert_array_equal(matrix, N.array([[7,7],[8,9]])) + + # Test (type* INPLACE_ARRAY2, int DIM1, int DIM2) typemap + def testFloorWrongDim(self): + "Test floor function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + floor = Matrix.__dict__[self.typeStr + "Floor"] + matrix = N.array([6,7,8,9],self.typeCode) + self.assertRaises(TypeError, floor, matrix) + + # Test (type* INPLACE_ARRAY2, int DIM1, int DIM2) typemap + def testFloorWrongType(self): + "Test floor function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + floor = Matrix.__dict__[self.typeStr + "Floor"] + matrix = N.array([[6,7], [8,9]],'c') + self.assertRaises(TypeError, floor, matrix) + + # Test (type* INPLACE_ARRAY2, int DIM1, int DIM2) typemap + def testFloorNonArray(self): + "Test floor function with non-array" + print >>sys.stderr, self.typeStr, "... ", + floor = Matrix.__dict__[self.typeStr + "Floor"] + matrix = [[6,7], [8,9]] + self.assertRaises(TypeError, floor, matrix) + + # Test (int DIM1, int DIM2, type* INPLACE_ARRAY2) typemap + def testCeil(self): + "Test ceil function" + print >>sys.stderr, self.typeStr, "... ", + ceil = Matrix.__dict__[self.typeStr + "Ceil"] + matrix = N.array([[1,2],[3,4]],self.typeCode) + ceil(matrix,3) + N.testing.assert_array_equal(matrix, N.array([[1,2],[3,3]])) + + # Test (int DIM1, int DIM2, type* INPLACE_ARRAY2) typemap + def testCeilWrongDim(self): + "Test ceil function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + ceil = Matrix.__dict__[self.typeStr + "Ceil"] + matrix = N.array([1,2,3,4],self.typeCode) + self.assertRaises(TypeError, ceil, matrix) + + # Test (int DIM1, int DIM2, type* INPLACE_ARRAY2) typemap + def testCeilWrongType(self): + "Test ceil function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + ceil = Matrix.__dict__[self.typeStr + "Ceil"] + matrix = N.array([[1,2], [3,4]],'c') + self.assertRaises(TypeError, ceil, matrix) + + # Test (int DIM1, int DIM2, type* INPLACE_ARRAY2) typemap + def testCeilNonArray(self): + "Test ceil function with non-array" + print >>sys.stderr, self.typeStr, "... ", + ceil = Matrix.__dict__[self.typeStr + "Ceil"] + matrix = [[1,2], [3,4]] + self.assertRaises(TypeError, ceil, matrix) + + # Test (type ARGOUT_ARRAY2[ANY][ANY]) typemap + def testLUSplit(self): + "Test luSplit function" + print >>sys.stderr, self.typeStr, "... ", + luSplit = Matrix.__dict__[self.typeStr + "LUSplit"] + lower, upper = luSplit([[1,2,3],[4,5,6],[7,8,9]]) + self.assertEquals((lower == [[1,0,0],[4,5,0],[7,8,9]]).all(), True) + self.assertEquals((upper == [[0,2,3],[0,0,6],[0,0,0]]).all(), True) + +###################################################################### + +class scharTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "schar" + self.typeCode = "b" + +###################################################################### + +class ucharTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "uchar" + self.typeCode = "B" + +###################################################################### + +class shortTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "short" + self.typeCode = "h" + +###################################################################### + +class ushortTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "ushort" + self.typeCode = "H" + +###################################################################### + +class intTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "int" + self.typeCode = "i" + +###################################################################### + +class uintTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "uint" + self.typeCode = "I" + +###################################################################### + +class longTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "long" + self.typeCode = "l" + +###################################################################### + +class ulongTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "ulong" + self.typeCode = "L" + +###################################################################### + +class longLongTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "longLong" + self.typeCode = "q" + +###################################################################### + +class ulongLongTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "ulongLong" + self.typeCode = "Q" + +###################################################################### + +class floatTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "float" + self.typeCode = "f" + +###################################################################### + +class doubleTestCase(MatrixTestCase): + def __init__(self, methodName="runTest"): + MatrixTestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + +###################################################################### + +if __name__ == "__main__": + + # Build the test suite + suite = unittest.TestSuite() + suite.addTest(unittest.makeSuite( scharTestCase)) + suite.addTest(unittest.makeSuite( ucharTestCase)) + suite.addTest(unittest.makeSuite( shortTestCase)) + suite.addTest(unittest.makeSuite( ushortTestCase)) + suite.addTest(unittest.makeSuite( intTestCase)) + suite.addTest(unittest.makeSuite( uintTestCase)) + suite.addTest(unittest.makeSuite( longTestCase)) + suite.addTest(unittest.makeSuite( ulongTestCase)) + suite.addTest(unittest.makeSuite( longLongTestCase)) + suite.addTest(unittest.makeSuite(ulongLongTestCase)) + suite.addTest(unittest.makeSuite( floatTestCase)) + suite.addTest(unittest.makeSuite( doubleTestCase)) + + # Execute the test suite + print "Testing 2D Functions of Module Matrix" + print "NumPy version", N.__version__ + print + result = unittest.TextTestRunner(verbosity=2).run(suite) + sys.exit(len(result.errors) + len(result.failures)) diff --git a/numpy/doc/swig/testTensor.py b/numpy/doc/swig/testTensor.py new file mode 100755 index 000000000..f68e6b720 --- /dev/null +++ b/numpy/doc/swig/testTensor.py @@ -0,0 +1,405 @@ +#! /usr/bin/env python + +# System imports +from distutils.util import get_platform +from math import sqrt +import os +import sys +import unittest + +# Import NumPy +import numpy as N +major, minor = [ int(d) for d in N.__version__.split(".")[:2] ] +if major == 0: BadListError = TypeError +else: BadListError = ValueError + +# Add the distutils-generated build directory to the python search path and then +# import the extension module +libDir = "lib.%s-%s" % (get_platform(), sys.version[:3]) +sys.path.insert(0,os.path.join("build", libDir)) +import Tensor + +###################################################################### + +class TensorTestCase(unittest.TestCase): + + def __init__(self, methodName="runTests"): + unittest.TestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + self.result = sqrt(28.0/8) + + # Test (type IN_ARRAY3[ANY][ANY][ANY]) typemap + def testNorm(self): + "Test norm function" + print >>sys.stderr, self.typeStr, "... ", + norm = Tensor.__dict__[self.typeStr + "Norm"] + tensor = [[[0,1], [2,3]], + [[3,2], [1,0]]] + if isinstance(self.result, int): + self.assertEquals(norm(tensor), self.result) + else: + self.assertAlmostEqual(norm(tensor), self.result, 6) + + # Test (type IN_ARRAY3[ANY][ANY][ANY]) typemap + def testNormBadList(self): + "Test norm function with bad list" + print >>sys.stderr, self.typeStr, "... ", + norm = Tensor.__dict__[self.typeStr + "Norm"] + tensor = [[[0,"one"],[2,3]], + [[3,"two"],[1,0]]] + self.assertRaises(BadListError, norm, tensor) + + # Test (type IN_ARRAY3[ANY][ANY][ANY]) typemap + def testNormWrongDim(self): + "Test norm function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + norm = Tensor.__dict__[self.typeStr + "Norm"] + tensor = [[0,1,2,3], + [3,2,1,0]] + self.assertRaises(TypeError, norm, tensor) + + # Test (type IN_ARRAY3[ANY][ANY][ANY]) typemap + def testNormWrongSize(self): + "Test norm function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + norm = Tensor.__dict__[self.typeStr + "Norm"] + tensor = [[[0,1,0], [2,3,2]], + [[3,2,3], [1,0,1]]] + self.assertRaises(TypeError, norm, tensor) + + # Test (type IN_ARRAY3[ANY][ANY][ANY]) typemap + def testNormNonContainer(self): + "Test norm function with non-container" + print >>sys.stderr, self.typeStr, "... ", + norm = Tensor.__dict__[self.typeStr + "Norm"] + self.assertRaises(TypeError, norm, None) + + # Test (type* IN_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testMax(self): + "Test max function" + print >>sys.stderr, self.typeStr, "... ", + max = Tensor.__dict__[self.typeStr + "Max"] + tensor = [[[1,2], [3,4]], + [[5,6], [7,8]]] + self.assertEquals(max(tensor), 8) + + # Test (type* IN_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testMaxBadList(self): + "Test max function with bad list" + print >>sys.stderr, self.typeStr, "... ", + max = Tensor.__dict__[self.typeStr + "Max"] + tensor = [[[1,"two"], [3,4]], + [[5,"six"], [7,8]]] + self.assertRaises(BadListError, max, tensor) + + # Test (type* IN_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testMaxNonContainer(self): + "Test max function with non-container" + print >>sys.stderr, self.typeStr, "... ", + max = Tensor.__dict__[self.typeStr + "Max"] + self.assertRaises(TypeError, max, None) + + # Test (type* IN_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testMaxWrongDim(self): + "Test max function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + max = Tensor.__dict__[self.typeStr + "Max"] + self.assertRaises(TypeError, max, [0, -1, 2, -3]) + + # Test (int DIM1, int DIM2, int DIM3, type* IN_ARRAY3) typemap + def testMin(self): + "Test min function" + print >>sys.stderr, self.typeStr, "... ", + min = Tensor.__dict__[self.typeStr + "Min"] + tensor = [[[9,8], [7,6]], + [[5,4], [3,2]]] + self.assertEquals(min(tensor), 2) + + # Test (int DIM1, int DIM2, int DIM3, type* IN_ARRAY3) typemap + def testMinBadList(self): + "Test min function with bad list" + print >>sys.stderr, self.typeStr, "... ", + min = Tensor.__dict__[self.typeStr + "Min"] + tensor = [[["nine",8], [7,6]], + [["five",4], [3,2]]] + self.assertRaises(BadListError, min, tensor) + + # Test (int DIM1, int DIM2, int DIM3, type* IN_ARRAY3) typemap + def testMinNonContainer(self): + "Test min function with non-container" + print >>sys.stderr, self.typeStr, "... ", + min = Tensor.__dict__[self.typeStr + "Min"] + self.assertRaises(TypeError, min, True) + + # Test (int DIM1, int DIM2, int DIM3, type* IN_ARRAY3) typemap + def testMinWrongDim(self): + "Test min function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + min = Tensor.__dict__[self.typeStr + "Min"] + self.assertRaises(TypeError, min, [[1,3],[5,7]]) + + # Test (type INPLACE_ARRAY3[ANY][ANY][ANY]) typemap + def testScale(self): + "Test scale function" + print >>sys.stderr, self.typeStr, "... ", + scale = Tensor.__dict__[self.typeStr + "Scale"] + tensor = N.array([[[1,0,1], [0,1,0], [1,0,1]], + [[0,1,0], [1,0,1], [0,1,0]], + [[1,0,1], [0,1,0], [1,0,1]]],self.typeCode) + scale(tensor,4) + self.assertEquals((tensor == [[[4,0,4], [0,4,0], [4,0,4]], + [[0,4,0], [4,0,4], [0,4,0]], + [[4,0,4], [0,4,0], [4,0,4]]]).all(), True) + + # Test (type INPLACE_ARRAY3[ANY][ANY][ANY]) typemap + def testScaleWrongType(self): + "Test scale function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + scale = Tensor.__dict__[self.typeStr + "Scale"] + tensor = N.array([[[1,0,1], [0,1,0], [1,0,1]], + [[0,1,0], [1,0,1], [0,1,0]], + [[1,0,1], [0,1,0], [1,0,1]]],'c') + self.assertRaises(TypeError, scale, tensor) + + # Test (type INPLACE_ARRAY3[ANY][ANY][ANY]) typemap + def testScaleWrongDim(self): + "Test scale function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + scale = Tensor.__dict__[self.typeStr + "Scale"] + tensor = N.array([[1,0,1], [0,1,0], [1,0,1], + [0,1,0], [1,0,1], [0,1,0]],self.typeCode) + self.assertRaises(TypeError, scale, tensor) + + # Test (type INPLACE_ARRAY3[ANY][ANY][ANY]) typemap + def testScaleWrongSize(self): + "Test scale function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + scale = Tensor.__dict__[self.typeStr + "Scale"] + tensor = N.array([[[1,0], [0,1], [1,0]], + [[0,1], [1,0], [0,1]], + [[1,0], [0,1], [1,0]]],self.typeCode) + self.assertRaises(TypeError, scale, tensor) + + # Test (type INPLACE_ARRAY3[ANY][ANY][ANY]) typemap + def testScaleNonArray(self): + "Test scale function with non-array" + print >>sys.stderr, self.typeStr, "... ", + scale = Tensor.__dict__[self.typeStr + "Scale"] + self.assertRaises(TypeError, scale, True) + + # Test (type* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testFloor(self): + "Test floor function" + print >>sys.stderr, self.typeStr, "... ", + floor = Tensor.__dict__[self.typeStr + "Floor"] + tensor = N.array([[[1,2], [3,4]], + [[5,6], [7,8]]],self.typeCode) + floor(tensor,4) + N.testing.assert_array_equal(tensor, N.array([[[4,4], [4,4]], + [[5,6], [7,8]]])) + + # Test (type* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testFloorWrongType(self): + "Test floor function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + floor = Tensor.__dict__[self.typeStr + "Floor"] + tensor = N.array([[[1,2], [3,4]], + [[5,6], [7,8]]],'c') + self.assertRaises(TypeError, floor, tensor) + + # Test (type* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testFloorWrongDim(self): + "Test floor function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + floor = Tensor.__dict__[self.typeStr + "Floor"] + tensor = N.array([[1,2], [3,4], [5,6], [7,8]],self.typeCode) + self.assertRaises(TypeError, floor, tensor) + + # Test (type* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3) typemap + def testFloorNonArray(self): + "Test floor function with non-array" + print >>sys.stderr, self.typeStr, "... ", + floor = Tensor.__dict__[self.typeStr + "Floor"] + self.assertRaises(TypeError, floor, object) + + # Test (int DIM1, int DIM2, int DIM3, type* INPLACE_ARRAY3) typemap + def testCeil(self): + "Test ceil function" + print >>sys.stderr, self.typeStr, "... ", + ceil = Tensor.__dict__[self.typeStr + "Ceil"] + tensor = N.array([[[9,8], [7,6]], + [[5,4], [3,2]]],self.typeCode) + ceil(tensor,5) + N.testing.assert_array_equal(tensor, N.array([[[5,5], [5,5]], + [[5,4], [3,2]]])) + + # Test (int DIM1, int DIM2, int DIM3, type* INPLACE_ARRAY3) typemap + def testCeilWrongType(self): + "Test ceil function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + ceil = Tensor.__dict__[self.typeStr + "Ceil"] + tensor = N.array([[[9,8], [7,6]], + [[5,4], [3,2]]],'c') + self.assertRaises(TypeError, ceil, tensor) + + # Test (int DIM1, int DIM2, int DIM3, type* INPLACE_ARRAY3) typemap + def testCeilWrongDim(self): + "Test ceil function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + ceil = Tensor.__dict__[self.typeStr + "Ceil"] + tensor = N.array([[9,8], [7,6], [5,4], [3,2]], self.typeCode) + self.assertRaises(TypeError, ceil, tensor) + + # Test (int DIM1, int DIM2, int DIM3, type* INPLACE_ARRAY3) typemap + def testCeilNonArray(self): + "Test ceil function with non-array" + print >>sys.stderr, self.typeStr, "... ", + ceil = Tensor.__dict__[self.typeStr + "Ceil"] + tensor = [[[9,8], [7,6]], + [[5,4], [3,2]]] + self.assertRaises(TypeError, ceil, tensor) + + # Test (type ARGOUT_ARRAY3[ANY][ANY][ANY]) typemap + def testLUSplit(self): + "Test luSplit function" + print >>sys.stderr, self.typeStr, "... ", + luSplit = Tensor.__dict__[self.typeStr + "LUSplit"] + lower, upper = luSplit([[[1,1], [1,1]], + [[1,1], [1,1]]]) + self.assertEquals((lower == [[[1,1], [1,0]], + [[1,0], [0,0]]]).all(), True) + self.assertEquals((upper == [[[0,0], [0,1]], + [[0,1], [1,1]]]).all(), True) + +###################################################################### + +class scharTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "schar" + self.typeCode = "b" + self.result = int(self.result) + +###################################################################### + +class ucharTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "uchar" + self.typeCode = "B" + self.result = int(self.result) + +###################################################################### + +class shortTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "short" + self.typeCode = "h" + self.result = int(self.result) + +###################################################################### + +class ushortTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "ushort" + self.typeCode = "H" + self.result = int(self.result) + +###################################################################### + +class intTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "int" + self.typeCode = "i" + self.result = int(self.result) + +###################################################################### + +class uintTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "uint" + self.typeCode = "I" + self.result = int(self.result) + +###################################################################### + +class longTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "long" + self.typeCode = "l" + self.result = int(self.result) + +###################################################################### + +class ulongTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "ulong" + self.typeCode = "L" + self.result = int(self.result) + +###################################################################### + +class longLongTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "longLong" + self.typeCode = "q" + self.result = int(self.result) + +###################################################################### + +class ulongLongTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "ulongLong" + self.typeCode = "Q" + self.result = int(self.result) + +###################################################################### + +class floatTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "float" + self.typeCode = "f" + +###################################################################### + +class doubleTestCase(TensorTestCase): + def __init__(self, methodName="runTest"): + TensorTestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + +###################################################################### + +if __name__ == "__main__": + + # Build the test suite + suite = unittest.TestSuite() + suite.addTest(unittest.makeSuite( scharTestCase)) + suite.addTest(unittest.makeSuite( ucharTestCase)) + suite.addTest(unittest.makeSuite( shortTestCase)) + suite.addTest(unittest.makeSuite( ushortTestCase)) + suite.addTest(unittest.makeSuite( intTestCase)) + suite.addTest(unittest.makeSuite( uintTestCase)) + suite.addTest(unittest.makeSuite( longTestCase)) + suite.addTest(unittest.makeSuite( ulongTestCase)) + suite.addTest(unittest.makeSuite( longLongTestCase)) + suite.addTest(unittest.makeSuite(ulongLongTestCase)) + suite.addTest(unittest.makeSuite( floatTestCase)) + suite.addTest(unittest.makeSuite( doubleTestCase)) + + # Execute the test suite + print "Testing 3D Functions of Module Tensor" + print "NumPy version", N.__version__ + print + result = unittest.TextTestRunner(verbosity=2).run(suite) + sys.exit(len(result.errors) + len(result.failures)) diff --git a/numpy/doc/swig/testVector.py b/numpy/doc/swig/testVector.py new file mode 100755 index 000000000..82a922e25 --- /dev/null +++ b/numpy/doc/swig/testVector.py @@ -0,0 +1,384 @@ +#! /usr/bin/env python + +# System imports +from distutils.util import get_platform +import os +import sys +import unittest + +# Import NumPy +import numpy as N +major, minor = [ int(d) for d in N.__version__.split(".")[:2] ] +if major == 0: BadListError = TypeError +else: BadListError = ValueError + +# Add the distutils-generated build directory to the python search path and then +# import the extension module +libDir = "lib.%s-%s" % (get_platform(), sys.version[:3]) +sys.path.insert(0,os.path.join("build", libDir)) +import Vector + +###################################################################### + +class VectorTestCase(unittest.TestCase): + + def __init__(self, methodName="runTest"): + unittest.TestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + + # Test the (type IN_ARRAY1[ANY]) typemap + def testLength(self): + "Test length function" + print >>sys.stderr, self.typeStr, "... ", + length = Vector.__dict__[self.typeStr + "Length"] + self.assertEquals(length([5, 12, 0]), 13) + + # Test the (type IN_ARRAY1[ANY]) typemap + def testLengthBadList(self): + "Test length function with bad list" + print >>sys.stderr, self.typeStr, "... ", + length = Vector.__dict__[self.typeStr + "Length"] + self.assertRaises(BadListError, length, [5, "twelve", 0]) + + # Test the (type IN_ARRAY1[ANY]) typemap + def testLengthWrongSize(self): + "Test length function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + length = Vector.__dict__[self.typeStr + "Length"] + self.assertRaises(TypeError, length, [5, 12]) + + # Test the (type IN_ARRAY1[ANY]) typemap + def testLengthWrongDim(self): + "Test length function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + length = Vector.__dict__[self.typeStr + "Length"] + self.assertRaises(TypeError, length, [[1,2], [3,4]]) + + # Test the (type IN_ARRAY1[ANY]) typemap + def testLengthNonContainer(self): + "Test length function with non-container" + print >>sys.stderr, self.typeStr, "... ", + length = Vector.__dict__[self.typeStr + "Length"] + self.assertRaises(TypeError, length, None) + + # Test the (type* IN_ARRAY1, int DIM1) typemap + def testProd(self): + "Test prod function" + print >>sys.stderr, self.typeStr, "... ", + prod = Vector.__dict__[self.typeStr + "Prod"] + self.assertEquals(prod([1,2,3,4]), 24) + + # Test the (type* IN_ARRAY1, int DIM1) typemap + def testProdBadList(self): + "Test prod function with bad list" + print >>sys.stderr, self.typeStr, "... ", + prod = Vector.__dict__[self.typeStr + "Prod"] + self.assertRaises(BadListError, prod, [[1,"two"], ["e","pi"]]) + + # Test the (type* IN_ARRAY1, int DIM1) typemap + def testProdWrongDim(self): + "Test prod function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + prod = Vector.__dict__[self.typeStr + "Prod"] + self.assertRaises(TypeError, prod, [[1,2], [8,9]]) + + # Test the (type* IN_ARRAY1, int DIM1) typemap + def testProdNonContainer(self): + "Test prod function with non-container" + print >>sys.stderr, self.typeStr, "... ", + prod = Vector.__dict__[self.typeStr + "Prod"] + self.assertRaises(TypeError, prod, None) + + # Test the (int DIM1, type* IN_ARRAY1) typemap + def testSum(self): + "Test sum function" + print >>sys.stderr, self.typeStr, "... ", + sum = Vector.__dict__[self.typeStr + "Sum"] + self.assertEquals(sum([5,6,7,8]), 26) + + # Test the (int DIM1, type* IN_ARRAY1) typemap + def testSumBadList(self): + "Test sum function with bad list" + print >>sys.stderr, self.typeStr, "... ", + sum = Vector.__dict__[self.typeStr + "Sum"] + self.assertRaises(BadListError, sum, [3,4, 5, "pi"]) + + # Test the (int DIM1, type* IN_ARRAY1) typemap + def testSumWrongDim(self): + "Test sum function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + sum = Vector.__dict__[self.typeStr + "Sum"] + self.assertRaises(TypeError, sum, [[3,4], [5,6]]) + + # Test the (int DIM1, type* IN_ARRAY1) typemap + def testSumNonContainer(self): + "Test sum function with non-container" + print >>sys.stderr, self.typeStr, "... ", + sum = Vector.__dict__[self.typeStr + "Sum"] + self.assertRaises(TypeError, sum, True) + + # Test the (type INPLACE_ARRAY1[ANY]) typemap + def testReverse(self): + "Test reverse function" + print >>sys.stderr, self.typeStr, "... ", + reverse = Vector.__dict__[self.typeStr + "Reverse"] + vector = N.array([1,2,4],self.typeCode) + reverse(vector) + self.assertEquals((vector == [4,2,1]).all(), True) + + # Test the (type INPLACE_ARRAY1[ANY]) typemap + def testReverseWrongDim(self): + "Test reverse function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + reverse = Vector.__dict__[self.typeStr + "Reverse"] + vector = N.array([[1,2], [3,4]],self.typeCode) + self.assertRaises(TypeError, reverse, vector) + + # Test the (type INPLACE_ARRAY1[ANY]) typemap + def testReverseWrongSize(self): + "Test reverse function with wrong size" + print >>sys.stderr, self.typeStr, "... ", + reverse = Vector.__dict__[self.typeStr + "Reverse"] + vector = N.array([9,8,7,6,5,4],self.typeCode) + self.assertRaises(TypeError, reverse, vector) + + # Test the (type INPLACE_ARRAY1[ANY]) typemap + def testReverseWrongType(self): + "Test reverse function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + reverse = Vector.__dict__[self.typeStr + "Reverse"] + vector = N.array([1,2,4],'c') + self.assertRaises(TypeError, reverse, vector) + + # Test the (type INPLACE_ARRAY1[ANY]) typemap + def testReverseNonArray(self): + "Test reverse function with non-array" + print >>sys.stderr, self.typeStr, "... ", + reverse = Vector.__dict__[self.typeStr + "Reverse"] + self.assertRaises(TypeError, reverse, [2,4,6]) + + # Test the (type* INPLACE_ARRAY1, int DIM1) typemap + def testOnes(self): + "Test ones function" + print >>sys.stderr, self.typeStr, "... ", + ones = Vector.__dict__[self.typeStr + "Ones"] + vector = N.zeros(5,self.typeCode) + ones(vector) + N.testing.assert_array_equal(vector, N.array([1,1,1,1,1])) + + # Test the (type* INPLACE_ARRAY1, int DIM1) typemap + def testOnesWrongDim(self): + "Test ones function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + ones = Vector.__dict__[self.typeStr + "Ones"] + vector = N.zeros((5,5),self.typeCode) + self.assertRaises(TypeError, ones, vector) + + # Test the (type* INPLACE_ARRAY1, int DIM1) typemap + def testOnesWrongType(self): + "Test ones function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + ones = Vector.__dict__[self.typeStr + "Ones"] + vector = N.zeros((5,5),'c') + self.assertRaises(TypeError, ones, vector) + + # Test the (type* INPLACE_ARRAY1, int DIM1) typemap + def testOnesNonArray(self): + "Test ones function with non-array" + print >>sys.stderr, self.typeStr, "... ", + ones = Vector.__dict__[self.typeStr + "Ones"] + self.assertRaises(TypeError, ones, [2,4,6,8]) + + # Test the (int DIM1, type* INPLACE_ARRAY1) typemap + def testZeros(self): + "Test zeros function" + print >>sys.stderr, self.typeStr, "... ", + zeros = Vector.__dict__[self.typeStr + "Zeros"] + vector = N.ones(5,self.typeCode) + zeros(vector) + N.testing.assert_array_equal(vector, N.array([0,0,0,0,0])) + + # Test the (int DIM1, type* INPLACE_ARRAY1) typemap + def testZerosWrongDim(self): + "Test zeros function with wrong dimensions" + print >>sys.stderr, self.typeStr, "... ", + zeros = Vector.__dict__[self.typeStr + "Zeros"] + vector = N.ones((5,5),self.typeCode) + self.assertRaises(TypeError, zeros, vector) + + # Test the (int DIM1, type* INPLACE_ARRAY1) typemap + def testZerosWrongType(self): + "Test zeros function with wrong type" + print >>sys.stderr, self.typeStr, "... ", + zeros = Vector.__dict__[self.typeStr + "Zeros"] + vector = N.ones(6,'c') + self.assertRaises(TypeError, zeros, vector) + + # Test the (int DIM1, type* INPLACE_ARRAY1) typemap + def testZerosNonArray(self): + "Test zeros function with non-array" + print >>sys.stderr, self.typeStr, "... ", + zeros = Vector.__dict__[self.typeStr + "Zeros"] + self.assertRaises(TypeError, zeros, [1,3,5,7,9]) + + # Test the (type ARGOUT_ARRAY1[ANY]) typemap + def testEOSplit(self): + "Test eoSplit function" + print >>sys.stderr, self.typeStr, "... ", + eoSplit = Vector.__dict__[self.typeStr + "EOSplit"] + even, odd = eoSplit([1,2,3]) + self.assertEquals((even == [1,0,3]).all(), True) + self.assertEquals((odd == [0,2,0]).all(), True) + + # Test the (type* ARGOUT_ARRAY1, int DIM1) typemap + def testTwos(self): + "Test twos function" + print >>sys.stderr, self.typeStr, "... ", + twos = Vector.__dict__[self.typeStr + "Twos"] + vector = twos(5) + self.assertEquals((vector == [2,2,2,2,2]).all(), True) + + # Test the (type* ARGOUT_ARRAY1, int DIM1) typemap + def testTwosNonInt(self): + "Test twos function with non-integer dimension" + print >>sys.stderr, self.typeStr, "... ", + twos = Vector.__dict__[self.typeStr + "Twos"] + self.assertRaises(TypeError, twos, 5.0) + + # Test the (int DIM1, type* ARGOUT_ARRAY1) typemap + def testThrees(self): + "Test threes function" + print >>sys.stderr, self.typeStr, "... ", + threes = Vector.__dict__[self.typeStr + "Threes"] + vector = threes(6) + self.assertEquals((vector == [3,3,3,3,3,3]).all(), True) + + # Test the (type* ARGOUT_ARRAY1, int DIM1) typemap + def testThreesNonInt(self): + "Test threes function with non-integer dimension" + print >>sys.stderr, self.typeStr, "... ", + threes = Vector.__dict__[self.typeStr + "Threes"] + self.assertRaises(TypeError, threes, "threes") + +###################################################################### + +class scharTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "schar" + self.typeCode = "b" + +###################################################################### + +class ucharTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "uchar" + self.typeCode = "B" + +###################################################################### + +class shortTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "short" + self.typeCode = "h" + +###################################################################### + +class ushortTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "ushort" + self.typeCode = "H" + +###################################################################### + +class intTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "int" + self.typeCode = "i" + +###################################################################### + +class uintTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "uint" + self.typeCode = "I" + +###################################################################### + +class longTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "long" + self.typeCode = "l" + +###################################################################### + +class ulongTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "ulong" + self.typeCode = "L" + +###################################################################### + +class longLongTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "longLong" + self.typeCode = "q" + +###################################################################### + +class ulongLongTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "ulongLong" + self.typeCode = "Q" + +###################################################################### + +class floatTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "float" + self.typeCode = "f" + +###################################################################### + +class doubleTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + +###################################################################### + +if __name__ == "__main__": + + # Build the test suite + suite = unittest.TestSuite() + suite.addTest(unittest.makeSuite( scharTestCase)) + suite.addTest(unittest.makeSuite( ucharTestCase)) + suite.addTest(unittest.makeSuite( shortTestCase)) + suite.addTest(unittest.makeSuite( ushortTestCase)) + suite.addTest(unittest.makeSuite( intTestCase)) + suite.addTest(unittest.makeSuite( uintTestCase)) + suite.addTest(unittest.makeSuite( longTestCase)) + suite.addTest(unittest.makeSuite( ulongTestCase)) + suite.addTest(unittest.makeSuite( longLongTestCase)) + suite.addTest(unittest.makeSuite(ulongLongTestCase)) + suite.addTest(unittest.makeSuite( floatTestCase)) + suite.addTest(unittest.makeSuite( doubleTestCase)) + + # Execute the test suite + print "Testing 1D Functions of Module Vector" + print "NumPy version", N.__version__ + print + result = unittest.TextTestRunner(verbosity=2).run(suite) + sys.exit(len(result.errors) + len(result.failures)) diff --git a/numpy/doc/swig/testing.html b/numpy/doc/swig/testing.html new file mode 100644 index 000000000..3622550df --- /dev/null +++ b/numpy/doc/swig/testing.html @@ -0,0 +1,482 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> +<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="Docutils 0.4: http://docutils.sourceforge.net/" /> +<title>Testing the numpy.i Typemaps</title> +<meta name="author" content="Bill Spotz" /> +<meta name="date" content="6 April, 2007" /> +<style type="text/css"> + +/* +:Author: David Goodger +:Contact: goodger@users.sourceforge.net +:Date: $Date: 2005-12-18 01:56:14 +0100 (Sun, 18 Dec 2005) $ +:Revision: $Revision: 4224 $ +:Copyright: This stylesheet has been placed in the public domain. + +Default cascading style sheet for the HTML output of Docutils. + +See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to +customize this style sheet. +*/ + +/* used to remove borders from tables and images */ +.borderless, table.borderless td, table.borderless th { + border: 0 } + +table.borderless td, table.borderless th { + /* Override padding for "table.docutils td" with "! important". + The right padding separates the table cells. */ + padding: 0 0.5em 0 0 ! important } + +.first { + /* Override more specific margin styles with "! important". */ + margin-top: 0 ! important } + +.last, .with-subtitle { + margin-bottom: 0 ! important } + +.hidden { + display: none } + +a.toc-backref { + text-decoration: none ; + color: black } + +blockquote.epigraph { + margin: 2em 5em ; } + +dl.docutils dd { + margin-bottom: 0.5em } + +/* Uncomment (and remove this text!) to get bold-faced definition list terms +dl.docutils dt { + font-weight: bold } +*/ + +div.abstract { + margin: 2em 5em } + +div.abstract p.topic-title { + font-weight: bold ; + text-align: center } + +div.admonition, div.attention, div.caution, div.danger, div.error, +div.hint, div.important, div.note, div.tip, div.warning { + margin: 2em ; + border: medium outset ; + padding: 1em } + +div.admonition p.admonition-title, div.hint p.admonition-title, +div.important p.admonition-title, div.note p.admonition-title, +div.tip p.admonition-title { + font-weight: bold ; + font-family: sans-serif } + +div.attention p.admonition-title, div.caution p.admonition-title, +div.danger p.admonition-title, div.error p.admonition-title, +div.warning p.admonition-title { + color: red ; + font-weight: bold ; + font-family: sans-serif } + +/* Uncomment (and remove this text!) to get reduced vertical space in + compound paragraphs. +div.compound .compound-first, div.compound .compound-middle { + margin-bottom: 0.5em } + +div.compound .compound-last, div.compound .compound-middle { + margin-top: 0.5em } +*/ + +div.dedication { + margin: 2em 5em ; + text-align: center ; + font-style: italic } + +div.dedication p.topic-title { + font-weight: bold ; + font-style: normal } + +div.figure { + margin-left: 2em ; + margin-right: 2em } + +div.footer, div.header { + clear: both; + font-size: smaller } + +div.line-block { + display: block ; + margin-top: 1em ; + margin-bottom: 1em } + +div.line-block div.line-block { + margin-top: 0 ; + margin-bottom: 0 ; + margin-left: 1.5em } + +div.sidebar { + margin-left: 1em ; + border: medium outset ; + padding: 1em ; + background-color: #ffffee ; + width: 40% ; + float: right ; + clear: right } + +div.sidebar p.rubric { + font-family: sans-serif ; + font-size: medium } + +div.system-messages { + margin: 5em } + +div.system-messages h1 { + color: red } + +div.system-message { + border: medium outset ; + padding: 1em } + +div.system-message p.system-message-title { + color: red ; + font-weight: bold } + +div.topic { + margin: 2em } + +h1.section-subtitle, h2.section-subtitle, h3.section-subtitle, +h4.section-subtitle, h5.section-subtitle, h6.section-subtitle { + margin-top: 0.4em } + +h1.title { + text-align: center } + +h2.subtitle { + text-align: center } + +hr.docutils { + width: 75% } + +img.align-left { + clear: left } + +img.align-right { + clear: right } + +ol.simple, ul.simple { + margin-bottom: 1em } + +ol.arabic { + list-style: decimal } + +ol.loweralpha { + list-style: lower-alpha } + +ol.upperalpha { + list-style: upper-alpha } + +ol.lowerroman { + list-style: lower-roman } + +ol.upperroman { + list-style: upper-roman } + +p.attribution { + text-align: right ; + margin-left: 50% } + +p.caption { + font-style: italic } + +p.credits { + font-style: italic ; + font-size: smaller } + +p.label { + white-space: nowrap } + +p.rubric { + font-weight: bold ; + font-size: larger ; + color: maroon ; + text-align: center } + +p.sidebar-title { + font-family: sans-serif ; + font-weight: bold ; + font-size: larger } + +p.sidebar-subtitle { + font-family: sans-serif ; + font-weight: bold } + +p.topic-title { + font-weight: bold } + +pre.address { + margin-bottom: 0 ; + margin-top: 0 ; + font-family: serif ; + font-size: 100% } + +pre.literal-block, pre.doctest-block { + margin-left: 2em ; + margin-right: 2em ; + background-color: #eeeeee } + +span.classifier { + font-family: sans-serif ; + font-style: oblique } + +span.classifier-delimiter { + font-family: sans-serif ; + font-weight: bold } + +span.interpreted { + font-family: sans-serif } + +span.option { + white-space: nowrap } + +span.pre { + white-space: pre } + +span.problematic { + color: red } + +span.section-subtitle { + /* font-size relative to parent (h1..h6 element) */ + font-size: 80% } + +table.citation { + border-left: solid 1px gray; + margin-left: 1px } + +table.docinfo { + margin: 2em 4em } + +table.docutils { + margin-top: 0.5em ; + margin-bottom: 0.5em } + +table.footnote { + border-left: solid 1px black; + margin-left: 1px } + +table.docutils td, table.docutils th, +table.docinfo td, table.docinfo th { + padding-left: 0.5em ; + padding-right: 0.5em ; + vertical-align: top } + +table.docutils th.field-name, table.docinfo th.docinfo-name { + font-weight: bold ; + text-align: left ; + white-space: nowrap ; + padding-left: 0 } + +h1 tt.docutils, h2 tt.docutils, h3 tt.docutils, +h4 tt.docutils, h5 tt.docutils, h6 tt.docutils { + font-size: 100% } + +tt.docutils { + background-color: #eeeeee } + +ul.auto-toc { + list-style-type: none } + +</style> +</head> +<body> +<div class="document" id="testing-the-numpy-i-typemaps"> +<h1 class="title">Testing the numpy.i Typemaps</h1> +<table class="docinfo" frame="void" rules="none"> +<col class="docinfo-name" /> +<col class="docinfo-content" /> +<tbody valign="top"> +<tr><th class="docinfo-name">Author:</th> +<td>Bill Spotz</td></tr> +<tr class="field"><th class="docinfo-name">Institution:</th><td class="field-body">Sandia National Laboratories</td> +</tr> +<tr><th class="docinfo-name">Date:</th> +<td>6 April, 2007</td></tr> +</tbody> +</table> +<div class="contents topic"> +<p class="topic-title first"><a id="contents" name="contents">Contents</a></p> +<ul class="simple"> +<li><a class="reference" href="#introduction" id="id1" name="id1">Introduction</a></li> +<li><a class="reference" href="#testing-organization" id="id2" name="id2">Testing Organization</a></li> +<li><a class="reference" href="#testing-header-files" id="id3" name="id3">Testing Header Files</a></li> +<li><a class="reference" href="#testing-source-files" id="id4" name="id4">Testing Source Files</a></li> +<li><a class="reference" href="#testing-swig-interface-files" id="id5" name="id5">Testing SWIG Interface Files</a></li> +<li><a class="reference" href="#testing-python-scripts" id="id6" name="id6">Testing Python Scripts</a></li> +</ul> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id1" id="introduction" name="introduction">Introduction</a></h1> +<p>Writing tests for the <tt class="docutils literal"><span class="pre">numpy.i</span></tt> <a class="reference" href="http://www.swig.org">SWIG</a> +interface file is a combinatorial headache. At present, 12 different +data types are supported, each with 23 different argument signatures, +for a total of 276 typemaps supported "out of the box". Each of these +typemaps, in turn, might require several unit tests in order to verify +expected behavior for both proper and improper inputs. Currently, +this results in 1,020 individual unit tests that are performed when +<tt class="docutils literal"><span class="pre">make</span> <span class="pre">test</span></tt> is run in the <tt class="docutils literal"><span class="pre">numpy/docs/swig</span></tt> subdirectory.</p> +<p>To facilitate this many similar unit tests, some high-level +programming techniques are employed, including C and <a class="reference" href="http://www.swig.org">SWIG</a> macros, +as well as <a class="reference" href="http://www.python.org">python</a> inheritance. The +purpose of this document is to describe the testing infrastructure +employed to verify that the <tt class="docutils literal"><span class="pre">numpy.i</span></tt> typemaps are working as +expected.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id2" id="testing-organization" name="testing-organization">Testing Organization</a></h1> +<p>There are three indepedent testing frameworks supported, for one-, +two-, and three-dimensional arrays respectively. For one-dimensional +arrays, there are two C++ files, a header and a source, named:</p> +<pre class="literal-block"> +Vector.h +Vector.cxx +</pre> +<p>that contain prototypes and code for a variety of functions that have +one-dimensional arrays as function arguments. The file:</p> +<pre class="literal-block"> +Vector.i +</pre> +<p>is a <a class="reference" href="http://www.swig.org">SWIG</a> interface file that defines a python module <tt class="docutils literal"><span class="pre">Vector</span></tt> +that wraps the functions in <tt class="docutils literal"><span class="pre">Vector.h</span></tt> while utilizing the typemaps +in <tt class="docutils literal"><span class="pre">numpy.i</span></tt> to correctly handle the C arrays.</p> +<p>The <tt class="docutils literal"><span class="pre">Makefile</span></tt> calls <tt class="docutils literal"><span class="pre">swig</span></tt> to generate <tt class="docutils literal"><span class="pre">Vector.py</span></tt> and +<tt class="docutils literal"><span class="pre">Vector_wrap.cxx</span></tt>, and also executes the <tt class="docutils literal"><span class="pre">setup.py</span></tt> script that +compiles <tt class="docutils literal"><span class="pre">Vector_wrap.cxx</span></tt> and links together the extension module +<tt class="docutils literal"><span class="pre">_Vector.so</span></tt> or <tt class="docutils literal"><span class="pre">_Vector.dylib</span></tt>, depending on the platform. This +extension module and the proxy file <tt class="docutils literal"><span class="pre">Vector.py</span></tt> are both placed in a +subdirectory under the <tt class="docutils literal"><span class="pre">build</span></tt> directory.</p> +<p>The actual testing takes place with a <a class="reference" href="http://www.python.org">python</a> script named:</p> +<pre class="literal-block"> +testVector.py +</pre> +<p>that uses the standard <a class="reference" href="http://www.python.org">python</a> library module <tt class="docutils literal"><span class="pre">unittest</span></tt>, which +performs several tests of each function defined in <tt class="docutils literal"><span class="pre">Vector.h</span></tt> for +each data type supported.</p> +<p>Two-dimensional arrays are tested in exactly the same manner. The +above description applies, but with <tt class="docutils literal"><span class="pre">Matrix</span></tt> substituted for +<tt class="docutils literal"><span class="pre">Vector</span></tt>. For three-dimensional tests, substitute <tt class="docutils literal"><span class="pre">Tensor</span></tt> for +<tt class="docutils literal"><span class="pre">Vector</span></tt>. For the descriptions that follow, we will reference the +<tt class="docutils literal"><span class="pre">Vector</span></tt> tests, but the same information applies to <tt class="docutils literal"><span class="pre">Matrix</span></tt> and +<tt class="docutils literal"><span class="pre">Tensor</span></tt> tests.</p> +<p>The command <tt class="docutils literal"><span class="pre">make</span> <span class="pre">test</span></tt> will ensure that all of the test software is +built and then run all three test scripts.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id3" id="testing-header-files" name="testing-header-files">Testing Header Files</a></h1> +<p><tt class="docutils literal"><span class="pre">Vector.h</span></tt> is a C++ header file that defines a C macro called +<tt class="docutils literal"><span class="pre">TEST_FUNC_PROTOS</span></tt> that takes two arguments: <tt class="docutils literal"><span class="pre">TYPE</span></tt>, which is a +data type name such as <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt>; and <tt class="docutils literal"><span class="pre">SNAME</span></tt>, which is a +short name for the same data type with no spaces, e.g. <tt class="docutils literal"><span class="pre">uint</span></tt>. This +macro defines several function prototypes that have the prefix +<tt class="docutils literal"><span class="pre">SNAME</span></tt> and have at least one argument that is an array of type +<tt class="docutils literal"><span class="pre">TYPE</span></tt>. Those functions that have return arguments return a +<tt class="docutils literal"><span class="pre">TYPE</span></tt> value.</p> +<p><tt class="docutils literal"><span class="pre">TEST_FUNC_PROTOS</span></tt> is then implemented for all of the data types +supported by <tt class="docutils literal"><span class="pre">numpy.i</span></tt>:</p> +<blockquote> +<ul class="simple"> +<li><tt class="docutils literal"><span class="pre">signed</span> <span class="pre">char</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></tt></li> +<li><tt class="docutils literal"><span class="pre">short</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt></li> +<li><tt class="docutils literal"><span class="pre">int</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt></li> +<li><tt class="docutils literal"><span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">long</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span> <span class="pre">long</span></tt></li> +<li><tt class="docutils literal"><span class="pre">float</span></tt></li> +<li><tt class="docutils literal"><span class="pre">double</span></tt></li> +</ul> +</blockquote> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id4" id="testing-source-files" name="testing-source-files">Testing Source Files</a></h1> +<p><tt class="docutils literal"><span class="pre">Vector.cxx</span></tt> is a C++ source file that implements compilable code +for each of the function prototypes specified in <tt class="docutils literal"><span class="pre">Vector.h</span></tt>. It +defines a C macro <tt class="docutils literal"><span class="pre">TEST_FUNCS</span></tt> that has the same arguments and works +in the same way as <tt class="docutils literal"><span class="pre">TEST_FUNC_PROTOS</span></tt> does in <tt class="docutils literal"><span class="pre">Vector.h</span></tt>. +<tt class="docutils literal"><span class="pre">TEST_FUNCS</span></tt> is implemented for each of the 12 data types as above.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id5" id="testing-swig-interface-files" name="testing-swig-interface-files">Testing SWIG Interface Files</a></h1> +<p><tt class="docutils literal"><span class="pre">Vector.i</span></tt> is a <a class="reference" href="http://www.swig.org">SWIG</a> interface file that defines python module +<tt class="docutils literal"><span class="pre">Vector</span></tt>. It follows the conventions for using <tt class="docutils literal"><span class="pre">numpy.i</span></tt> as +described in the <a class="reference" href="numpy_swig.html">numpy.i documentation</a>. It +defines a <a class="reference" href="http://www.swig.org">SWIG</a> macro <tt class="docutils literal"><span class="pre">%apply_numpy_typemaps</span></tt> that has a single +argument <tt class="docutils literal"><span class="pre">TYPE</span></tt>. It uses the <a class="reference" href="http://www.swig.org">SWIG</a> directive <tt class="docutils literal"><span class="pre">%apply</span></tt> as +described in the <a class="reference" href="numpy_swig.html">numpy.i documentation</a> to apply the provided +typemaps to the argument signatures found in <tt class="docutils literal"><span class="pre">Vector.h</span></tt>. This macro +is then implemented for all of the data types supported by +<tt class="docutils literal"><span class="pre">numpy.i</span></tt>. It then does a <tt class="docutils literal"><span class="pre">%include</span> <span class="pre">"Vector.h"</span></tt> to wrap all of +the function prototypes in <tt class="docutils literal"><span class="pre">Vector.h</span></tt> using the typemaps in +<tt class="docutils literal"><span class="pre">numpy.i</span></tt>.</p> +</div> +<div class="section"> +<h1><a class="toc-backref" href="#id6" id="testing-python-scripts" name="testing-python-scripts">Testing Python Scripts</a></h1> +<p>After <tt class="docutils literal"><span class="pre">make</span></tt> is used to build the testing extension modules, +<tt class="docutils literal"><span class="pre">testVector.py</span></tt> can be run to execute the tests. As with other +scripts that use <tt class="docutils literal"><span class="pre">unittest</span></tt> to facilitate unit testing, +<tt class="docutils literal"><span class="pre">testVector.py</span></tt> defines a class that inherits from +<tt class="docutils literal"><span class="pre">unittest.TestCase</span></tt>:</p> +<pre class="literal-block"> +class VectorTestCase(unittest.TestCase): +</pre> +<p>However, this class is not run directly. Rather, it serves as a base +class to several other python classes, each one specific to a +particular data type. The <tt class="docutils literal"><span class="pre">VectorTestCase</span></tt> class stores two strings +for typing information:</p> +<blockquote> +<dl class="docutils"> +<dt><strong>self.typeStr</strong></dt> +<dd>A string that matches one of the <tt class="docutils literal"><span class="pre">SNAME</span></tt> prefixes used in +<tt class="docutils literal"><span class="pre">Vector.h</span></tt> and <tt class="docutils literal"><span class="pre">Vector.cxx</span></tt>. For example, <tt class="docutils literal"><span class="pre">"double"</span></tt>.</dd> +<dt><strong>self.typeCode</strong></dt> +<dd>A short (typically single-character) string that represents a +data type in numpy and corresponds to <tt class="docutils literal"><span class="pre">self.typeStr</span></tt>. For +example, if <tt class="docutils literal"><span class="pre">self.typeStr</span></tt> is <tt class="docutils literal"><span class="pre">"double"</span></tt>, then +<tt class="docutils literal"><span class="pre">self.typeCode</span></tt> should be <tt class="docutils literal"><span class="pre">"d"</span></tt>.</dd> +</dl> +</blockquote> +<p>Each test defined by the <tt class="docutils literal"><span class="pre">VectorTestCase</span></tt> class extracts the python +function it is trying to test by accessing the <tt class="docutils literal"><span class="pre">Vector</span></tt> module's +dictionary:</p> +<pre class="literal-block"> +length = Vector.__dict__[self.typeStr + "Length"] +</pre> +<p>In the case of double precision tests, this will return the python +function <tt class="docutils literal"><span class="pre">Vector.doubleLength</span></tt>.</p> +<p>We then define a new test case class for each supported data type with +a short definition such as:</p> +<pre class="literal-block"> +class doubleTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" +</pre> +<p>Each of these 12 classes is collected into a <tt class="docutils literal"><span class="pre">unittest.TestSuite</span></tt>, +which is then executed. Errors and failures are summed together and +returned as the exit argument. Any non-zero result indicates that at +least one test did not pass.</p> +</div> +</div> +<div class="footer"> +<hr class="footer" /> +Generated on: 2007-04-06 21:21 UTC. +Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source. + +</div> +</body> +</html> diff --git a/numpy/doc/swig/testing.pdf b/numpy/doc/swig/testing.pdf Binary files differnew file mode 100644 index 000000000..57af9b6fd --- /dev/null +++ b/numpy/doc/swig/testing.pdf diff --git a/numpy/doc/swig/testing.txt b/numpy/doc/swig/testing.txt new file mode 100644 index 000000000..bfd5218e8 --- /dev/null +++ b/numpy/doc/swig/testing.txt @@ -0,0 +1,173 @@ +============================ +Testing the numpy.i Typemaps +============================ + +:Author: Bill Spotz +:Institution: Sandia National Laboratories +:Date: 6 April, 2007 + +.. contents:: + +Introduction +============ + +Writing tests for the ``numpy.i`` `SWIG <http://www.swig.org>`_ +interface file is a combinatorial headache. At present, 12 different +data types are supported, each with 23 different argument signatures, +for a total of 276 typemaps supported "out of the box". Each of these +typemaps, in turn, might require several unit tests in order to verify +expected behavior for both proper and improper inputs. Currently, +this results in 1,020 individual unit tests that are performed when +``make test`` is run in the ``numpy/docs/swig`` subdirectory. + +To facilitate this many similar unit tests, some high-level +programming techniques are employed, including C and `SWIG`_ macros, +as well as `python <http://www.python.org>`_ inheritance. The +purpose of this document is to describe the testing infrastructure +employed to verify that the ``numpy.i`` typemaps are working as +expected. + +Testing Organization +==================== + +There are three indepedent testing frameworks supported, for one-, +two-, and three-dimensional arrays respectively. For one-dimensional +arrays, there are two C++ files, a header and a source, named:: + + Vector.h + Vector.cxx + +that contain prototypes and code for a variety of functions that have +one-dimensional arrays as function arguments. The file:: + + Vector.i + +is a `SWIG`_ interface file that defines a python module ``Vector`` +that wraps the functions in ``Vector.h`` while utilizing the typemaps +in ``numpy.i`` to correctly handle the C arrays. + +The ``Makefile`` calls ``swig`` to generate ``Vector.py`` and +``Vector_wrap.cxx``, and also executes the ``setup.py`` script that +compiles ``Vector_wrap.cxx`` and links together the extension module +``_Vector.so`` or ``_Vector.dylib``, depending on the platform. This +extension module and the proxy file ``Vector.py`` are both placed in a +subdirectory under the ``build`` directory. + +The actual testing takes place with a `python`_ script named:: + + testVector.py + +that uses the standard `python`_ library module ``unittest``, which +performs several tests of each function defined in ``Vector.h`` for +each data type supported. + +Two-dimensional arrays are tested in exactly the same manner. The +above description applies, but with ``Matrix`` substituted for +``Vector``. For three-dimensional tests, substitute ``Tensor`` for +``Vector``. For the descriptions that follow, we will reference the +``Vector`` tests, but the same information applies to ``Matrix`` and +``Tensor`` tests. + +The command ``make test`` will ensure that all of the test software is +built and then run all three test scripts. + +Testing Header Files +==================== + +``Vector.h`` is a C++ header file that defines a C macro called +``TEST_FUNC_PROTOS`` that takes two arguments: ``TYPE``, which is a +data type name such as ``unsigned int``; and ``SNAME``, which is a +short name for the same data type with no spaces, e.g. ``uint``. This +macro defines several function prototypes that have the prefix +``SNAME`` and have at least one argument that is an array of type +``TYPE``. Those functions that have return arguments return a +``TYPE`` value. + +``TEST_FUNC_PROTOS`` is then implemented for all of the data types +supported by ``numpy.i``: + + * ``signed char`` + * ``unsigned char`` + * ``short`` + * ``unsigned short`` + * ``int`` + * ``unsigned int`` + * ``long`` + * ``unsigned long`` + * ``long long`` + * ``unsigned long long`` + * ``float`` + * ``double`` + +Testing Source Files +==================== + +``Vector.cxx`` is a C++ source file that implements compilable code +for each of the function prototypes specified in ``Vector.h``. It +defines a C macro ``TEST_FUNCS`` that has the same arguments and works +in the same way as ``TEST_FUNC_PROTOS`` does in ``Vector.h``. +``TEST_FUNCS`` is implemented for each of the 12 data types as above. + +Testing SWIG Interface Files +============================ + +``Vector.i`` is a `SWIG`_ interface file that defines python module +``Vector``. It follows the conventions for using ``numpy.i`` as +described in the `numpy.i documentation <numpy_swig.html>`_. It +defines a `SWIG`_ macro ``%apply_numpy_typemaps`` that has a single +argument ``TYPE``. It uses the `SWIG`_ directive ``%apply`` as +described in the `numpy.i documentation`_ to apply the provided +typemaps to the argument signatures found in ``Vector.h``. This macro +is then implemented for all of the data types supported by +``numpy.i``. It then does a ``%include "Vector.h"`` to wrap all of +the function prototypes in ``Vector.h`` using the typemaps in +``numpy.i``. + +Testing Python Scripts +====================== + +After ``make`` is used to build the testing extension modules, +``testVector.py`` can be run to execute the tests. As with other +scripts that use ``unittest`` to facilitate unit testing, +``testVector.py`` defines a class that inherits from +``unittest.TestCase``:: + + class VectorTestCase(unittest.TestCase): + +However, this class is not run directly. Rather, it serves as a base +class to several other python classes, each one specific to a +particular data type. The ``VectorTestCase`` class stores two strings +for typing information: + + **self.typeStr** + A string that matches one of the ``SNAME`` prefixes used in + ``Vector.h`` and ``Vector.cxx``. For example, ``"double"``. + + **self.typeCode** + A short (typically single-character) string that represents a + data type in numpy and corresponds to ``self.typeStr``. For + example, if ``self.typeStr`` is ``"double"``, then + ``self.typeCode`` should be ``"d"``. + +Each test defined by the ``VectorTestCase`` class extracts the python +function it is trying to test by accessing the ``Vector`` module's +dictionary:: + + length = Vector.__dict__[self.typeStr + "Length"] + +In the case of double precision tests, this will return the python +function ``Vector.doubleLength``. + +We then define a new test case class for each supported data type with +a short definition such as:: + + class doubleTestCase(VectorTestCase): + def __init__(self, methodName="runTest"): + VectorTestCase.__init__(self, methodName) + self.typeStr = "double" + self.typeCode = "d" + +Each of these 12 classes is collected into a ``unittest.TestSuite``, +which is then executed. Errors and failures are summed together and +returned as the exit argument. Any non-zero result indicates that at +least one test did not pass. |