summaryrefslogtreecommitdiff
path: root/numpy/f2py/doc
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/f2py/doc')
-rw-r--r--numpy/f2py/doc/Makefile76
-rw-r--r--numpy/f2py/doc/Release-1.x.txt27
-rw-r--r--numpy/f2py/doc/Release-2.x.txt77
-rw-r--r--numpy/f2py/doc/Release-3.x.txt87
-rw-r--r--numpy/f2py/doc/Release-4.x.txt91
-rw-r--r--numpy/f2py/doc/apps.tex71
-rw-r--r--numpy/f2py/doc/bugs.tex109
-rwxr-xr-xnumpy/f2py/doc/collectinput.py74
-rw-r--r--numpy/f2py/doc/commands.tex20
-rw-r--r--numpy/f2py/doc/ex1/arr.f4
-rw-r--r--numpy/f2py/doc/ex1/bar.f4
-rw-r--r--numpy/f2py/doc/ex1/foo.f5
-rw-r--r--numpy/f2py/doc/ex1/foobar-smart.f9024
-rw-r--r--numpy/f2py/doc/ex1/foobar.f9016
-rw-r--r--numpy/f2py/doc/ex1/foobarmodule.tex36
-rwxr-xr-xnumpy/f2py/doc/ex1/runme18
-rw-r--r--numpy/f2py/doc/f2py2e.tex50
-rw-r--r--numpy/f2py/doc/f2python9-final/README.txt38
-rw-r--r--numpy/f2py/doc/f2python9-final/aerostructure.jpgbin0 -> 72247 bytes
-rw-r--r--numpy/f2py/doc/f2python9-final/flow.jpgbin0 -> 13266 bytes
-rwxr-xr-xnumpy/f2py/doc/f2python9-final/mk_html.sh13
-rwxr-xr-xnumpy/f2py/doc/f2python9-final/mk_pdf.sh13
-rwxr-xr-xnumpy/f2py/doc/f2python9-final/mk_ps.sh14
-rw-r--r--numpy/f2py/doc/f2python9-final/src/examples/exp1.f26
-rw-r--r--numpy/f2py/doc/f2python9-final/src/examples/exp1mess.txt17
-rw-r--r--numpy/f2py/doc/f2python9-final/src/examples/exp1session.txt20
-rw-r--r--numpy/f2py/doc/f2python9-final/src/examples/foo.pyf13
-rw-r--r--numpy/f2py/doc/f2python9-final/src/examples/foom.pyf14
-rw-r--r--numpy/f2py/doc/f2python9-final/structure.jpgbin0 -> 17860 bytes
-rw-r--r--numpy/f2py/doc/fortranobject.tex574
-rw-r--r--numpy/f2py/doc/index.html264
-rw-r--r--numpy/f2py/doc/intro.tex158
-rw-r--r--numpy/f2py/doc/multiarray/array_from_pyobj.c323
-rw-r--r--numpy/f2py/doc/multiarray/bar.c15
-rw-r--r--numpy/f2py/doc/multiarray/foo.f13
-rw-r--r--numpy/f2py/doc/multiarray/fortran_array_from_pyobj.txt284
-rw-r--r--numpy/f2py/doc/multiarray/fun.pyf89
-rw-r--r--numpy/f2py/doc/multiarray/run.pyf91
-rw-r--r--numpy/f2py/doc/multiarray/transpose.txt1127
-rw-r--r--numpy/f2py/doc/multiarrays.txt120
-rw-r--r--numpy/f2py/doc/notes.tex310
-rw-r--r--numpy/f2py/doc/oldnews.html121
-rw-r--r--numpy/f2py/doc/options.tex63
-rw-r--r--numpy/f2py/doc/python9.tex1046
-rw-r--r--numpy/f2py/doc/signaturefile.tex368
-rw-r--r--numpy/f2py/doc/using_F_compiler.txt147
-rw-r--r--numpy/f2py/doc/win32_notes.txt85
47 files changed, 6155 insertions, 0 deletions
diff --git a/numpy/f2py/doc/Makefile b/numpy/f2py/doc/Makefile
new file mode 100644
index 000000000..2f241da0a
--- /dev/null
+++ b/numpy/f2py/doc/Makefile
@@ -0,0 +1,76 @@
+# Makefile for compiling f2py2e documentation (dvi, ps, html)
+# Pearu Peterson <pearu@ioc.ee>
+
+REL=4
+TOP = usersguide
+LATEXSRC = bugs.tex commands.tex f2py2e.tex intro.tex notes.tex signaturefile.tex
+MAINLATEX = f2py2e
+
+LATEX = latex
+PDFLATEX = pdflatex
+
+COLLECTINPUT = ./collectinput.py
+INSTALLDATA = install -m 644 -c
+
+TTH = tth
+TTHFILTER = sed -e "s/{{}\\\verb@/\\\texttt{/g" | sed -e "s/@{}}/}/g" | $(TTH) -L$(MAINLATEX) -i
+TTHFILTER2 = sed -e "s/{{}\\\verb@/\\\texttt{/g" | sed -e "s/@{}}/}/g" | $(TTH) -Lpython9 -i
+TTHFILTER3 = sed -e "s/{{}\\\verb@/\\\texttt{/g" | sed -e "s/@{}}/}/g" | $(TTH) -Lfortranobject -i
+TTHMISSING = "\
+***************************************************************\n\
+Warning: Could not find tth (a TeX to HTML translator) \n\
+ or an error arised was by tth\n\
+You can download tth from http://hutchinson.belmont.ma.us/tth/ \n\
+or\n\
+use your favorite LaTeX to HTML translator on file tmp_main.tex\n\
+***************************************************************\
+"
+
+all: dvi ps html clean
+$(MAINLATEX).dvi: $(LATEXSRC)
+ $(LATEX) $(MAINLATEX).tex
+ $(LATEX) $(MAINLATEX).tex
+ $(LATEX) $(MAINLATEX).tex
+ $(PDFLATEX) $(MAINLATEX).tex
+$(TOP).dvi: $(MAINLATEX).dvi
+ cp -f $(MAINLATEX).dvi $(TOP).dvi
+ mv -f $(MAINLATEX).pdf $(TOP).pdf
+$(TOP).ps: $(TOP).dvi
+ dvips $(TOP).dvi -o
+$(TOP).html: $(LATEXSRC)
+ $(COLLECTINPUT) < $(MAINLATEX).tex > tmp_$(MAINLATEX).tex
+ @test `which $(TTH)` && cat tmp_$(MAINLATEX).tex | $(TTHFILTER) > $(TOP).html\
+ || echo -e $(TTHMISSING)
+dvi: $(TOP).dvi
+ps: $(TOP).ps
+ gzip -f $(TOP).ps
+html: $(TOP).html
+
+python9:
+ cp -f python9.tex f2python9-final/src/
+ cd f2python9-final && mk_html.sh
+ cd f2python9-final && mk_ps.sh
+ cd f2python9-final && mk_pdf.sh
+pyfobj:
+ $(LATEX) fortranobject.tex
+ $(LATEX) fortranobject.tex
+ $(LATEX) fortranobject.tex
+ @test `which $(TTH)` && cat fortranobject.tex | $(TTHFILTER3) > pyfobj.html\
+ || echo -e $(TTHMISSING)
+ dvips fortranobject.dvi -o pyfobj.ps
+ gzip -f pyfobj.ps
+ pdflatex fortranobject.tex
+ mv fortranobject.pdf pyfobj.pdf
+
+WWWDIR=/net/cens/home/www/unsecure/projects/f2py2e/
+wwwpage: all
+ $(INSTALLDATA) index.html $(TOP).html $(TOP).ps.gz $(TOP).dvi $(TOP).pdf \
+ Release-$(REL).x.txt ../NEWS.txt win32_notes.txt $(WWWDIR)
+ $(INSTALLDATA) pyfobj.{ps.gz,pdf,html} $(WWWDIR)
+ $(INSTALLDATA) f2python9-final/f2python9.{ps.gz,pdf,html} f2python9-final/{flow,structure,aerostructure}.jpg $(WWWDIR)
+clean:
+ rm -f tmp_$(MAINLATEX).* $(MAINLATEX).{aux,dvi,log,toc}
+distclean:
+ rm -f tmp_$(MAINLATEX).* $(MAINLATEX).{aux,dvi,log,toc}
+ rm -f $(TOP).{ps,dvi,html,pdf,ps.gz}
+ rm -f *~
diff --git a/numpy/f2py/doc/Release-1.x.txt b/numpy/f2py/doc/Release-1.x.txt
new file mode 100644
index 000000000..46d6fbf09
--- /dev/null
+++ b/numpy/f2py/doc/Release-1.x.txt
@@ -0,0 +1,27 @@
+
+I am pleased to announce the first public release of f2py 1.116:
+
+Writing Python C/API wrappers for Fortran routines can be a very
+tedious task, especially if a Fortran routine takes more than 20
+arguments but only few of them are relevant for the problems that they
+solve.
+
+The Fortran to Python Interface Generator, or FPIG for short, is a
+command line tool (f2py) for generating Python C/API modules for
+wrapping Fortran 77 routines, accessing common blocks from Python, and
+calling Python functions from Fortran (call-backs).
+
+The tool can be downloaded from
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+where you can find also information about f2py features and its User's
+Guide.
+
+f2py is released under the LGPL license.
+
+With regards,
+ Pearu Peterson <pearu@ioc.ee>
+
+<P><A HREF="http://cens.ioc.ee/projects/f2py2e/">f2py 1.116</A> - The
+Fortran to Python Interface Generator (25-Jan-00)
diff --git a/numpy/f2py/doc/Release-2.x.txt b/numpy/f2py/doc/Release-2.x.txt
new file mode 100644
index 000000000..807eb0ca8
--- /dev/null
+++ b/numpy/f2py/doc/Release-2.x.txt
@@ -0,0 +1,77 @@
+
+FPIG - Fortran to Python Interface Generator
+
+I am pleased to announce the second public release of f2py
+(version 2.264):
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+f2py is a command line tool for binding Python and Fortran codes. It
+scans Fortran 77/90/95 codes and generates a Python C/API module that
+makes it possible to call Fortran routines from Python. No Fortran or
+C expertise is required for using this tool.
+
+Features include:
+
+ *** All basic Fortran types are supported:
+ integer[ | *1 | *2 | *4 | *8 ], logical[ | *1 | *2 | *4 | *8 ],
+ character[ | *(*) | *1 | *2 | *3 | ... ]
+ real[ | *4 | *8 | *16 ], double precision,
+ complex[ | *8 | *16 | *32 ]
+
+ *** Multi-dimensional arrays of (almost) all basic types.
+ Dimension specifications:
+ <dim> | <start>:<end> | * | :
+
+ *** Supported attributes:
+ intent([ in | inout | out | hide | in,out | inout,out ])
+ dimension(<dimspec>)
+ depend([<names>])
+ check([<C-booleanexpr>])
+ note(<LaTeX text>)
+ optional, required, external
+
+ *** Calling Fortran 77/90/95 subroutines and functions. Also
+ Fortran 90/95 module routines. Internal initialization of
+ optional arguments.
+
+ *** Accessing COMMON blocks from Python. Accessing Fortran 90/95
+ module data coming soon.
+
+ *** Call-back functions: calling Python functions from Fortran with
+ very flexible hooks.
+
+ *** In Python, arguments of the interfaced functions may be of
+ different type - necessary type conversations are done
+ internally in C level.
+
+ *** Automatically generates documentation (__doc__,LaTeX) for
+ interface functions.
+
+ *** Automatically generates signature files --- user has full
+ control over the interface constructions. Automatically
+ detects the signatures of call-back functions, solves argument
+ dependencies, etc.
+
+ *** Automatically generates Makefile for compiling Fortran and C
+ codes and linking them to a shared module. Many compilers are
+ supported: gcc, Compaq Fortran, VAST/f90 Fortran, Absoft
+ F77/F90, MIPSpro 7 Compilers, etc. Platforms: Intel/Alpha
+ Linux, HP-UX, IRIX64.
+
+ *** Complete User's Guide in various formats (html,ps,pdf,dvi).
+
+ *** f2py users list is available for support, feedback, etc.
+
+More information about f2py, see
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+f2py is released under the LGPL license.
+
+Sincerely,
+ Pearu Peterson <pearu@ioc.ee>
+ September 12, 2000
+
+<P><A HREF="http://cens.ioc.ee/projects/f2py2e/">f2py 2.264</A> - The
+Fortran to Python Interface Generator (12-Sep-00)
diff --git a/numpy/f2py/doc/Release-3.x.txt b/numpy/f2py/doc/Release-3.x.txt
new file mode 100644
index 000000000..940771015
--- /dev/null
+++ b/numpy/f2py/doc/Release-3.x.txt
@@ -0,0 +1,87 @@
+
+F2PY - Fortran to Python Interface Generator
+
+I am pleased to announce the third public release of f2py
+(version 2.3.321):
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+f2py is a command line tool for binding Python and Fortran codes. It
+scans Fortran 77/90/95 codes and generates a Python C/API module that
+makes it possible to call Fortran subroutines from Python. No Fortran or
+C expertise is required for using this tool.
+
+Features include:
+
+ *** All basic Fortran types are supported:
+ integer[ | *1 | *2 | *4 | *8 ], logical[ | *1 | *2 | *4 | *8 ],
+ character[ | *(*) | *1 | *2 | *3 | ... ]
+ real[ | *4 | *8 | *16 ], double precision,
+ complex[ | *8 | *16 | *32 ]
+
+ *** Multi-dimensional arrays of (almost) all basic types.
+ Dimension specifications:
+ <dim> | <start>:<end> | * | :
+
+ *** Supported attributes and statements:
+ intent([ in | inout | out | hide | in,out | inout,out ])
+ dimension(<dimspec>)
+ depend([<names>])
+ check([<C-booleanexpr>])
+ note(<LaTeX text>)
+ optional, required, external
+NEW: intent(c), threadsafe, fortranname
+
+ *** Calling Fortran 77/90/95 subroutines and functions. Also
+ Fortran 90/95 module subroutines are supported. Internal
+ initialization of optional arguments.
+
+ *** Accessing COMMON blocks from Python.
+NEW: Accessing Fortran 90/95 module data.
+
+ *** Call-back functions: calling Python functions from Fortran with
+ very flexible hooks.
+
+ *** In Python, arguments of the interfaced functions may be of
+ different type - necessary type conversations are done
+ internally in C level.
+
+ *** Automatically generates documentation (__doc__,LaTeX) for
+ interfaced functions.
+
+ *** Automatically generates signature files --- user has full
+ control over the interface constructions. Automatically
+ detects the signatures of call-back functions, solves argument
+ dependencies, etc.
+
+NEW: * Automatically generates setup_<modulename>.py for building
+ extension modules using tools from distutils and
+ fortran_support module (SciPy).
+
+ *** Automatically generates Makefile for compiling Fortran and C
+ codes and linking them to a shared module. Many compilers are
+ supported: gcc, Compaq Fortran, VAST/f90 Fortran, Absoft
+ F77/F90, MIPSpro 7 Compilers, etc. Platforms: Intel/Alpha
+ Linux, HP-UX, IRIX64.
+
+ *** Complete User's Guide in various formats (html,ps,pdf,dvi).
+
+ *** f2py users list is available for support, feedback, etc.
+
+NEW: * Installation with distutils.
+
+ *** And finally, many bugs are fixed.
+
+More information about f2py, see
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+LICENSE:
+ f2py is released under the LGPL.
+
+Sincerely,
+ Pearu Peterson <pearu@cens.ioc.ee>
+ December 4, 2001
+
+<P><A HREF="http://cens.ioc.ee/projects/f2py2e/">f2py 2.3.321</A> - The
+Fortran to Python Interface Generator (04-Dec-01)
diff --git a/numpy/f2py/doc/Release-4.x.txt b/numpy/f2py/doc/Release-4.x.txt
new file mode 100644
index 000000000..ed071a0cb
--- /dev/null
+++ b/numpy/f2py/doc/Release-4.x.txt
@@ -0,0 +1,91 @@
+
+F2PY - Fortran to Python Interface Generator
+
+I am pleased to announce the fourth public release of f2py
+(version 2.4.366):
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+f2py is a command line tool for binding Python and Fortran codes. It
+scans Fortran 77/90/95 codes and generates a Python C/API module that
+makes it possible to call Fortran subroutines from Python. No Fortran or
+C expertise is required for using this tool.
+
+New features:
+ *** Win32 support.
+ *** Better Python C/API generated code (-Wall is much less verbose).
+
+Features include:
+
+ *** All basic Fortran types are supported:
+ integer[ | *1 | *2 | *4 | *8 ], logical[ | *1 | *2 | *4 | *8 ],
+ character[ | *(*) | *1 | *2 | *3 | ... ]
+ real[ | *4 | *8 | *16 ], double precision,
+ complex[ | *8 | *16 | *32 ]
+
+ *** Multi-dimensional arrays of (almost) all basic types.
+ Dimension specifications:
+ <dim> | <start>:<end> | * | :
+
+ *** Supported attributes and statements:
+ intent([ in | inout | out | hide | in,out | inout,out ])
+ dimension(<dimspec>)
+ depend([<names>])
+ check([<C-booleanexpr>])
+ note(<LaTeX text>)
+ optional, required, external
+ intent(c), threadsafe, fortranname
+
+ *** Calling Fortran 77/90/95 subroutines and functions. Also
+ Fortran 90/95 module subroutines are supported. Internal
+ initialization of optional arguments.
+
+ *** Accessing COMMON blocks from Python.
+ Accessing Fortran 90/95 module data.
+
+ *** Call-back functions: calling Python functions from Fortran with
+ very flexible hooks.
+
+ *** In Python, arguments of the interfaced functions may be of
+ different type - necessary type conversations are done
+ internally in C level.
+
+ *** Automatically generates documentation (__doc__,LaTeX) for
+ interfaced functions.
+
+ *** Automatically generates signature files --- user has full
+ control over the interface constructions. Automatically
+ detects the signatures of call-back functions, solves argument
+ dependencies, etc.
+
+ *** Automatically generates setup_<modulename>.py for building
+ extension modules using tools from distutils and
+ fortran_support module (SciPy).
+
+ *** Automatically generates Makefile for compiling Fortran and C
+ codes and linking them to a shared module. Many compilers are
+ supported: gcc, Compaq Fortran, VAST/f90 Fortran, Absoft
+ F77/F90, MIPSpro 7 Compilers, etc. Platforms: Intel/Alpha
+ Linux, HP-UX, IRIX64.
+
+ *** Complete User's Guide in various formats (html,ps,pdf,dvi).
+
+ *** f2py users list is available for support, feedback, etc.
+
+ *** Installation with distutils.
+
+ *** And finally, many bugs are fixed.
+
+More information about f2py, see
+
+ http://cens.ioc.ee/projects/f2py2e/
+
+LICENSE:
+ f2py is released under the LGPL.
+
+Sincerely,
+ Pearu Peterson <pearu@cens.ioc.ee>
+ December 17, 2001
+
+<P><A HREF="http://cens.ioc.ee/projects/f2py2e/">f2py 2.4.366</A> - The
+Fortran to Python Interface Generator (17-Dec-01)
diff --git a/numpy/f2py/doc/apps.tex b/numpy/f2py/doc/apps.tex
new file mode 100644
index 000000000..513c048bd
--- /dev/null
+++ b/numpy/f2py/doc/apps.tex
@@ -0,0 +1,71 @@
+
+\section{Applications}
+\label{sec:apps}
+
+
+\subsection{Example: wrapping C library \texttt{fftw}}
+\label{sec:wrapfftw}
+
+Here follows a simple example how to use \fpy to generate a wrapper
+for C functions. Let us create a FFT code using the functions in FFTW
+library. I'll assume that the library \texttt{fftw} is configured with
+\texttt{-{}-enable-shared} option.
+
+Here is the wrapper for the typical usage of FFTW:
+\begin{verbatim}
+/* File: wrap_dfftw.c */
+#include <dfftw.h>
+
+extern void dfftw_one(fftw_complex *in,fftw_complex *out,int *n) {
+ fftw_plan p;
+ p = fftw_create_plan(*n,FFTW_FORWARD,FFTW_ESTIMATE);
+ fftw_one(p,in,out);
+ fftw_destroy_plan(p);
+}
+\end{verbatim}
+and here follows the corresponding siganture file (created manually):
+\begin{verbatim}
+!%f90
+! File: fftw.f90
+module fftw
+ interface
+ subroutine dfftw_one(in,out,n)
+ integer n
+ complex*16 in(n),out(n)
+ intent(out) out
+ intent(hide) n
+ end subroutine dfftw_one
+ end interface
+end module fftw
+\end{verbatim}
+
+Now let us generate the Python C/API module with \fpy:
+\begin{verbatim}
+f2py fftw.f90
+\end{verbatim}
+and compile it
+\begin{verbatim}
+gcc -shared -I/numeric/include -I`f2py -I` -L/numeric/lib -ldfftw \
+ -o fftwmodule.so -DNO_APPEND_FORTRAN fftwmodule.c wrap_dfftw.c
+\end{verbatim}
+
+In Python:
+\begin{verbatim}
+>>> from Numeric import *
+>>> from fftw import *
+>>> print dfftw_one.__doc__
+Function signature:
+ out = dfftw_one(in)
+Required arguments:
+ in : input rank-1 array('D') with bounds (n)
+Return objects:
+ out : rank-1 array('D') with bounds (n)
+>>> print dfftw_one([1,2,3,4])
+[ 10.+0.j -2.+2.j -2.+0.j -2.-2.j]
+>>>
+\end{verbatim}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
diff --git a/numpy/f2py/doc/bugs.tex b/numpy/f2py/doc/bugs.tex
new file mode 100644
index 000000000..699ecf530
--- /dev/null
+++ b/numpy/f2py/doc/bugs.tex
@@ -0,0 +1,109 @@
+
+\section{Bugs, Plans, and Feedback}
+\label{sec:bugs}
+
+Currently no bugs have found that I was not able to fix. I will be
+happy to receive bug reports from you (so that I could fix them and
+keep the first sentence of this paragraph as true as possible ;-).
+Note that \fpy is developed to work properly with gcc/g77
+compilers.
+\begin{description}
+\item[NOTE:] Wrapping callback functions returning \texttt{COMPLEX}
+ may fail on some systems. Workaround: avoid it by using callback
+ subroutines.
+\end{description}
+
+Here follows a list of things that I plan to implement in (near) future:
+\begin{enumerate}
+\item recognize file types by their extension (signatures:
+ \texttt{*.pyf}, Fortran 77, Fortran 90 fixed: \texttt{*.f, *.for, *.F, *.FOR},
+ Fortran 90 free: \texttt{*.F90, *.f90, *.m, *.f95, *.F95}); [DONE]
+\item installation using \texttt{distutils} (when it will be stable);
+\item put out to the web examples of \fpy usages in real situations:
+ wrapping \texttt{vode}, for example;
+\item implement support for \texttt{PARAMETER} statement; [DONE]
+\item rewrite test-site;
+\item ...
+\end{enumerate}
+and here are things that I plan to do in future:
+\begin{enumerate}
+\item implement \texttt{intent(cache)} attribute for an optional work
+ arrays with a feature of allocating additional memory if needed;
+\item use \fpy for wrapping Fortran 90/95 codes. \fpy should scan
+ Fortran 90/95 codes with no problems, what needs to be done is find
+ out how to call a Fortran 90/95 function (from a module) from
+ C. Anybody there willing to test \fpy with Fortran 90/95 modules? [DONE]
+\item implement support for Fortran 90/95 module data; [DONE]
+\item implement support for \texttt{BLOCK DATA} blocks (if needed);
+\item test/document \fpy for \texttt{CHARACTER} arrays;
+\item decide whether internal transposition of multi-dimensional
+ arrays is reasonable (need efficient code then), even if this is
+ controlled by the user trough some additional keyword; need
+ consistent and safe policy here;
+\item use \fpy for generating wrapper functions also for C programs (a
+ kind of SWIG, only between Python and C). For that \fpy needs a
+ command line switch to inform itself that C scalars are passed in by
+ their value, not by their reference, for instance;
+\item introduce a counter that counts the number of inefficient usages
+ of wrapper functions (copying caused by type-casting, non-contiguous
+ arrays);
+\item if needed, make \texttt{DATA} statement to work properly for
+ arrays;
+\item rewrite \texttt{COMMON} wrapper; [DONE]
+\item ...
+\end{enumerate}
+I'll appreciate any feedback that will improve \fpy (bug reports,
+suggestions, etc). If you find a correct Fortran code that fails with
+\fpy, try to send me a minimal version of it so that I could track
+down the cause of the failure. Note also that there is no sense to
+send me files that are auto-generated with \fpy (I can generate them
+myself); the version of \fpy that you are using (run \texttt{\fpy\
+ -v}), and the relevant fortran codes or modified signature files
+should be enough information to fix the bugs. Also add some
+information on compilers and linkers that you use to the bug report.
+
+
+\section{History of \fpy}
+\label{sec:history}
+
+\begin{enumerate}
+\item I was driven to start developing a tool such as \fpy after I had
+ wrote several Python C/API modules for interfacing various Fortran
+ routines from the Netlib. This work was tedious (some of functions
+ had more than 20 arguments, only few of them made sense for the
+ problems that they solved). I realized that most of the writing
+ could be done automatically.
+\item On 9th of July, 1999, the first lines of the tool was written. A
+ prototype of the tool was ready to use in only three weeks. During
+ this time Travis Oliphant joined to the project and shared his
+ valuable knowledge and experience; the call-back mechanism is his
+ major contribution. Then I gave the tool to public under the name
+ FPIG --- \emph{Fortran to Python Interface Generator}. The tool contained
+ only one file \texttt{f2py.py}.
+\item By autumn, it was clear that a better implementation was needed
+ as the debugging process became very tedious. So, I reserved some
+ time and rewrote the tool from scratch. The most important result of
+ this rewriting was the code that reads real Fortran codes and
+ determines the signatures of the Fortran routines. The main
+ attention was payed in particular to this part so that the tool
+ could read arbitrary Fortran~77/90/95 codes. As a result, the other
+ side of the tools task, that is, generating Python C/API functions,
+ was not so great. In public, this version of the tool was called
+ \texttt{f2py2e} --- \emph{Fortran to Python C/API generator, the
+ Second Edition}.
+\item So, a month before The New Year 2000, I started the third
+ iteration of the \fpy development. Now the main attention was to
+ have a good C/API module constructing code. By 21st of January,
+ 2000, the tool of generating wrapper functions for Fortran routines
+ was ready. It had many new features and was more robust than ever.
+\item In 25th of January, 2000, the first public release of \fpy was
+ announced (version 1.116).
+\item In 12th of September, 2000, the second public release of \fpy was
+ announced (version 2.264). It now has among other changes a support
+ for Fortran 90/95 module routines.
+\end{enumerate}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
diff --git a/numpy/f2py/doc/collectinput.py b/numpy/f2py/doc/collectinput.py
new file mode 100755
index 000000000..2e3a09d9d
--- /dev/null
+++ b/numpy/f2py/doc/collectinput.py
@@ -0,0 +1,74 @@
+#!/usr/bin/env python
+"""
+collectinput - Collects all files that are included to a main Latex document
+ with \input or \include commands. These commands must be
+ in separate lines.
+
+Copyright 1999 Pearu Peterson all rights reserved,
+Pearu Peterson <pearu@ioc.ee>
+Permission to use, modify, and distribute this software is given under the
+terms of the NumPy License
+
+NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
+
+Pearu Peterson
+
+Usage:
+ collectinput <infile> <outfile>
+ collectinput <infile> # <outfile>=inputless_<infile>
+ collectinput # in and out are stdin and stdout
+"""
+
+__version__ = "0.0"
+
+stdoutflag=0
+import sys,os,string,fileinput,re,commands
+
+try: fn=sys.argv[2]
+except:
+ try: fn='inputless_'+sys.argv[1]
+ except: stdoutflag=1
+try: fi=sys.argv[1]
+except: fi=()
+if not stdoutflag:
+ sys.stdout=open(fn,'w')
+
+nonverb=r'[\w\s\\&=\^\*\.\{\(\)\[\?\+\$/]*(?!\\verb.)'
+input=re.compile(nonverb+r'\\(input|include)\*?\s*\{?.*}?')
+comment=re.compile(r'[^%]*%')
+
+for l in fileinput.input(fi):
+ l=l[:-1]
+ l1=''
+ if comment.match(l):
+ m=comment.match(l)
+ l1=l[m.end()-1:]
+ l=l[:m.end()-1]
+ m=input.match(l)
+ if m:
+ l=string.strip(l)
+ if l[-1]=='}': l=l[:-1]
+ i=m.end()-2
+ sys.stderr.write('>>>>>>')
+ while i>-1 and (l[i] not in [' ','{']): i=i-1
+ if i>-1:
+ fn=l[i+1:]
+ try: f=open(fn,'r'); flag=1; f.close()
+ except:
+ try: f=open(fn+'.tex','r'); flag=1;fn=fn+'.tex'; f.close()
+ except: flag=0
+ if flag==0:
+ sys.stderr.write('Could not open a file: '+fn+'\n')
+ print l+l1
+ continue
+ elif flag==1:
+ sys.stderr.write(fn+'\n')
+ print '%%%%% Begin of '+fn
+ print commands.getoutput(sys.argv[0]+' < '+fn)
+ print '%%%%% End of '+fn
+ else:
+ sys.stderr.write('Could not extract a file name from: '+l)
+ print l+l1
+ else:
+ print l+l1
+sys.stdout.close()
diff --git a/numpy/f2py/doc/commands.tex b/numpy/f2py/doc/commands.tex
new file mode 100644
index 000000000..5101a9ff5
--- /dev/null
+++ b/numpy/f2py/doc/commands.tex
@@ -0,0 +1,20 @@
+\usepackage{xspace}
+\usepackage{verbatim}
+
+%%tth:\newcommand{\xspace}{ }
+
+\newcommand{\fpy}{\texttt{f2py}\xspace}
+
+\newcommand{\bs}{\symbol{`\\}}
+% need bs here:
+%%tth:\newcommand{\bs}{\texttt{<backslash>}}
+
+\newcommand{\shell}[1]{\hspace*{1em}\texttt{sh> \begin{minipage}[t]{0.8\textwidth}#1\end{minipage}}}
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
+
+
diff --git a/numpy/f2py/doc/ex1/arr.f b/numpy/f2py/doc/ex1/arr.f
new file mode 100644
index 000000000..c4e49988f
--- /dev/null
+++ b/numpy/f2py/doc/ex1/arr.f
@@ -0,0 +1,4 @@
+ subroutine arr(l,m,n,a)
+ integer l,m,n
+ real*8 a(l,m,n)
+ end
diff --git a/numpy/f2py/doc/ex1/bar.f b/numpy/f2py/doc/ex1/bar.f
new file mode 100644
index 000000000..c723b5af1
--- /dev/null
+++ b/numpy/f2py/doc/ex1/bar.f
@@ -0,0 +1,4 @@
+ function bar(a,b)
+ integer a,b,bar
+ bar = a + b
+ end
diff --git a/numpy/f2py/doc/ex1/foo.f b/numpy/f2py/doc/ex1/foo.f
new file mode 100644
index 000000000..cdcac4103
--- /dev/null
+++ b/numpy/f2py/doc/ex1/foo.f
@@ -0,0 +1,5 @@
+ subroutine foo(a)
+ integer a
+cf2py intent(in,out) :: a
+ a = a + 5
+ end
diff --git a/numpy/f2py/doc/ex1/foobar-smart.f90 b/numpy/f2py/doc/ex1/foobar-smart.f90
new file mode 100644
index 000000000..61385a685
--- /dev/null
+++ b/numpy/f2py/doc/ex1/foobar-smart.f90
@@ -0,0 +1,24 @@
+!%f90
+module foobar ! in
+ note(This module contains two examples that are used in &
+ \texttt{f2py} documentation.) foobar
+ interface ! in :foobar
+ subroutine foo(a) ! in :foobar:foo.f
+ note(Example of a wrapper function of a Fortran subroutine.) foo
+ integer intent(inout),&
+ note(5 is added to the variable {{}\verb@a@{}} ``in place''.) :: a
+ end subroutine foo
+ function bar(a,b) result (ab) ! in :foobar:bar.f
+ integer :: a
+ integer :: b
+ integer :: ab
+ note(The first value.) a
+ note(The second value.) b
+ note(Add two values.) bar
+ note(The result.) ab
+ end function bar
+ end interface
+end module foobar
+
+! This file was auto-generated with f2py (version:0.95).
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/ex1/foobar.f90 b/numpy/f2py/doc/ex1/foobar.f90
new file mode 100644
index 000000000..53ac5b506
--- /dev/null
+++ b/numpy/f2py/doc/ex1/foobar.f90
@@ -0,0 +1,16 @@
+!%f90
+module foobar ! in
+ interface ! in :foobar
+ subroutine foo(a) ! in :foobar:foo.f
+ integer intent(inout) :: a
+ end subroutine foo
+ function bar(a,b) ! in :foobar:bar.f
+ integer :: a
+ integer :: b
+ integer :: bar
+ end function bar
+ end interface
+end module foobar
+
+! This file was auto-generated with f2py (version:0.95).
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/ex1/foobarmodule.tex b/numpy/f2py/doc/ex1/foobarmodule.tex
new file mode 100644
index 000000000..32411ec03
--- /dev/null
+++ b/numpy/f2py/doc/ex1/foobarmodule.tex
@@ -0,0 +1,36 @@
+% This file is auto-generated with f2py (version:2.266)
+\section{Module \texttt{foobar}}
+
+This module contains two examples that are used in \texttt{f2py} documentation.
+
+\subsection{Wrapper function \texttt{foo}}
+
+
+\noindent{{}\verb@foo@{}}\texttt{(a)}
+--- Example of a wrapper function of a Fortran subroutine.
+
+\noindent Required arguments:
+\begin{description}
+\item[]{{}\verb@a : in/output rank-0 array(int,'i')@{}}
+--- 5 is added to the variable {{}\verb@a@{}} ``in place''.
+\end{description}
+
+\subsection{Wrapper function \texttt{bar}}
+
+
+\noindent{{}\verb@bar = bar@{}}\texttt{(a, b)}
+--- Add two values.
+
+\noindent Required arguments:
+\begin{description}
+\item[]{{}\verb@a : input int@{}}
+--- The first value.
+\item[]{{}\verb@b : input int@{}}
+--- The second value.
+\end{description}
+\noindent Return objects:
+\begin{description}
+\item[]{{}\verb@bar : int@{}}
+--- See elsewhere.
+\end{description}
+
diff --git a/numpy/f2py/doc/ex1/runme b/numpy/f2py/doc/ex1/runme
new file mode 100755
index 000000000..2aac6158e
--- /dev/null
+++ b/numpy/f2py/doc/ex1/runme
@@ -0,0 +1,18 @@
+#!/bin/sh
+
+f2py2e='python ../../f2py2e.py'
+PYINC=`$f2py2e -pyinc`
+$f2py2e foobar-smart.pyf --short-latex --overwrite-makefile -makefile foo.f bar.f
+gmake -f Makefile-foobar
+#gcc -O3 -I$PYINC -I$PYINC/Numeric -shared -o foobarmodule.so foobarmodule.c foo.f bar.f
+python -c '
+import foobar
+print foobar.__doc__
+print foobar.bar(2,3)
+from Numeric import *
+a=array(3)
+print a,foobar.foo(a),a
+print foobar.foo.__doc__
+print foobar.bar.__doc__
+print "ok"
+'
diff --git a/numpy/f2py/doc/f2py2e.tex b/numpy/f2py/doc/f2py2e.tex
new file mode 100644
index 000000000..6e3e9d68c
--- /dev/null
+++ b/numpy/f2py/doc/f2py2e.tex
@@ -0,0 +1,50 @@
+\documentclass{article}
+\usepackage{a4wide}
+
+\input commands
+
+\title{\fpy\\Fortran to Python Interface Generator\\{\large Second Edition}}
+\author{Pearu Peterson \texttt{<pearu@ioc.ee>}}
+\date{$Revision: 1.16 $\\\today}
+\begin{document}
+\special{html: <font size=-1>If equations does not show Greek letters or large
+ brackets correctly, then your browser configuration needs some
+ adjustment. Read the notes for <A
+ href=http://hutchinson.belmont.ma.us/tth/Xfonts.html>Enabling Symbol
+ Fonts in Netscape under X </A>. In addition, the browser must be set
+ to use document fonts. </font>
+}
+
+\maketitle
+\begin{abstract}
+ \fpy is a Python program that generates Python C/API modules for
+ wrapping Fortran~77/90/95 codes to Python. The user can influence the
+ process by modifying the signature files that \fpy generates when
+ scanning the Fortran codes. This document describes the syntax of
+ the signature files and the ways how the user can dictate the tool
+ to produce wrapper functions with desired Python signatures. Also
+ how to call the wrapper functions from Python is discussed.
+
+ See \texttt{http://cens.ioc.ee/projects/f2py2e/} for updates of this
+ document and the tool.
+\end{abstract}
+
+\tableofcontents
+
+\input intro
+\input signaturefile
+\input notes
+\input options
+\input bugs
+
+\appendix
+\input ex1/foobarmodule
+\input apps
+\end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End:
+
+
diff --git a/numpy/f2py/doc/f2python9-final/README.txt b/numpy/f2py/doc/f2python9-final/README.txt
new file mode 100644
index 000000000..b907216b6
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/README.txt
@@ -0,0 +1,38 @@
+
+This directory contains the source of the paper
+
+ "Fortran to Python Interface Generator with an Application
+ to Aerospace Engineering"
+
+by
+ Pearu Peterson <pearu@cens.ioc.ee> (the corresponding author)
+ Joaquim R. R. A. Martins <joaquim.martins@stanford.edu>
+ Juan J. Alonso <jjalonso@stanford.edu>
+
+for The 9th International Python Conference, March 5-8, 2001, Long Beach, California.
+
+The paper is provided here is in the HTML format:
+
+ f2python9.html (size=48151 bytes)
+
+Note that this file includes the following JPG images
+
+ flow.jpg (size=13266)
+ structure.jpg (size=17860)
+ aerostructure.jpg (size=72247)
+
+PS:
+The HTML file f2python9.html is generated using TTH (http://hutchinson.belmont.ma.us/tth/)
+from the LaTeX source file `python9.tex'. The source can be found in the
+ src/
+directory. This directory contains also the following EPS files
+ flow.eps
+ structure.eps
+ aerostructure.eps
+and the text files
+ examples/{exp1.f,exp1mess.txt,exp1session.txt,foo.pyf,foom.pyf}
+that are used by the LaTeX source python9.tex.
+
+Regards,
+ Pearu
+January 15, 2001
diff --git a/numpy/f2py/doc/f2python9-final/aerostructure.jpg b/numpy/f2py/doc/f2python9-final/aerostructure.jpg
new file mode 100644
index 000000000..896ad6e12
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/aerostructure.jpg
Binary files differ
diff --git a/numpy/f2py/doc/f2python9-final/flow.jpg b/numpy/f2py/doc/f2python9-final/flow.jpg
new file mode 100644
index 000000000..cfe0f85f3
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/flow.jpg
Binary files differ
diff --git a/numpy/f2py/doc/f2python9-final/mk_html.sh b/numpy/f2py/doc/f2python9-final/mk_html.sh
new file mode 100755
index 000000000..944110e93
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/mk_html.sh
@@ -0,0 +1,13 @@
+#!/bin/sh
+cd src
+
+test -f aerostructure.eps || convert ../aerostructure.jpg aerostructure.eps
+test -f flow.eps || convert ../flow.jpg flow.eps
+test -f structure.eps || convert ../structure.jpg structure.eps
+
+latex python9.tex
+latex python9.tex
+latex python9.tex
+
+test `which tth` && cat python9.tex | sed -e "s/{{}\\\verb@/\\\texttt{/g" | sed -e "s/@{}}/}/g" | tth -Lpython9 -i > ../f2python9.html
+cd ..
diff --git a/numpy/f2py/doc/f2python9-final/mk_pdf.sh b/numpy/f2py/doc/f2python9-final/mk_pdf.sh
new file mode 100755
index 000000000..b773028b7
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/mk_pdf.sh
@@ -0,0 +1,13 @@
+#!/bin/sh
+cd src
+
+test -f aerostructure.pdf || convert ../aerostructure.jpg aerostructure.pdf
+test -f flow.pdf || convert ../flow.jpg flow.pdf
+test -f structure.pdf || convert ../structure.jpg structure.pdf
+
+cat python9.tex | sed -e "s/eps,/pdf,/g" > python9pdf.tex
+pdflatex python9pdf.tex
+pdflatex python9pdf.tex
+pdflatex python9pdf.tex
+
+mv python9pdf.pdf ../f2python9.pdf \ No newline at end of file
diff --git a/numpy/f2py/doc/f2python9-final/mk_ps.sh b/numpy/f2py/doc/f2python9-final/mk_ps.sh
new file mode 100755
index 000000000..4b0863fcd
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/mk_ps.sh
@@ -0,0 +1,14 @@
+#!/bin/sh
+cd src
+
+test -f aerostructure.eps || convert ../aerostructure.jpg aerostructure.eps
+test -f flow.eps || convert ../flow.jpg flow.eps
+test -f structure.eps || convert ../structure.jpg structure.eps
+
+latex python9.tex
+latex python9.tex
+latex python9.tex
+
+dvips python9.dvi -o ../f2python9.ps
+cd ..
+gzip -f f2python9.ps
diff --git a/numpy/f2py/doc/f2python9-final/src/examples/exp1.f b/numpy/f2py/doc/f2python9-final/src/examples/exp1.f
new file mode 100644
index 000000000..36bee50b0
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/src/examples/exp1.f
@@ -0,0 +1,26 @@
+ subroutine exp1(l,u,n)
+C Input: n is number of iterations
+C Output: l,u are such that
+C l(1)/l(2) < exp(1) < u(1)/u(2)
+C
+Cf2py integer*4 :: n = 1
+Cf2py intent(out) l,u
+ integer*4 n,i
+ real*8 l(2),u(2),t,t1,t2,t3,t4
+ l(2) = 1
+ l(1) = 0
+ u(2) = 0
+ u(1) = 1
+ do 10 i=0,n
+ t1 = 4 + 32*(1+i)*i
+ t2 = 11 + (40+32*i)*i
+ t3 = 3 + (24+32*i)*i
+ t4 = 8 + 32*(1+i)*i
+ t = u(1)
+ u(1) = l(1)*t1 + t*t2
+ l(1) = l(1)*t3 + t*t4
+ t = u(2)
+ u(2) = l(2)*t1 + t*t2
+ l(2) = l(2)*t3 + t*t4
+ 10 continue
+ end
diff --git a/numpy/f2py/doc/f2python9-final/src/examples/exp1mess.txt b/numpy/f2py/doc/f2python9-final/src/examples/exp1mess.txt
new file mode 100644
index 000000000..ae1545718
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/src/examples/exp1mess.txt
@@ -0,0 +1,17 @@
+Reading fortran codes...
+ Reading file 'exp1.f'
+Post-processing...
+ Block: foo
+ Block: exp1
+Creating 'Makefile-foo'...
+ Linker: ld ('GNU ld' 2.9.5)
+ Fortran compiler: f77 ('g77 2.x.x' 2.95.2)
+ C compiler: cc ('gcc 2.x.x' 2.95.2)
+Building modules...
+ Building module "foo"...
+ Constructing wrapper function "exp1"...
+ l,u = exp1([n])
+ Wrote C/API module "foo" to file "foomodule.c"
+ Documentation is saved to file "foomodule.tex"
+Run GNU make to build shared modules:
+ gmake -f Makefile-<modulename> [test]
diff --git a/numpy/f2py/doc/f2python9-final/src/examples/exp1session.txt b/numpy/f2py/doc/f2python9-final/src/examples/exp1session.txt
new file mode 100644
index 000000000..9bec9198e
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/src/examples/exp1session.txt
@@ -0,0 +1,20 @@
+>>> import foo,Numeric
+>>> print foo.exp1.__doc__
+exp1 - Function signature:
+ l,u = exp1([n])
+Optional arguments:
+ n := 1 input int
+Return objects:
+ l : rank-1 array('d') with bounds (2)
+ u : rank-1 array('d') with bounds (2)
+
+>>> l,u = foo.exp1()
+>>> print l,u
+[ 1264. 465.] [ 1457. 536.]
+>>> print l[0]/l[1], u[0]/u[1]-l[0]/l[1]
+2.71827956989 2.25856657199e-06
+>>> l,u = foo.exp1(2)
+>>> print l,u
+[ 517656. 190435.] [ 566827. 208524.]
+>>> print l[0]/l[1], u[0]/u[1]-l[0]/l[1]
+2.71828182845 1.36437527942e-11 \ No newline at end of file
diff --git a/numpy/f2py/doc/f2python9-final/src/examples/foo.pyf b/numpy/f2py/doc/f2python9-final/src/examples/foo.pyf
new file mode 100644
index 000000000..516bb292f
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/src/examples/foo.pyf
@@ -0,0 +1,13 @@
+!%f90 -*- f90 -*-
+python module foo
+ interface
+ subroutine exp1(l,u,n)
+ real*8 dimension(2) :: l
+ real*8 dimension(2) :: u
+ integer*4 :: n
+ end subroutine exp1
+ end interface
+end python module foo
+! This file was auto-generated with f2py
+! (version:2.298).
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/f2python9-final/src/examples/foom.pyf b/numpy/f2py/doc/f2python9-final/src/examples/foom.pyf
new file mode 100644
index 000000000..6392ebc95
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/src/examples/foom.pyf
@@ -0,0 +1,14 @@
+!%f90 -*- f90 -*-
+python module foo
+ interface
+ subroutine exp1(l,u,n)
+ real*8 dimension(2) :: l
+ real*8 dimension(2) :: u
+ intent(out) l,u
+ integer*4 optional :: n = 1
+ end subroutine exp1
+ end interface
+end python module foo
+! This file was auto-generated with f2py
+! (version:2.298) and modified by pearu.
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/f2python9-final/structure.jpg b/numpy/f2py/doc/f2python9-final/structure.jpg
new file mode 100644
index 000000000..9aa691339
--- /dev/null
+++ b/numpy/f2py/doc/f2python9-final/structure.jpg
Binary files differ
diff --git a/numpy/f2py/doc/fortranobject.tex b/numpy/f2py/doc/fortranobject.tex
new file mode 100644
index 000000000..dbb244cdd
--- /dev/null
+++ b/numpy/f2py/doc/fortranobject.tex
@@ -0,0 +1,574 @@
+\documentclass{article}
+
+\headsep=0pt
+\topmargin=0pt
+\headheight=0pt
+\oddsidemargin=0pt
+\textwidth=6.5in
+\textheight=9in
+
+\usepackage{xspace}
+\usepackage{verbatim}
+\newcommand{\fpy}{\texttt{f2py}\xspace}
+\newcommand{\bs}{\symbol{`\\}}
+\newcommand{\email}[1]{\special{html:<A href="mailto:#1">}\texttt{<#1>}\special{html:</A>}}
+\title{\texttt{PyFortranObject} --- example usages}
+\author{
+\large Pearu Peterson\\
+\small \email{pearu@cens.ioc.ee}
+}
+
+\begin{document}
+
+\maketitle
+
+\special{html: Other formats of this document:
+<A href=pyfobj.ps.gz>Gzipped PS</A>,
+<A href=pyfobj.pdf>PDF</A>
+}
+
+\tableofcontents
+
+\section{Introduction}
+\label{sec:intro}
+
+Fortran language defines the following concepts that we would like to
+access from Python: functions, subroutines, data in \texttt{COMMON} blocks,
+F90 module functions and subroutines, F90 module data (both static and
+allocatable arrays).
+
+In the following we shall assume that we know the signatures (full
+specifications of routine arguments and variables) of these concepts
+from their Fortran source codes. Now, in order to call or use them
+from C, one needs to have pointers to the corresponding objects. The
+pointers to Fortran 77 objects (routines, data in \texttt{COMMON}
+blocks) are readily available to C codes (there are various sources
+available about mixing Fortran 77 and C codes). On the other hand, F90
+module specifications are highly compiler dependent and sometimes it
+is not even possible to access F90 module objects from C (at least,
+not directly, see remark about MIPSPro 7 Compilers). But using some
+tricks (described below), the pointers to F90 module objects can be
+determined in runtime providing a compiler independent solution.
+
+To use Fortran objects from Python in unified manner, \fpy introduces
+\texttt{PyFortranObject} to hold pointers of the Fortran objects and
+the corresponing wrapper functions. In fact, \texttt{PyFortranObject}
+does much more: it generates documentation strings in run-time (for
+items in \texttt{COMMON} blocks and data in F90 modules), provides
+methods for accessing Fortran data and for calling Fortran routines,
+etc.
+
+\section{\texttt{PyFortranObject}}
+\label{sec:pyfortobj}
+
+\texttt{PyFortranObject} is defined as follows
+\begin{verbatim}
+typedef struct {
+ PyObject_HEAD
+ int len; /* Number of attributes */
+ FortranDataDef *defs; /* An array of FortranDataDef's */
+ PyObject *dict; /* Fortran object attribute dictionary */
+} PyFortranObject;
+\end{verbatim}
+where \texttt{FortranDataDef} is
+\begin{verbatim}
+typedef struct {
+ char *name; /* attribute (array||routine) name */
+ int rank; /* array rank, 0 for scalar, max is F2PY_MAX_DIMS,
+ || rank=-1 for Fortran routine */
+ struct {int d[F2PY_MAX_DIMS];} dims; /* dimensions of the array, || not used */
+ int type; /* PyArray_<type> || not used */
+ char *data; /* pointer to array || Fortran routine */
+ void (*func)(); /* initialization function for
+ allocatable arrays:
+ func(&rank,dims,set_ptr_func,name,len(name))
+ || C/API wrapper for Fortran routine */
+ char *doc; /* documentation string; only recommended
+ for routines. */
+} FortranDataDef;
+\end{verbatim}
+In the following we demonstrate typical usages of
+\texttt{PyFortranObject}. Just relevant code fragments will be given.
+
+
+\section{Fortran 77 subroutine}
+\label{sec:f77subrout}
+
+Consider Fortran 77 subroutine
+\begin{verbatim}
+subroutine bar()
+end
+\end{verbatim}
+The corresponding \texttt{PyFortranObject} is defined in C as follows:
+\begin{verbatim}
+static char doc_bar[] = "bar()";
+static PyObject *c_bar(PyObject *self, PyObject *args,
+ PyObject *keywds, void (*f2py_func)()) {
+ static char *capi_kwlist[] = {NULL};
+ if (!PyArg_ParseTupleAndKeywords(args,keywds,"|:bar",capi_kwlist))
+ return NULL;
+ (*f2py_func)();
+ return Py_BuildValue("");
+}
+extern void F_FUNC(bar,BAR)();
+static FortranDataDef f2py_routines_def[] = {
+ {"bar",-1, {-1}, 0, (char *)F_FUNC(bar,BAR),(void*)c_bar,doc_bar},
+ {NULL}
+};
+void initfoo() {
+ <snip>
+ d = PyModule_GetDict(m);
+ PyDict_SetItemString(d, f2py_routines_def[0].name,
+ PyFortranObject_NewAsAttr(&f2py_routines_def[0]));
+}
+\end{verbatim}
+where CPP macro \texttt{F\_FUNC} defines how Fortran 77 routines are
+seen in C.
+In Python, Fortran subroutine \texttt{bar} is called as follows
+\begin{verbatim}
+>>> import foo
+>>> foo.bar()
+\end{verbatim}
+
+\section{Fortran 77 function}
+\label{sec:f77func}
+Consider Fortran 77 function
+\begin{verbatim}
+function bar()
+complex bar
+end
+\end{verbatim}
+The corresponding \texttt{PyFortranObject} is defined in C as in
+previous example but with the following changes:
+\begin{verbatim}
+static char doc_bar[] = "bar = bar()";
+static PyObject *c_bar(PyObject *self, PyObject *args,
+ PyObject *keywds, void (*f2py_func)()) {
+ complex_float bar;
+ static char *capi_kwlist[] = {NULL};
+ if (!PyArg_ParseTupleAndKeywords(args,keywds,"|:bar",capi_kwlist))
+ return NULL;
+ (*f2py_func)(&bar);
+ return Py_BuildValue("O",pyobj_from_complex_float1(bar));
+}
+extern void F_WRAPPEDFUNC(bar,BAR)();
+static FortranDataDef f2py_routines_def[] = {
+ {"bar",-1,{-1},0,(char *)F_WRAPPEDFUNC(bar,BAR),(void *)c_bar,doc_bar},
+ {NULL}
+};
+\end{verbatim}
+where CPP macro \texttt{F\_WRAPPEDFUNC} gives the pointer to the following
+Fortran 77 subroutine:
+\begin{verbatim}
+subroutine f2pywrapbar (barf2pywrap)
+external bar
+complex bar, barf2pywrap
+barf2pywrap = bar()
+end
+\end{verbatim}
+With these hooks, calling Fortran functions returning composed types
+becomes platform/compiler independent.
+
+
+\section{\texttt{COMMON} block data}
+\label{sec:commondata}
+
+Consider Fortran 77 \texttt{COMMON} block
+\begin{verbatim}
+integer i
+COMMON /bar/ i
+\end{verbatim}
+In order to access the variable \texttt{i} from Python,
+\texttt{PyFortranObject} is defined as follows:
+\begin{verbatim}
+static FortranDataDef f2py_bar_def[] = {
+ {"i",0,{-1},PyArray_INT},
+ {NULL}
+};
+static void f2py_setup_bar(char *i) {
+ f2py_bar_def[0].data = i;
+}
+extern void F_FUNC(f2pyinitbar,F2PYINITBAR)();
+static void f2py_init_bar() {
+ F_FUNC(f2pyinitbar,F2PYINITBAR)(f2py_setup_bar);
+}
+void initfoo() {
+ <snip>
+ PyDict_SetItemString(d, "bar", PyFortranObject_New(f2py_bar_def,f2py_init_bar));
+}
+\end{verbatim}
+where auxiliary Fortran function \texttt{f2pyinitbar} is defined as follows
+\begin{verbatim}
+subroutine f2pyinitbar(setupfunc)
+external setupfunc
+integer i
+common /bar/ i
+call setupfunc(i)
+end
+\end{verbatim}
+and it is called in \texttt{PyFortranObject\_New}.
+
+
+\section{Fortran 90 module subroutine}
+\label{sec:f90modsubrout}
+
+Consider
+\begin{verbatim}
+module fun
+ subroutine bar()
+ end subroutine bar
+end module fun
+\end{verbatim}
+\texttt{PyFortranObject} is defined as follows
+\begin{verbatim}
+static char doc_fun_bar[] = "fun.bar()";
+static PyObject *c_fun_bar(PyObject *self, PyObject *args,
+ PyObject *keywds, void (*f2py_func)()) {
+ static char *kwlist[] = {NULL};
+ if (!PyArg_ParseTupleAndKeywords(args,keywds,"",kwlist))
+ return NULL;
+ (*f2py_func)();
+ return Py_BuildValue("");
+}
+static FortranDataDef f2py_fun_def[] = {
+ {"bar",-1,{-1},0,NULL,(void *)c_fun_bar,doc_fun_bar},
+ {NULL}
+};
+static void f2py_setup_fun(char *bar) {
+ f2py_fun_def[0].data = bar;
+}
+extern void F_FUNC(f2pyinitfun,F2PYINITFUN)();
+static void f2py_init_fun() {
+ F_FUNC(f2pyinitfun,F2PYINITFUN)(f2py_setup_fun);
+}
+void initfoo () {
+ <snip>
+ PyDict_SetItemString(d, "fun", PyFortranObject_New(f2py_fun_def,f2py_init_fun));
+}
+\end{verbatim}
+where auxiliary Fortran function \texttt{f2pyinitfun} is defined as
+follows
+\begin{verbatim}
+subroutine f2pyinitfun(f2pysetupfunc)
+use fun
+external f2pysetupfunc
+call f2pysetupfunc(bar)
+end subroutine f2pyinitfun
+\end{verbatim}
+The following Python session demonstrates how to call Fortran 90
+module function \texttt{bar}:
+\begin{verbatim}
+>>> import foo
+>>> foo.fun.bar()
+\end{verbatim}
+
+\section{Fortran 90 module function}
+\label{sec:f90modfunc}
+
+Consider
+\begin{verbatim}
+module fun
+ function bar()
+ complex bar
+ end subroutine bar
+end module fun
+\end{verbatim}
+\texttt{PyFortranObject} is defined as follows
+\begin{verbatim}
+static char doc_fun_bar[] = "bar = fun.bar()";
+static PyObject *c_fun_bar(PyObject *self, PyObject *args,
+ PyObject *keywds, void (*f2py_func)()) {
+ complex_float bar;
+ static char *kwlist[] = {NULL};
+ if (!PyArg_ParseTupleAndKeywords(args,keywds,"",kwlist))
+ return NULL;
+ (*f2py_func)(&bar);
+ return Py_BuildValue("O",pyobj_from_complex_float1(bar));
+}
+static FortranDataDef f2py_fun_def[] = {
+ {"bar",-1,{-1},0,NULL,(void *)c_fun_bar,doc_fun_bar},
+ {NULL}
+};
+static void f2py_setup_fun(char *bar) {
+ f2py_fun_def[0].data = bar;
+}
+extern void F_FUNC(f2pyinitfun,F2PYINITFUN)();
+static void f2py_init_fun() {
+ F_FUNC(f2pyinitfun,F2PYINITFUN)(f2py_setup_fun);
+}
+void initfoo() {
+ <snip>
+ PyDict_SetItemString(d, "fun", PyFortranObject_New(f2py_fun_def,f2py_init_fun));
+}
+\end{verbatim}
+where
+\begin{verbatim}
+subroutine f2pywrap_fun_bar (barf2pywrap)
+use fun
+complex barf2pywrap
+barf2pywrap = bar()
+end
+
+subroutine f2pyinitfun(f2pysetupfunc)
+external f2pysetupfunc,f2pywrap_fun_bar
+call f2pysetupfunc(f2pywrap_fun_bar)
+end
+\end{verbatim}
+
+
+\section{Fortran 90 module data}
+\label{sec:f90moddata}
+
+Consider
+\begin{verbatim}
+module fun
+ integer i
+end module fun
+\end{verbatim}
+Then
+\begin{verbatim}
+static FortranDataDef f2py_fun_def[] = {
+ {"i",0,{-1},PyArray_INT},
+ {NULL}
+};
+static void f2py_setup_fun(char *i) {
+ f2py_fun_def[0].data = i;
+}
+extern void F_FUNC(f2pyinitfun,F2PYINITFUN)();
+static void f2py_init_fun() {
+ F_FUNC(f2pyinitfun,F2PYINITFUN)(f2py_setup_fun);
+}
+void initfoo () {
+ <snip>
+ PyDict_SetItemString(d, "fun",
+ PyFortranObject_New(f2py_fun_def,f2py_init_fun));
+}
+\end{verbatim}
+where
+\begin{verbatim}
+subroutine f2pyinitfun(f2pysetupfunc)
+use fun
+external f2pysetupfunc
+call f2pysetupfunc(i)
+end subroutine f2pyinitfun
+\end{verbatim}
+Example usage in Python:
+\begin{verbatim}
+>>> import foo
+>>> foo.fun.i = 4
+\end{verbatim}
+
+\section{Fortran 90 module allocatable array}
+\label{sec:f90modallocarr}
+
+Consider
+\begin{verbatim}
+module fun
+ real, allocatable :: r(:)
+end module fun
+\end{verbatim}
+Then
+\begin{verbatim}
+static FortranDataDef f2py_fun_def[] = {
+ {"r",1,{-1},PyArray_FLOAT},
+ {NULL}
+};
+static void f2py_setup_fun(void (*r)()) {
+ f2py_fun_def[0].func = r;
+}
+extern void F_FUNC(f2pyinitfun,F2PYINITFUN)();
+static void f2py_init_fun() {
+ F_FUNC(f2pyinitfun,F2PYINITFUN)(f2py_setup_fun);
+}
+void initfoo () {
+ <snip>
+ PyDict_SetItemString(d, "fun", PyFortranObject_New(f2py_fun_def,f2py_init_fun));
+}
+\end{verbatim}
+where
+\begin{verbatim}
+subroutine f2py_fun_getdims_r(r,s,f2pysetdata)
+use fun, only: d => r
+external f2pysetdata
+logical ns
+integer s(*),r,i,j
+ns = .FALSE.
+if (allocated(d)) then
+ do i=1,r
+ if ((size(d,r-i+1).ne.s(i)).and.(s(i).ge.0)) then
+ ns = .TRUE.
+ end if
+ end do
+ if (ns) then
+ deallocate(d)
+ end if
+end if
+if ((.not.allocated(d)).and.(s(1).ge.1)) then
+ allocate(d(s(1)))
+end if
+if (allocated(d)) then
+ do i=1,r
+ s(i) = size(d,r-i+1)
+ end do
+end if
+call f2pysetdata(d,allocated(d))
+end subroutine f2py_fun_getdims_r
+
+subroutine f2pyinitfun(f2pysetupfunc)
+use fun
+external f2pysetupfunc,f2py_fun_getdims_r
+call f2pysetupfunc(f2py_fun_getdims_r)
+end subroutine f2pyinitfun
+\end{verbatim}
+Usage in Python:
+\begin{verbatim}
+>>> import foo
+>>> foo.fun.r = [1,2,3,4]
+\end{verbatim}
+
+\section{Callback subroutine}
+\label{sec:cbsubr}
+
+Thanks to Travis Oliphant for working out the basic idea of the
+following callback mechanism.
+
+Consider
+\begin{verbatim}
+subroutine fun(bar)
+external bar
+call bar(1)
+end
+\end{verbatim}
+Then
+\begin{verbatim}
+static char doc_foo8_fun[] = "
+Function signature:
+ fun(bar,[bar_extra_args])
+Required arguments:
+ bar : call-back function
+Optional arguments:
+ bar_extra_args := () input tuple
+Call-back functions:
+ def bar(e_1_e): return
+ Required arguments:
+ e_1_e : input int";
+static PyObject *foo8_fun(PyObject *capi_self, PyObject *capi_args,
+ PyObject *capi_keywds, void (*f2py_func)()) {
+ PyObject *capi_buildvalue = NULL;
+ PyObject *bar_capi = Py_None;
+ PyTupleObject *bar_xa_capi = NULL;
+ PyTupleObject *bar_args_capi = NULL;
+ jmp_buf bar_jmpbuf;
+ int bar_jmpbuf_flag = 0;
+ int bar_nofargs_capi = 0;
+ static char *capi_kwlist[] = {"bar","bar_extra_args",NULL};
+
+ if (!PyArg_ParseTupleAndKeywords(capi_args,capi_keywds,\
+ "O!|O!:foo8.fun",\
+ capi_kwlist,&PyFunction_Type,&bar_capi,&PyTuple_Type,&bar_xa_capi))
+ goto capi_fail;
+
+ bar_nofargs_capi = cb_bar_in_fun__user__routines_nofargs;
+ if (create_cb_arglist(bar_capi,bar_xa_capi,1,0,
+ &cb_bar_in_fun__user__routines_nofargs,&bar_args_capi)) {
+ if ((PyErr_Occurred())==NULL)
+ PyErr_SetString(foo8_error,"failed in processing argument list for call-back bar." );
+ goto capi_fail;
+ }
+
+ SWAP(bar_capi,cb_bar_in_fun__user__routines_capi,PyObject);
+ SWAP(bar_args_capi,cb_bar_in_fun__user__routines_args_capi,PyTupleObject);
+ memcpy(&bar_jmpbuf,&cb_bar_in_fun__user__routines_jmpbuf,sizeof(jmp_buf));
+ bar_jmpbuf_flag = 1;
+
+ if ((setjmp(cb_bar_in_fun__user__routines_jmpbuf))) {
+ if ((PyErr_Occurred())==NULL)
+ PyErr_SetString(foo8_error,"Failure of a callback function");
+ goto capi_fail;
+ } else
+ (*f2py_func)(cb_bar_in_fun__user__routines);
+
+ capi_buildvalue = Py_BuildValue("");
+capi_fail:
+
+ if (bar_jmpbuf_flag) {
+ cb_bar_in_fun__user__routines_capi = bar_capi;
+ Py_DECREF(cb_bar_in_fun__user__routines_args_capi);
+ cb_bar_in_fun__user__routines_args_capi = bar_args_capi;
+ cb_bar_in_fun__user__routines_nofargs = bar_nofargs_capi;
+ memcpy(&cb_bar_in_fun__user__routines_jmpbuf,&bar_jmpbuf,sizeof(jmp_buf));
+ bar_jmpbuf_flag = 0;
+ }
+ return capi_buildvalue;
+}
+extern void F_FUNC(fun,FUN)();
+static FortranDataDef f2py_routine_defs[] = {
+ {"fun",-1,{-1},0,(char *)F_FUNC(fun,FUN),(void *)foo8_fun,doc_foo8_fun},
+ {NULL}
+};
+void initfoo8 () {
+ <snip>
+ PyDict_SetItemString(d, f2py_routine_defs[0].name,
+ PyFortranObject_NewAsAttr(&f2py_routine_defs[0]));
+}
+\end{verbatim}
+where
+\begin{verbatim}
+PyObject *cb_bar_in_fun__user__routines_capi = Py_None;
+PyTupleObject *cb_bar_in_fun__user__routines_args_capi = NULL;
+int cb_bar_in_fun__user__routines_nofargs = 0;
+jmp_buf cb_bar_in_fun__user__routines_jmpbuf;
+static void cb_bar_in_fun__user__routines (int *e_1_e_cb_capi) {
+ PyTupleObject *capi_arglist = cb_bar_in_fun__user__routines_args_capi;
+ PyObject *capi_return = NULL;
+ PyObject *capi_tmp = NULL;
+ int capi_j,capi_i = 0;
+
+ int e_1_e=(*e_1_e_cb_capi);
+ if (capi_arglist == NULL)
+ goto capi_fail;
+ if (cb_bar_in_fun__user__routines_nofargs>capi_i)
+ if (PyTuple_SetItem((PyObject *)capi_arglist,capi_i++,pyobj_from_int1(e_1_e)))
+ goto capi_fail;
+
+ capi_return = PyEval_CallObject(cb_bar_in_fun__user__routines_capi,
+ (PyObject *)capi_arglist);
+
+ if (capi_return == NULL)
+ goto capi_fail;
+ if (capi_return == Py_None) {
+ Py_DECREF(capi_return);
+ capi_return = Py_BuildValue("()");
+ }
+ else if (!PyTuple_Check(capi_return)) {
+ capi_tmp = capi_return;
+ capi_return = Py_BuildValue("(O)",capi_tmp);
+ Py_DECREF(capi_tmp);
+ }
+ capi_j = PyTuple_Size(capi_return);
+ capi_i = 0;
+ goto capi_return_pt;
+capi_fail:
+ fprintf(stderr,"Call-back cb_bar_in_fun__user__routines failed.\n");
+ Py_XDECREF(capi_return);
+ longjmp(cb_bar_in_fun__user__routines_jmpbuf,-1);
+capi_return_pt:
+ ;
+}
+\end{verbatim}
+Usage in Python:
+\begin{verbatim}
+>>> import foo8 as foo
+>>> def bar(i): print 'In bar i=',i
+...
+>>> foo.fun(bar)
+In bar i= 1
+\end{verbatim}
+
+\end{document}
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End:
diff --git a/numpy/f2py/doc/index.html b/numpy/f2py/doc/index.html
new file mode 100644
index 000000000..e162ed41a
--- /dev/null
+++ b/numpy/f2py/doc/index.html
@@ -0,0 +1,264 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
+<HTML>
+<HEAD>
+<META name="Author" content="Pearu Peterson">
+<!-- You may add here some keywords (comma separeted list) -->
+<META name="Keywords" content="fortran,python,interface,f2py,f2py2e,wrapper,fpig">
+<TITLE>F2PY - Fortran to Python Interface Generator</TITLE>
+<LINK rel="stylesheet" type="text/css" href="/styles/userstyle.css">
+</HEAD>
+
+<BODY>
+<!-- Begin of user text -->
+<H1>F2PY &shy; Fortran to Python Interface Generator</H1>
+by <em>Pearu Peterson</em>
+
+<h2>What's new?</h2>
+
+See <a href="NEWS.txt">NEWS.txt</a> for the latest changes in <code>f2py</code>.
+<dl>
+ <dt> July ??, 2002
+ <dd> Implemented prototype calculator, complete tests for scalar F77
+ functions, --help-compiler option. Fixed number of bugs and
+ removed obsolete features.
+ <dt> April 4, 2002
+ <dd> Fixed a nasty bug of copying one-dimensional non-contiguous arrays.
+ (Thanks to Travis O. for pointing this out).
+ <dt> March 26, 2002
+ <dd> Bug fixes, turned off F2PY_REPORT_ATEXIT by default.
+ <dt> March 13, 2002
+ <dd> MAC support, fixed incomplete dependency calculator, minor bug fixes.
+ <dt> March 3, 2002
+ <dd> Fixed memory leak and copying of multi-dimensional complex arrays.
+ <dt> <a href="oldnews.html">Old news</a>.
+</dl>
+
+<h2>Introduction</h2>
+
+Writing Python C/API wrappers for Fortran routines can be a very
+tedious task, especially if a Fortran routine takes more than 20
+arguments but only few of them are relevant for the problems that they
+solve. So, I have developed a tool that generates the C/API modules
+containing wrapper functions of Fortran routines. I call this
+tool as <em>F2PY &shy; Fortran to Python Interface Generator</em>.
+It is completely written in <a href="http://www.python.org">Python</a>
+language and can be called from the command line as <code>f2py</code>.
+<em>F2PY</em> (in NumPy) is released under the terms of the NumPy License.
+
+
+<h2><code>f2py</code>, Second Edition</h2>
+
+The development of <code>f2py</code> started in summer of 1999.
+For now (January, 2000) it has reached to stage of being a
+complete tool: it scans real Fortran code, creates signature file
+that the user can modify, constructs C/API module that can be
+complied and imported to Python, and it creates LaTeX documentation
+for wrapper functions. Below is a bit longer list of
+<code>f2py</code> features:
+<ol>
+ <li> <code>f2py</code> scans real Fortran codes and produces the signature files.
+ The syntax of the signature files is borrowed from the Fortran 90/95
+ language specification with some extensions.
+ <li> <code>f2py</code> generates a GNU Makefile that can be used
+ for building shared modules (see below for a list of supported
+ platforms/compilers). Starting from the third release,
+ <code>f2py</code> generates <code>setup_modulename.py</code> for
+ building extension modules using <code>distutils</code> tools.
+ <li> <code>f2py</code> uses the signature files to produce the wrappers for
+ Fortran 77 routines and their <code>COMMON</code> blocks.
+ <li> For <code>external</code> arguments <code>f2py</code> constructs a very flexible
+ call-back mechanism so that Python functions can be called from
+ Fortran.
+ <li> You can pass in almost arbitrary Python objects to wrapper
+ functions. If needed, <code>f2py</code> takes care of type-casting and
+ non-contiguous arrays.
+ <li> You can modify the signature files so that <code>f2py</code> will generate
+ wrapper functions with desired signatures. <code>depend()</code>
+ attribute is introduced to control the initialization order of the
+ variables. <code>f2py</code> introduces <code>intent(hide)</code>
+ attribute to remove
+ the particular argument from the argument list of the wrapper
+ function and <code>intent(c)</code> that is useful for wrapping C
+libraries. In addition, <code>optional</code> and
+<code>required</code>
+ attributes are introduced and employed.
+ <li> <code>f2py</code> supports almost all standard Fortran 77/90/95 constructs
+ and understands all basic Fortran types, including
+ (multi-dimensional, complex) arrays and character strings with
+ adjustable and assumed sizes/lengths.
+ <li> <code>f2py</code> generates a LaTeX document containing the
+ documentations of the wrapped functions (argument types, dimensions,
+ etc). The user can easily add some human readable text to the
+ documentation by inserting <code>note(&lt;LaTeX text&gt;)</code> attribute to
+ the definition of routine signatures.
+ <li> With <code>f2py</code> one can access also Fortran 90/95
+ module subroutines from Python.
+</ol>
+
+For more information, see the <a href="usersguide.html">User's
+Guide</a> of the tool. Windows users should also take a look at
+<a href="win32_notes.txt">f2py HOWTO for Win32</a> (its latest version
+can be found <a
+href="http://www.numpy.org/Members/eric/f2py_win32">here</a>).
+
+<h3>Requirements</h3>
+<ol>
+ <li> You'll need <a
+ href="http://www.python.org/download/">Python</a>
+ (1.5.2 or later, 2.2 is recommended) to run <code>f2py</code>
+ (because it uses exchanged module <code>re</code>).
+ To build generated extension modules with distutils setup script,
+ you'll need Python 2.x.
+ <li> You'll need <a
+ href="http://sourceforge.net/project/?group_id=1369">Numerical
+ Python</a>
+ (version 13 or later, 20.3 is recommended) to compile
+ C/API modules (because they use function
+ <code>PyArray_FromDimsAndDataAndDescr</code>)
+</ol>
+
+<h3>Download</h3>
+
+<dl>
+ <dt> User's Guide:
+ <dd> <a href="usersguide.html">usersguide.html</a>,
+ <a href="usersguide.pdf">usersguide.pdf</a>,
+ <a href="usersguide.ps.gz">usersguide.ps.gz</a>,
+ <a href="usersguide.dvi">usersguide.dvi</a>.
+ <dt> Snapshots of the fifth public release:
+ <dd> <a href="2.x">2.x</a>/<a href="2.x/F2PY-2-latest.tar.gz">F2PY-2-latest.tar.gz</a>
+ <dt> Snapshots of earlier releases:
+ <dd> <a href="rel-5.x">rel-5.x</a>, <a href="rel-4.x">rel-4.x</a>,
+ <a href="rel-3.x">rel-3.x</a>,
+ <a href="rel-2.x">rel-2.x</a>,<a href="rel-1.x">rel-1.x</a>,
+ <a href="rel-0.x">rel-0.x</a>
+</dl>
+
+<h3>Installation</h3>
+
+Unpack the source file, change to directory <code>f2py-?-???</code>
+and run <code>python setup.py install</code>. That's it!
+
+<h3>Platform/Compiler Related Notes</h3>
+
+<code>f2py</code> has been successfully tested on
+<ul>
+ <li> Intel Linux (MD7.0,RH6.1,RH4.2,Debian woody), Athlon Linux (RH6.1), Alpha Linux (RH5.2,RH6.1) with <a
+href="http://gcc.gnu.org/">gcc</a> (versions egcs-2.91.60,egcs-2.91.66, and 2.95.2).
+ <li> Intel Linux (MD7.0) with <a
+ href="http://www.psrv.com/index.html">Pacific-Sierra
+ Research</a> <a href="http://www.psrv.com/lnxf90.html">Personal
+ Linux VAST/f90 Fortran 90 compiler</a> (version V3.4N5).
+ <li> Intel Linux (RH6.1) with <a href="http://www.absoft.com/">Absoft F77/F90</a> compilers for Linux.
+ <li> IRIX64 with <a href="http://gcc.gnu.org/">gcc</a> (2.95.2) and <a
+href="http://www.sgi.com/developers/devtools/languages/mipspro.html">MIPSpro
+7 Compilers</a> (f77,f90,cc versions 7.30).
+ <li> Alpha Linux (RH5.2,RH6.1) with <a href="http://www.digital.com/fortran/linux/">Compaq Fortran </a> compiler (version V1.0-920).
+ <li> Linux with <a href="http://www.nag.co.uk/">NAGWare</a> Fortran
+ 95 compiler.
+ <li> <a href="http://developer.intel.com/software/products/compilers/f50/linux/">
+ Intel(R) Fortran Compiler for Linux</a>
+ <li> Windows 2000 with <a href="http://www.mingw.org">mingw32</a>.
+</ul>
+<code>f2py</code> will probably run on other UN*X systems as
+well. Additions to the list of platforms/compilers where
+<code>f2py</code> has been successfully used are most welcome.
+<P>
+<em>Note:</em>
+Using Compaq Fortran
+compiler on Alpha Linux is succesful unless when
+wrapping Fortran callback functions returning
+<code>COMPLEX</code>. This applies also for IRIX64.
+<P>
+<em>Note:</em>
+Fortran 90/95 module support is currently tested with Absoft F90, VAST/f90, Intel F90 compilers on Linux (MD7.0,Debian woody).
+
+
+<h3><a name="f2py-users">Mailing list</a></h3>
+
+There is a mailing list <a
+href="http://cens.ioc.ee/pipermail/f2py-users/">f2py-users</a>
+available for the users of the <code>f2py</code>
+program and it is open for discussion, questions, and answers. You can subscribe
+the list <a href="http://cens.ioc.ee/mailman/listinfo/f2py-users">here</a>.
+
+<h3><a href="http://cens.ioc.ee/cgi-bin/cvsweb/python/f2py2e/">CVS Repository</a></h3>
+
+<code>f2py</code> is being developed under <a href="http://www.sourcegear.com/CVS">CVS</a> and those who are
+interested in the really latest version of <code>f2py</code> (possibly
+unstable) can get it from the repository as follows:
+<ol>
+ <li> First you need to login (the password is <code>guest</code>):
+<pre>
+> cvs -d :pserver:anonymous@cens.ioc.ee:/home/cvs login
+</pre>
+ <li> and then do the checkout:
+<pre>
+> cvs -z6 -d :pserver:anonymous@cens.ioc.ee:/home/cvs checkout f2py2e
+</pre>
+ <li> In the directory <code>f2py2e</code> you can get the updates by hitting
+<pre>
+> cvs -z6 update -P -d
+</pre>
+</ol>
+You can browse <code>f2py</code> CVS repository <a href="http://cens.ioc.ee/cgi-bin/cvsweb/python/f2py2e/">here</a>.
+
+<h2>Related sites</h2>
+
+<ol>
+ <li> <a href="http://pfdubois.com/numpy/" target="_top">Numerical Python</a>.
+ <li> <a href="http://pyfortran.sourceforge.net/" target="_top">Pyfort</a> -- The Python-Fortran connection tool.
+ <li> <a href="http://starship.python.net/crew/hinsen/scientific.html" target="_top">Scientific Python</a>.
+ <li> <a href="http://numpy.org/" target="_top">SciPy</a> -- Scientific tools for Python (includes Multipack).
+ <li> <a href="http://www.fortran.com/fortran/" target="_top">The Fortran Company</a>.
+ <li> <a href="http://www.j3-fortran.org/" target="_top">Fortran Standards</a>.
+
+ <li> <a href="http://www.fortran.com/fortran/F77_std/rjcnf.html">American National Standard Programming Language FORTRAN ANSI(R) X3.9-1978</a>
+ <li> <a href="http://www.mathtools.net" target="_top">Mathtools.net</a> -- A technical computing portal for all scientific and engineering needs.
+
+</ol>
+
+<!-- End of user text -->
+<HR>
+<ADDRESS>
+<A href="http://validator.w3.org/"><IMG border=0 align=right src="/icons/vh40.gif" alt="Valid HTML 4.0!" height=31 width=88></A>
+<A href="http://cens.ioc.ee/~pearu/" target="_top">Pearu Peterson</A>
+<A href="mailto:pearu(at)ioc.ee">&lt;pearu(at)ioc.ee&gt;</A><BR>
+<!-- hhmts start -->
+Last modified: Fri Jan 20 14:55:12 MST 2006
+<!-- hhmts end -->
+</ADDRESS>
+<!-- You may want to comment the following line out when the document is final-->
+<!-- Check that the reference is right -->
+<!--A href="http://validator.w3.org/check?uri=http://cens.ioc.ee/projects/f2py2e/index.html;ss"> Submit this page for validation</A-->
+
+<p>
+<center>
+This <a href="http://www.ctv.es/USERS/irmina/pythonring.html">Python
+ring</a> site owned by <a href="mailto:pearu(at)ioc.ee">Pearu Peterson</a>.
+<br>
+[
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;id=12;prev5">Previous 5 Sites</a>
+|
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;id=12;prev">Previous</a>
+|
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;id=12;next">Next</a>
+|
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;id=12;next5">Next 5 Sites</a>
+|
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;random">Random Site</a>
+|
+ <a href="http://nav.webring.org/cgi-bin/navcgi?ring=python_ring;list">List Sites</a>
+]
+</center>
+<p>
+
+
+
+</BODY>
+
+
+</HTML>
+
+
+
diff --git a/numpy/f2py/doc/intro.tex b/numpy/f2py/doc/intro.tex
new file mode 100644
index 000000000..d9625b09c
--- /dev/null
+++ b/numpy/f2py/doc/intro.tex
@@ -0,0 +1,158 @@
+
+\section{Introduction}
+\label{sec:intro}
+
+\fpy is a command line tool that generates Python C/API modules for
+interfacing Fortran~77/90/95 codes and Fortran~90/95 modules from
+Python. In general, using \fpy an
+interface is produced in three steps:
+\begin{itemize}
+\item[(i)] \fpy scans Fortran sources and creates the so-called
+ \emph{signature} file; the signature file contains the signatures of
+ Fortran routines; the signatures are given in the free format of the
+ Fortran~90/95 language specification. Latest version of \fpy
+ generates also a make file for building shared module.
+ About currently supported compilers see the \fpy home page
+\item[(ii)] Optionally, the signature files can be modified manually
+ in order to dictate how the Fortran routines should be called or
+ seemed from the Python environment.
+\item[(iii)] \fpy reads the signature files and generates Python C/API
+ modules that can be compiled and imported to Python code. In
+ addition, a LaTeX document is generated that contains the
+ documentation of wrapped functions.
+\end{itemize}
+(Note that if you are satisfied with the default signature that \fpy
+generates in step (i), all three steps can be covered with just
+one call to \fpy --- by not specifying `\texttt{-h}' flag).
+Latest versions of \fpy support so-called \fpy directive that allows
+inserting various information about wrapping directly to Fortran
+source code as comments (\texttt{<comment char>f2py <signature statement>}).
+
+The following diagram illustrates the usage of the tool:
+\begin{verbatim}
+! Fortran file foo.f:
+ subroutine foo(a)
+ integer a
+ a = a + 5
+ end
+\end{verbatim}
+\begin{verbatim}
+! Fortran file bar.f:
+ function bar(a,b)
+ integer a,b,bar
+ bar = a + b
+ end
+\end{verbatim}
+\begin{itemize}
+\item[(i)] \shell{\fpy foo.f bar.f -m foobar -h foobar.pyf}
+\end{itemize}
+\begin{verbatim}
+!%f90
+! Signature file: foobar.pyf
+python module foobar ! in
+ interface ! in :foobar
+ subroutine foo(a) ! in :foobar:foo.f
+ integer intent(inout) :: a
+ end subroutine foo
+ function bar(a,b) ! in :foobar:bar.f
+ integer :: a
+ integer :: b
+ integer :: bar
+ end function bar
+ end interface
+end python module foobar
+\end{verbatim}
+\begin{itemize}
+\item[(ii)] Edit the signature file (here I made \texttt{foo}s
+ argument \texttt{a} to be \texttt{intent(inout)}, see
+ Sec.~\ref{sec:attributes}).
+\item[(iii)] \shell{\fpy foobar.pyf}
+\end{itemize}
+\begin{verbatim}
+/* Python C/API module: foobarmodule.c */
+...
+\end{verbatim}
+\begin{itemize}
+\item[(iv)] \shell{make -f Makefile-foobar}
+%\shell{gcc -shared -I/usr/include/python1.5/ foobarmodule.c\bs\\
+%foo.f bar.f -o foobarmodule.so}
+\end{itemize}
+\begin{verbatim}
+Python shared module: foobarmodule.so
+\end{verbatim}
+\begin{itemize}
+\item[(v)] Usage in Python:
+\end{itemize}
+\vspace*{-4ex}
+\begin{verbatim}
+>>> import foobar
+>>> print foobar.__doc__
+This module 'foobar' is auto-generated with f2py (version:1.174).
+The following functions are available:
+ foo(a)
+ bar = bar(a,b)
+.
+>>> print foobar.bar(2,3)
+5
+>>> from Numeric import *
+>>> a = array(3)
+>>> print a,foobar.foo(a),a
+3 None 8
+\end{verbatim}
+Information about how to call \fpy (steps (i) and (iii)) can be
+obtained by executing\\
+\shell{\fpy}\\
+This will print the usage instructions.
+ Step (iv) is system dependent
+(compiler and the locations of the header files \texttt{Python.h} and
+\texttt{arrayobject.h}), and so you must know how to compile a shared
+module for Python in you system.
+
+The next Section describes the step (ii) in more detail in order to
+explain how you can influence to the process of interface generation
+so that the users can enjoy more writing Python programs using your
+wrappers that call Fortran routines. Step (v) is covered in
+Sec.~\ref{sec:notes}.
+
+
+\subsection{Features}
+\label{sec:features}
+
+\fpy has the following features:
+\begin{enumerate}
+\item \fpy scans real Fortran codes and produces the signature files.
+ The syntax of the signature files is borrowed from the Fortran~90/95
+ language specification with some extensions.
+\item \fpy uses the signature files to produce the wrappers for
+ Fortran~77 routines and their \texttt{COMMON} blocks.
+\item For \texttt{external} arguments \fpy constructs a very flexible
+ call-back mechanism so that Python functions can be called from
+ Fortran.
+\item You can pass in almost arbitrary Python objects to wrapper
+ functions. If needed, \fpy takes care of type-casting and
+ non-contiguous arrays.
+\item You can modify the signature files so that \fpy will generate
+ wrapper functions with desired signatures. \texttt{depend()}
+ attribute is introduced to control the initialization order of the
+ variables. \fpy introduces \texttt{intent(hide)} attribute to remove
+ the particular argument from the argument list of the wrapper
+ function. In addition, \texttt{optional} and \texttt{required}
+ attributes are introduced and employed.
+\item \fpy supports almost all standard Fortran~77/90/95 constructs
+ and understands all basic Fortran types, including
+ (multi-dimensional, complex) arrays and character strings with
+ adjustable and assumed sizes/lengths.
+\item \fpy generates a LaTeX document containing the
+ documentations of the wrapped functions (argument types, dimensions,
+ etc). The user can easily add some human readable text to the
+ documentation by inserting \texttt{note(<LaTeX text>)} attribute to
+ the definition of routine signatures.
+\item \fpy generates a GNU make file that can be used for building
+ shared modules calling Fortran functions.
+\item \fpy supports wrapping Fortran 90/95 module routines.
+\end{enumerate}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
diff --git a/numpy/f2py/doc/multiarray/array_from_pyobj.c b/numpy/f2py/doc/multiarray/array_from_pyobj.c
new file mode 100644
index 000000000..7e0de9a74
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/array_from_pyobj.c
@@ -0,0 +1,323 @@
+/*
+ * File: array_from_pyobj.c
+ *
+ * Description:
+ * ------------
+ * Provides array_from_pyobj function that returns a contigious array
+ * object with the given dimensions and required storage order, either
+ * in row-major (C) or column-major (Fortran) order. The function
+ * array_from_pyobj is very flexible about its Python object argument
+ * that can be any number, list, tuple, or array.
+ *
+ * array_from_pyobj is used in f2py generated Python extension
+ * modules.
+ *
+ * Author: Pearu Peterson <pearu@cens.ioc.ee>
+ * Created: 13-16 January 2002
+ * $Id: array_from_pyobj.c,v 1.1 2002/01/16 18:57:33 pearu Exp $
+ */
+
+
+#define ARR_IS_NULL(arr,mess) \
+if (arr==NULL) { \
+ fprintf(stderr,"array_from_pyobj:" mess); \
+ return NULL; \
+}
+
+#define CHECK_DIMS_DEFINED(rank,dims,mess) \
+if (count_nonpos(rank,dims)) { \
+ fprintf(stderr,"array_from_pyobj:" mess); \
+ return NULL; \
+}
+
+#define HAS_PROPER_ELSIZE(arr,type_num) \
+ ((PyArray_DescrFromType(type_num)->elsize) == (arr)->descr->elsize)
+
+/* static */
+/* void f2py_show_args(const int type_num, */
+/* const int *dims, */
+/* const int rank, */
+/* const int intent) { */
+/* int i; */
+/* fprintf(stderr,"array_from_pyobj:\n\ttype_num=%d\n\trank=%d\n\tintent=%d\n",\ */
+/* type_num,rank,intent); */
+/* for (i=0;i<rank;++i) */
+/* fprintf(stderr,"\tdims[%d]=%d\n",i,dims[i]); */
+/* } */
+
+static
+int count_nonpos(const int rank,
+ const int *dims) {
+ int i=0,r=0;
+ while (i<rank) {
+ if (dims[i] <= 0) ++r;
+ ++i;
+ }
+ return r;
+}
+
+static void lazy_transpose(PyArrayObject* arr);
+static int check_and_fix_dimensions(const PyArrayObject* arr,
+ const int rank,
+ int *dims);
+static
+int array_has_column_major_storage(const PyArrayObject *ap);
+
+static
+PyArrayObject* array_from_pyobj(const int type_num,
+ int *dims,
+ const int rank,
+ const int intent,
+ PyObject *obj) {
+ /* Note about reference counting
+ -----------------------------
+ If the caller returns the array to Python, it must be done with
+ Py_BuildValue("N",arr).
+ Otherwise, if obj!=arr then the caller must call Py_DECREF(arr).
+ */
+
+/* f2py_show_args(type_num,dims,rank,intent); */
+
+ if (intent & F2PY_INTENT_CACHE) {
+ /* Don't expect correct storage order or anything reasonable when
+ returning cache array. */
+ if ((intent & F2PY_INTENT_HIDE)
+ || (obj==Py_None)) {
+ PyArrayObject *arr = NULL;
+ CHECK_DIMS_DEFINED(rank,dims,"optional,intent(cache) must"
+ " have defined dimensions.\n");
+ arr = (PyArrayObject *)PyArray_FromDims(rank,dims,type_num);
+ ARR_IS_NULL(arr,"FromDims failed: optional,intent(cache)\n");
+ if (intent & F2PY_INTENT_OUT)
+ Py_INCREF(arr);
+ return arr;
+ }
+ if (PyArray_Check(obj)
+ && ISCONTIGUOUS((PyArrayObject *)obj)
+ && HAS_PROPER_ELSIZE((PyArrayObject *)obj,type_num)
+ ) {
+ if (check_and_fix_dimensions((PyArrayObject *)obj,rank,dims))
+ return NULL; /*XXX: set exception */
+ if (intent & F2PY_INTENT_OUT)
+ Py_INCREF(obj);
+ return (PyArrayObject *)obj;
+ }
+ ARR_IS_NULL(NULL,"intent(cache) must be contiguous array with a proper elsize.\n");
+ }
+
+ if (intent & F2PY_INTENT_HIDE) {
+ PyArrayObject *arr = NULL;
+ CHECK_DIMS_DEFINED(rank,dims,"intent(hide) must have defined dimensions.\n");
+ arr = (PyArrayObject *)PyArray_FromDims(rank,dims,type_num);
+ ARR_IS_NULL(arr,"FromDims failed: intent(hide)\n");
+ if (intent & F2PY_INTENT_OUT) {
+ if ((!(intent & F2PY_INTENT_C)) && (rank>1)) {
+ lazy_transpose(arr);
+ arr->flags &= ~CONTIGUOUS;
+ }
+ Py_INCREF(arr);
+ }
+ return arr;
+ }
+
+ if (PyArray_Check(obj)) { /* here we have always intent(in) or
+ intent(inout) */
+
+ PyArrayObject *arr = (PyArrayObject *)obj;
+ int is_cont = (intent & F2PY_INTENT_C) ?
+ (ISCONTIGUOUS(arr)) : (array_has_column_major_storage(arr));
+
+ if (check_and_fix_dimensions(arr,rank,dims))
+ return NULL; /*XXX: set exception */
+
+ if ((intent & F2PY_INTENT_COPY)
+ || (! (is_cont
+ && HAS_PROPER_ELSIZE(arr,type_num)
+ && PyArray_CanCastSafely(arr->descr->type_num,type_num)))) {
+ PyArrayObject *tmp_arr = NULL;
+ if (intent & F2PY_INTENT_INOUT) {
+ ARR_IS_NULL(NULL,"intent(inout) array must be contiguous and"
+ " with a proper type and size.\n")
+ }
+ if ((rank>1) && (! (intent & F2PY_INTENT_C)))
+ lazy_transpose(arr);
+ if (PyArray_CanCastSafely(arr->descr->type_num,type_num)) {
+ tmp_arr = (PyArrayObject *)PyArray_CopyFromObject(obj,type_num,0,0);
+ ARR_IS_NULL(arr,"CopyFromObject failed: array.\n");
+ } else {
+ tmp_arr = (PyArrayObject *)PyArray_FromDims(arr->nd,
+ arr->dimensions,
+ type_num);
+ ARR_IS_NULL(tmp_arr,"FromDims failed: array with unsafe cast.\n");
+ if (copy_ND_array(arr,tmp_arr))
+ ARR_IS_NULL(NULL,"copy_ND_array failed: array with unsafe cast.\n");
+ }
+ if ((rank>1) && (! (intent & F2PY_INTENT_C))) {
+ lazy_transpose(arr);
+ lazy_transpose(tmp_arr);
+ tmp_arr->flags &= ~CONTIGUOUS;
+ }
+ arr = tmp_arr;
+ }
+ if (intent & F2PY_INTENT_OUT)
+ Py_INCREF(arr);
+ return arr;
+ }
+
+ if ((obj==Py_None) && (intent & F2PY_OPTIONAL)) {
+ PyArrayObject *arr = NULL;
+ CHECK_DIMS_DEFINED(rank,dims,"optional must have defined dimensions.\n");
+ arr = (PyArrayObject *)PyArray_FromDims(rank,dims,type_num);
+ ARR_IS_NULL(arr,"FromDims failed: optional.\n");
+ if (intent & F2PY_INTENT_OUT) {
+ if ((!(intent & F2PY_INTENT_C)) && (rank>1)) {
+ lazy_transpose(arr);
+ arr->flags &= ~CONTIGUOUS;
+ }
+ Py_INCREF(arr);
+ }
+ return arr;
+ }
+
+ if (intent & F2PY_INTENT_INOUT) {
+ ARR_IS_NULL(NULL,"intent(inout) argument must be an array.\n");
+ }
+
+ {
+ PyArrayObject *arr = (PyArrayObject *) \
+ PyArray_ContiguousFromObject(obj,type_num,0,0);
+ ARR_IS_NULL(arr,"ContiguousFromObject failed: not a sequence.\n");
+ if (check_and_fix_dimensions(arr,rank,dims))
+ return NULL; /*XXX: set exception */
+ if ((rank>1) && (! (intent & F2PY_INTENT_C))) {
+ PyArrayObject *tmp_arr = NULL;
+ lazy_transpose(arr);
+ arr->flags &= ~CONTIGUOUS;
+ tmp_arr = (PyArrayObject *) PyArray_CopyFromObject((PyObject *)arr,type_num,0,0);
+ Py_DECREF(arr);
+ arr = tmp_arr;
+ ARR_IS_NULL(arr,"CopyFromObject(Array) failed: intent(fortran)\n");
+ lazy_transpose(arr);
+ arr->flags &= ~CONTIGUOUS;
+ }
+ if (intent & F2PY_INTENT_OUT)
+ Py_INCREF(arr);
+ return arr;
+ }
+
+}
+
+ /*****************************************/
+ /* Helper functions for array_from_pyobj */
+ /*****************************************/
+
+static
+int array_has_column_major_storage(const PyArrayObject *ap) {
+ /* array_has_column_major_storage(a) is equivalent to
+ transpose(a).iscontiguous() but more efficient.
+
+ This function can be used in order to decide whether to use a
+ Fortran or C version of a wrapped function. This is relevant, for
+ example, in choosing a clapack or flapack function depending on
+ the storage order of array arguments.
+ */
+ int sd;
+ int i;
+ sd = ap->descr->elsize;
+ for (i=0;i<ap->nd;++i) {
+ if (ap->dimensions[i] == 0) return 1;
+ if (ap->strides[i] != sd) return 0;
+ sd *= ap->dimensions[i];
+ }
+ return 1;
+}
+
+static
+void lazy_transpose(PyArrayObject* arr) {
+ /*
+ Changes the order of array strides and dimensions. This
+ corresponds to the lazy transpose of a Numeric array in-situ.
+ Note that this function is assumed to be used even times for a
+ given array. Otherwise, the caller should set flags &= ~CONTIGUOUS.
+ */
+ int rank,i,s,j;
+ rank = arr->nd;
+ if (rank < 2) return;
+
+ for(i=0,j=rank-1;i<rank/2;++i,--j) {
+ s = arr->strides[i];
+ arr->strides[i] = arr->strides[j];
+ arr->strides[j] = s;
+ s = arr->dimensions[i];
+ arr->dimensions[i] = arr->dimensions[j];
+ arr->dimensions[j] = s;
+ }
+}
+
+static
+int check_and_fix_dimensions(const PyArrayObject* arr,const int rank,int *dims) {
+ /*
+ This function fills in blanks (that are -1's) in dims list using
+ the dimensions from arr. It also checks that non-blank dims will
+ match with the corresponding values in arr dimensions.
+ */
+ const int arr_size = (arr->nd)?PyArray_Size((PyObject *)arr):1;
+
+ if (rank > arr->nd) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */
+ int new_size = 1;
+ int free_axe = -1;
+ int i;
+ /* Fill dims where -1 or 0; check dimensions; calc new_size; */
+ for(i=0;i<arr->nd;++i) {
+ if (dims[i] >= 0) {
+ if (dims[i]!=arr->dimensions[i]) {
+ fprintf(stderr,"%d-th dimension must be fixed to %d but got %d\n",
+ i,dims[i],arr->dimensions[i]);
+ return 1;
+ }
+ if (!dims[i]) dims[i] = 1;
+ } else {
+ dims[i] = arr->dimensions[i] ? arr->dimensions[i] : 1;
+ }
+ new_size *= dims[i];
+ }
+ for(i=arr->nd;i<rank;++i)
+ if (dims[i]>1) {
+ fprintf(stderr,"%d-th dimension must be %d but got 0 (not defined).\n",
+ i,dims[i]);
+ return 1;
+ } else if (free_axe<0)
+ free_axe = i;
+ else
+ dims[i] = 1;
+ if (free_axe>=0) {
+ dims[free_axe] = arr_size/new_size;
+ new_size *= dims[free_axe];
+ }
+ if (new_size != arr_size) {
+ fprintf(stderr,"confused: new_size=%d, arr_size=%d (maybe too many free"
+ " indices)\n",new_size,arr_size);
+ return 1;
+ }
+ } else {
+ int i;
+ for (i=rank;i<arr->nd;++i)
+ if (arr->dimensions[i]>1) {
+ fprintf(stderr,"too many axes: %d, expected rank=%d\n",arr->nd,rank);
+ return 1;
+ }
+ for (i=0;i<rank;++i)
+ if (dims[i]>=0) {
+ if (arr->dimensions[i]!=dims[i]) {
+ fprintf(stderr,"%d-th dimension must be fixed to %d but got %d\n",
+ i,dims[i],arr->dimensions[i]);
+ return 1;
+ }
+ if (!dims[i]) dims[i] = 1;
+ } else
+ dims[i] = arr->dimensions[i];
+ }
+ return 0;
+}
+
+/* End of file: array_from_pyobj.c */
diff --git a/numpy/f2py/doc/multiarray/bar.c b/numpy/f2py/doc/multiarray/bar.c
new file mode 100644
index 000000000..350636ea6
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/bar.c
@@ -0,0 +1,15 @@
+
+#include <stdio.h>
+
+void bar(int *a,int m,int n) {
+ int i,j;
+ printf("C:");
+ printf("m=%d, n=%d\n",m,n);
+ for (i=0;i<m;++i) {
+ printf("Row %d:\n",i+1);
+ for (j=0;j<n;++j)
+ printf("a(i=%d,j=%d)=%d\n",i,j,a[n*i+j]);
+ }
+ if (m*n)
+ a[0] = 7777;
+}
diff --git a/numpy/f2py/doc/multiarray/foo.f b/numpy/f2py/doc/multiarray/foo.f
new file mode 100644
index 000000000..f8c39c4d1
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/foo.f
@@ -0,0 +1,13 @@
+ subroutine foo(a,m,n)
+ integer a(m,n), m,n,i,j
+ print*, "F77:"
+ print*, "m=",m,", n=",n
+ do 100,i=1,m
+ print*, "Row ",i,":"
+ do 50,j=1,n
+ print*, "a(i=",i,",j=",j,") = ",a(i,j)
+ 50 continue
+ 100 continue
+ if (m*n.gt.0) a(1,1) = 77777
+ end
+
diff --git a/numpy/f2py/doc/multiarray/fortran_array_from_pyobj.txt b/numpy/f2py/doc/multiarray/fortran_array_from_pyobj.txt
new file mode 100644
index 000000000..c7b945c84
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/fortran_array_from_pyobj.txt
@@ -0,0 +1,284 @@
+
+ _____________________________________________________________
+ / Proposed internal structure for f2py generated extension \
+ < modules regarding the issues with different storage-orders >
+ \ of multi-dimensional matrices in Fortran and C. /
+ =============================================================
+
+Author: Pearu Peterson
+Date: 14 January, 2001
+
+Definitions:
+============
+
+In the following I will use the following definitions:
+
+1) A matrix is a mathematical object that represents a collection of
+ objects (elements), usually visualized in a table form, and one can
+ define a set of various (algebraic,etc) operations for matrices.
+ One can think of a matrix as a defintion of a certain mapping:
+ (i) |--> A(i)
+ where i belongs to the set of indices (an index itself can be a
+ sequence of objects, for example, a sequence of integers) and A(i)
+ is an element from a specified set, for example, a set of fruits.
+ Symbol A then denotes a matrix of fruits.
+
+2) An array is a storage object that represents a collection of
+ objects stored in a certain systematic way, for example, as an
+ ordered sequence in computer memory.
+
+In order to manipulate matrices using computers, one must store matrix
+elements in computer memory. In the following, I will assume that the
+elements of a matrix is stored as an array. There is no unique way in
+which order one should save matrix elements in the array. However, in
+C and Fortran programming languages, two, unfortunately different,
+conventions are used.
+
+Aim:
+====
+
+The purpose of this writing is to work out an interface for Python
+language so that C and Fortran routines can be called without
+bothering about how multi-dimensional matrices are stored in memory.
+For example, accessing a matrix element A[i,j] in Python will be
+equivalent to accessing the same matrix in C, using A[i][j], or in
+Fortran, using A(i,j).
+
+External conditions:
+====================
+
+In C programming language, it is custom to think that matrices are
+stored in the so-called row-major order, that is, a matrix is stored
+row by row, each row is as a contiguous array in computer memory.
+
+In Fortran programming language, matrices are stored in the
+column-major order: each column is a contiguous array in computer
+memory.
+
+In Python programming language, matrices can be stored using Python
+Numeric array() function that uses internally C approach, that is,
+elements of matrices are stored in row-major order. For example,
+A = array([[1,2,3],[4,5,6]]) represents a 2-by-3 matrix
+
+ / 1 2 3 \
+ | |
+ \ 4 5 6 /
+
+and its elements are stored in computer memory as the following array:
+
+ 1 2 3 4 5 6
+
+The same matrix, if used in Fortran, would be stored in computer
+memory as the following array:
+
+ 1 4 2 5 3 6
+
+Problem and solution:
+=====================
+
+A problem arises if one wants to use the same matrix both in C and in
+Fortran functions. Then the difference in storage order of a matrix
+elements must be taken into account. This technical detail can be very
+confusing even for an experienced programmer. This is because when
+passing a matrix to a Fortran subroutine, you must (mentally or
+programmically) transpose the matrix and when the subroutine returns,
+you must transpose it back.
+
+As will be discussed below, there is a way to overcome these
+difficulties in Python by creating an interface between Python and
+Fortran code layers that takes care of this transition internally. So
+that if you will read the manual pages of the Fortran codes, then you
+need not to think about how matrices are actually stored, the storage
+order will be the same, seemingly.
+
+Python / C / Fortran interface:
+===============================
+
+The interface between Python and Fortran codes will use the following
+Python Numeric feature: transposing a Numeric array does not involve
+copying of its data but just permuting the dimensions and strides of
+the array (the so-called lazy transpose).
+
+However, when passing a Numeric array data pointer to Fortran or C
+function, the data must be contiguous in memory. If it is not, then
+data is rearranged inplace. I don't think that it can be avoided.
+This is certainly a penalty hit to performance. However, one can
+easily avoid it by creating a Numeric array with the right storage
+order, so that after transposing, the array data will be contiguous in
+memory and the data pointer can safely passed on to the Fortran
+subroutine. This lazy-transpose operation will be done within the
+interface and users need not to bother about this detail anymore (that
+is, after they initialize Numeric array with matrix elements using the
+proper order. Of course, the proper order depends on the target
+function: C or Fortran). The interface should be smart enough to
+minimize the need of real-transpose operations and the need to
+additional memory storage as well.
+
+Statement of the problem:
+=========================
+
+Consider a M-by-N matrix A of integers, where M and N are the number A
+rows and columns, respectively.
+
+In Fortran language, the storing array of this matrix can be defined
+as follows:
+
+ integer A(M,N)
+
+in C:
+
+ int A[M][N];
+
+and in Python:
+
+ A = Numeric.zeros((M,N),'i')
+
+Consider also the corresponding Fortran and C functions that
+that use matrix arguments:
+
+Fortran:
+ subroutine FUN(A,M,N)
+ integer A(M,N)
+ ...
+ end
+C:
+ void cun(int *a,int m,int n) {
+ ...
+ }
+
+and the corresponding Python interface signatures:
+
+ def py_fun(a):
+ ...
+ def py_cun(a):
+ ...
+
+Main goal:
+==========
+
+Our goal is to generate Python C/API functions py_fun and py_cun such
+that their usage in Python would be identical. The cruical part of
+their implementation are in functions that take a PyObject and
+return a PyArrayObject such that it is contiguous and its data pointer
+is suitable for passing on to the arguments of C or Fortran functions.
+The prototypes of these functions are:
+
+PyArrayObject* fortran_array_from_pyobj(
+ int typecode,
+ int *dims,
+ int rank,
+ int intent,
+ PyObject *obj);
+
+and
+
+PyArrayObject* c_array_from_pyobj(
+ int typecode,
+ int *dims,
+ int rank,
+ int intent,
+ PyObject *obj);
+
+for wrapping Fortran and C functions, respectively.
+
+Pseudo-code for fortran_array_from_pyobj:
+=========================================
+
+if type(obj) is ArrayType:
+ #raise not check(len(ravel(obj)) >= dims[0]*dims[1]*...*dims[rank-1])
+ if obj.typecode is typecode:
+ if is_contiguous(obj):
+ transpose_data_inplace(obj) # real-transpose
+ set_transpose_strides(obj) # lazy-transpose
+ Py_INCREF(obj);
+ return obj
+ set_transpose_strides(obj)
+ if is_contiguous(obj):
+ set_transpose_strides(obj)
+ Py_INCREF(obj);
+ return obj
+ else:
+ tmp_obj = PyArray_ContiguousFromObject(obj,typecode,0,0)
+ swap_datapointer_and_typeinfo(obj,tmp_obj)
+ Py_DECREF(tmp_obj);
+ set_transpose_strides(obj)
+ Py_INCREF(obj);
+ return obj
+ else:
+ tmp_obj = PyArray_FromDims(rank,dims,typecode)
+ set_transpose_strides(tmp_obj)
+ if intent in [in,inout]:
+ copy_ND_array(obj,tmp_obj)
+ swap_datapointer_and_typeinfo(obj,tmp_obj)
+ Py_DECREF(tmp_obj);
+ Py_INCREF(obj);
+ return obj
+elif obj is None: # happens when only intent is 'hide'
+ tmp_obj = PyArray_FromDims(rank,dims,typecode)
+ if intent is out:
+ set_transpose_strides(tmp_obj)
+ # otherwise tmp_obj->data is used as a work array
+ Py_INCREF(tmp_obj)
+ return tmp_obj
+else:
+ tmp_obj = PyArray_ContiguousFromObject(obj,typecode,0,0)
+ #raise not check(len(ravel(obj)) >= dims[0]*dims[1]*...*dims[rank-1])
+ set_transpose_strides(tmp_obj)
+ transpose_data_inplace(tmp_obj)
+ Py_INCREF(tmp_obj)
+ return tmp_obj
+
+Notes:
+ 1) CPU expensive tasks are in transpose_data_inplace and
+ copy_ND_array, PyArray_ContiguousFromObject.
+ 2) Memory expensive tasks are in PyArray_FromDims,
+ PyArray_ContiguousFromObject
+ 3) Side-effects are expected when set_transpose_strides and
+ transpose_data_inplace are used. For example:
+ >>> a = Numeric([[1,2,3],[4,5,6]],'d')
+ >>> a.is_contiguous()
+ 1
+ >>> py_fun(a)
+ >>> a.typecode()
+ 'i'
+ >>> a.is_contiguous()
+ 0
+ >>> transpose(a).is_contiguous()
+ 1
+
+Pseudo-code for c_array_from_pyobj:
+===================================
+
+if type(obj) is ArrayType:
+ #raise not check(len(ravel(obj)) >= dims[0]*dims[1]*...*dims[rank-1])
+ if obj.typecode is typecode:
+ if is_contiguous(obj):
+ Py_INCREF(obj);
+ return obj
+ else:
+ tmp_obj = PyArray_ContiguousFromObject(obj,typecode,0,0)
+ swap_datapointer_and_typeinfo(obj,tmp_obj)
+ Py_DECREF(tmp_obj);
+ Py_INCREF(obj);
+ return obj
+ else:
+ tmp_obj = PyArray_FromDims(rank,dims,typecode)
+ if intent in [in,inout]:
+ copy_ND_array(obj,tmp_obj)
+ swap_datapointer_and_typeinfo(obj,tmp_obj)
+ Py_DECREF(tmp_obj);
+ Py_INCREF(obj);
+ return obj
+elif obj is None: # happens when only intent is 'hide'
+ tmp_obj = PyArray_FromDims(rank,dims,typecode)
+ Py_INCREF(tmp_obj)
+ return tmp_obj
+else:
+ tmp_obj = PyArray_ContiguousFromObject(obj,typecode,0,0)
+ #raise not check(len(ravel(obj)) >= dims[0]*dims[1]*...*dims[rank-1])
+ Py_INCREF(tmp_obj)
+ return tmp_obj
+
+
+14 January, 2002
+Pearu Peterson <pearu@cens.ioc.ee> \ No newline at end of file
diff --git a/numpy/f2py/doc/multiarray/fun.pyf b/numpy/f2py/doc/multiarray/fun.pyf
new file mode 100644
index 000000000..ed5d1923f
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/fun.pyf
@@ -0,0 +1,89 @@
+!%f90 -*- f90 -*-
+
+! Example:
+! Using f2py for wrapping multi-dimensional Fortran and C arrays
+! [NEW APPROACH, use it with f2py higher than 2.8.x]
+! $Id: fun.pyf,v 1.3 2002/01/18 10:06:50 pearu Exp $
+
+! Usage (with gcc compiler):
+! f2py -c fun.pyf foo.f bar.c
+
+python module fun ! in
+ interface ! in :fun
+
+! >>> from Numeric import *
+! >>> import fun
+! >>> a=array([[1,2,3],[4,5,6]])
+
+ subroutine foo(a,m,n) ! in :fun:foo.f
+ integer dimension(m,n) :: a
+ intent(in,out,copy) :: a
+ integer optional,check(shape(a,0)==m),depend(a) :: m=shape(a,0)
+ integer optional,check(shape(a,1)==n),depend(a) :: n=shape(a,1)
+ end subroutine foo
+
+! >>> print fun.foo.__doc__
+! foo - Function signature:
+! a = foo(a,[m,n])
+! Required arguments:
+! a : input rank-2 array('i') with bounds (m,n)
+! Optional arguments:
+! m := shape(a,0) input int
+! n := shape(a,1) input int
+! Return objects:
+! a : rank-2 array('i') with bounds (m,n)
+
+! >>> print fun.foo(a)
+! F77:
+! m= 2, n= 3
+! Row 1:
+! a(i= 1,j= 1) = 1
+! a(i= 1,j= 2) = 2
+! a(i= 1,j= 3) = 3
+! Row 2:
+! a(i= 2,j= 1) = 4
+! a(i= 2,j= 2) = 5
+! a(i= 2,j= 3) = 6
+! [[77777 2 3]
+! [ 4 5 6]]
+
+
+ subroutine bar(a,m,n)
+ intent(c)
+ intent(c) bar
+ integer dimension(m,n) :: a
+ intent(in,out) :: a
+ integer optional,check(shape(a,0)==m),depend(a) :: m=shape(a,0)
+ integer optional,check(shape(a,1)==n),depend(a) :: n=shape(a,1)
+ intent(in) m,n
+ end subroutine bar
+
+! >>> print fun.bar.__doc__
+! bar - Function signature:
+! a = bar(a,[m,n])
+! Required arguments:
+! a : input rank-2 array('i') with bounds (m,n)
+! Optional arguments:
+! m := shape(a,0) input int
+! n := shape(a,1) input int
+! Return objects:
+! a : rank-2 array('i') with bounds (m,n)
+
+! >>> print fun.bar(a)
+! C:m=2, n=3
+! Row 1:
+! a(i=0,j=0)=1
+! a(i=0,j=1)=2
+! a(i=0,j=2)=3
+! Row 2:
+! a(i=1,j=0)=4
+! a(i=1,j=1)=5
+! a(i=1,j=2)=6
+! [[7777 2 3]
+! [ 4 5 6]]
+
+ end interface
+end python module fun
+
+! This file was auto-generated with f2py (version:2.9.166).
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/multiarray/run.pyf b/numpy/f2py/doc/multiarray/run.pyf
new file mode 100644
index 000000000..bb12a439b
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/run.pyf
@@ -0,0 +1,91 @@
+!%f90 -*- f90 -*-
+
+! Example:
+! Using f2py for wrapping multi-dimensional Fortran and C arrays
+! [OLD APPROACH, do not use it with f2py higher than 2.8.x]
+! $Id: run.pyf,v 1.1 2002/01/14 15:49:46 pearu Exp $
+
+! Usage (with gcc compiler):
+! f2py -c run.pyf foo.f bar.c -DNO_APPEND_FORTRAN
+
+python module run ! in
+ interface ! in :run
+
+! >>> from Numeric import *
+! >>> import run
+! >>> a=array([[1,2,3],[4,5,6]],'i')
+
+ subroutine foo(a,m,n)
+ fortranname foo_
+ integer dimension(m,n) :: a
+ integer optional,check(shape(a,1)==m),depend(a) :: m=shape(a,1)
+ integer optional,check(shape(a,0)==n),depend(a) :: n=shape(a,0)
+ end subroutine foo
+
+! >>> print run.foo.__doc__
+! foo - Function signature:
+! foo(a,[m,n])
+! Required arguments:
+! a : input rank-2 array('i') with bounds (n,m)
+! Optional arguments:
+! m := shape(a,1) input int
+! n := shape(a,0) input int
+
+! >>> run.foo(a)
+! F77:
+! m= 3, n= 2
+! Row 1:
+! a(i= 1,j= 1) = 1
+! a(i= 1,j= 2) = 4
+! Row 2:
+! a(i= 2,j= 1) = 2
+! a(i= 2,j= 2) = 5
+! Row 3:
+! a(i= 3,j= 1) = 3
+! a(i= 3,j= 2) = 6
+
+! >>> run.foo(transpose(a))
+! F77:
+! m= 2, n= 3
+! Row 1:
+! a(i= 1,j= 1) = 1
+! a(i= 1,j= 2) = 2
+! a(i= 1,j= 3) = 3
+! Row 2:
+! a(i= 2,j= 1) = 4
+! a(i= 2,j= 2) = 5
+! a(i= 2,j= 3) = 6
+
+ subroutine bar(a,m,n)
+ intent(c)
+ integer dimension(m,n) :: a
+ integer optional,check(shape(a,0)==m),depend(a) :: m=shape(a,0)
+ integer optional,check(shape(a,1)==n),depend(a) :: n=shape(a,1)
+ end subroutine bar
+
+! >>> print run.bar.__doc__
+! bar - Function signature:
+! bar(a,[m,n])
+! Required arguments:
+! a : rank-2 array('i') with bounds (m,n)
+! Optional arguments:
+! m := shape(a,0) int
+! n := shape(a,1) int
+
+! >>> run.bar(a)
+! C:m=2, n=3
+! Row 1:
+! a(i=0,j=0)=1
+! a(i=0,j=1)=2
+! a(i=0,j=2)=3
+! Row 2:
+! a(i=1,j=0)=4
+! a(i=1,j=1)=5
+! a(i=1,j=2)=6
+
+
+ end interface
+end python module run
+
+! This file was auto-generated with f2py (version:2.8.172).
+! See http://cens.ioc.ee/projects/f2py2e/
diff --git a/numpy/f2py/doc/multiarray/transpose.txt b/numpy/f2py/doc/multiarray/transpose.txt
new file mode 100644
index 000000000..a8d41e6df
--- /dev/null
+++ b/numpy/f2py/doc/multiarray/transpose.txt
@@ -0,0 +1,1127 @@
+From: Phil Garner (garner@signal.dra.hmg.gb)
+ Subject: In place matrix transpose
+ Newsgroups: sci.math.num-analysis
+ Date: 1993-08-05 06:35:06 PST
+
+
+Someone was talking about matrix transposes earlier on. It's a
+curious subject. I found that an in-place transpose is about 12 times
+slower than the trivial copying method.
+
+Here's somthing I nicked from netlib and translated into C to do the
+in-place one for those that are interested: (matrix must be in one
+block)
+
+
+typedef float scalar; /* float -> double for double precision */
+
+/*
+ * In Place Matrix Transpose
+ * From: Algorithm 380 collected algorithms from ACM.
+ * Converted to C by Phil Garner
+ *
+ * Algorithm appeared in comm. ACM, vol. 13, no. 05,
+ * p. 324.
+ */
+int trans(scalar *a, unsigned m, unsigned n, int *move, int iwrk)
+{
+ scalar b;
+ int i, j, k, i1, i2, ia, ib, ncount, kmi, Max, mn;
+
+ /*
+ * a is a one-dimensional array of length mn=m*n, which
+ * contains the m by n matrix to be transposed.
+ * move is a one-dimensional array of length iwrk
+ * used to store information to speed up the process. the
+ * value iwrk=(m+n)/2 is recommended. Return val indicates the
+ * success or failure of the routine.
+ * normal return = 0
+ * errors
+ * -2, iwrk negative or zero.
+ * ret > 0, (should never occur). in this case
+ * we set ret equal to the final value of i when the search
+ * is completed but some loops have not been moved.
+ * check arguments and initialise
+ */
+
+ /* Function Body */
+ if (n < 2 || m < 2)
+ return 0;
+ if (iwrk < 1)
+ return -2;
+
+ /* If matrix is square, exchange elements a(i,j) and a(j,i). */
+ if (n == m)
+ {
+ for (i = 0; i < m - 1; ++i)
+ for (j = i + 1; j < m; ++j)
+ {
+ i1 = i + j * m;
+ i2 = j + i * m;
+ b = a[i1];
+ a[i1] = a[i2];
+ a[i2] = b;
+ } return 0;
+ }
+
+ /* Non square matrix */
+ ncount = 2;
+ for (i = 0; i < iwrk; ++i)
+ move[i] = 0;
+
+ if (n > 2)
+ /* Count number,ncount, of single points. */
+ for (ia = 1; ia < n - 1; ++ia)
+ {
+ ib = ia * (m - 1) / (n - 1);
+ if (ia * (m - 1) != ib * (n - 1))
+ continue;
+ ++ncount;
+ i = ia * m + ib;
+ if (i > iwrk)
+ continue;
+ move[i] = 1;
+ }
+
+ /* Set initial values for search. */
+ mn = m * n;
+ k = mn - 1;
+ kmi = k - 1;
+ Max = mn;
+ i = 1;
+
+ while (1)
+ {
+ /* Rearrange elements of a loop. */
+ /* At least one loop must be re-arranged. */
+ i1 = i;
+ while (1)
+ {
+ b = a[i1];
+ while (1)
+ {
+ i2 = n * i1 - k * (i1 / m);
+ if (i1 <= iwrk)
+ move[i1 - 1] = 2;
+ ++ncount;
+ if (i2 == i || i2 >= kmi)
+ {
+ if (Max == kmi || i2 == i)
+ break;
+ Max = kmi;
+ }
+ a[i1] = a[i2];
+ i1 = i2;
+ }
+
+ /* Test for symmetric pair of loops. */
+ a[i1] = b;
+ if (ncount >= mn)
+ return 0;
+ if (i2 == Max || Max == kmi)
+ break;
+ Max = kmi;
+ i1 = Max;
+ }
+
+ /* Search for loops to be rearranged. */
+ while (1)
+ {
+ Max = k - i;
+ ++i;
+ kmi = k - i;
+ if (i > Max)
+ return i;
+ if (i <= iwrk)
+ {
+ if (move[i-1] < 1)
+ break;
+ continue;
+ }
+ if (i == n * i - k * (i / m))
+ continue;
+ i1 = i;
+ while (1)
+ {
+ i2 = n * i1 - k * (i1 / m);
+ if (i2 <= i || i2 >= Max)
+ break;
+ i1 = i2;
+ }
+ if (i2 == i)
+ break;
+ }
+ } /* End never reached */
+}
+
+--
+ ,----------------------------- ______
+ ____ | Phil Garner. \___| |/ \ \ ____
+/__/ `--, _L__L\_ | garner@signal.dra.hmg.gb | _|`---' \_/__/ `--,
+`-0---0-' `-0--0-' `--OO-------------------O-----' `---0---' `-0---0-'
+
+ From: Murray Dow (mld900@anusf.anu.edu.au)
+ Subject: Re: In place matrix transpose
+ Newsgroups: sci.math.num-analysis
+ Date: 1993-08-09 19:45:57 PST
+
+
+In article <23qmp3INN3gl@mentor.dra.hmg.gb>, garner@signal.dra.hmg.gb (Phil Garner) writes:
+|> Someone was talking about matrix transposes earlier on. It's a
+|> curious subject. I found that an in-place transpose is about 12 times
+|> slower than the trivial copying method.
+|>
+
+Algorithm 380 from CACM is sloweer than ALG 467. Here are my times
+from a VP2200 vector computer. Note that the CACM algorithms are scalar.
+Times are in seconds, for a 900*904 matrix:
+
+380 NAG 467 disc copy
+1.03 1.14 .391 .177
+
+Compare two vector algortihms, one I wrote and the second a matrix
+copy:
+
+My Alg Matrix copy
+.0095 .0097
+
+Conclusions: dont use Alg 380 from Netlib. If you have the available memory,
+do a matrix copy. If you don't have the memory, I will send you my algorithm
+when I have published it.
+--
+Murray Dow GPO Box 4 Canberra ACT 2601 Australia
+Supercomputer Facility Phone: +61 6 2495028
+Australian National University Fax: +61 6 2473425
+mld900@anusf.anu.edu.au
+
+=============================================================================
+
+From: Mark Smotherman (mark@hubcap.clemson.edu)
+ Subject: Matrix transpose benchmark [was Re: MIPS R8000 == TFP?]
+ Newsgroups: comp.arch, comp.benchmarks, comp.sys.super
+ Date: 1994-07-01 06:35:51 PST
+
+
+mccalpin@perelandra.cms.udel.edu (John D. McCalpin) writes:
+
+>
+>Of course, these results are all for the naive algorithm. I would be
+>interested to see what an efficient blocked algorithm looks like.
+>Anyone care to offer one? There is clearly a lot of performance
+>to be gained by the effort....
+
+Here is a matrix transpose benchmark generator. Enter something like
+
+ 10d10eij;
+
+and you get a benchmark program with tiles of size 10 for the i and j
+inner loops. Please email code improvements and flames.
+
+Enjoy!
+
+
+/*---------------------------------------------------------------------------
+
+ Matrix Transpose Generator
+
+ Copyright 1993, Dept. of Computer Science, Clemson University
+
+ Permission to use, copy, modify, and distribute this software and
+ its documentation for any purpose and without fee is hereby granted,
+ provided that the above copyright notice appears in all copies.
+
+ Clemson University and its Dept. of Computer Science make no
+ representations about the suitability of this software for any
+ purpose. It is provided "as is" without express or implied warranty.
+
+ Original author: Mark Smotherman
+
+ -------------------------------------------------------------------------*/
+
+
+/* tpgen.c version 1.0
+ *
+ * generate a matrix transpose loop nest, with tiling and unrolling
+ * (timing code using getrusage is included in the generated program)
+ *
+ * mark smotherman
+ * mark@cs.clemson.edu
+ * clemson university
+ * 9 july 1993
+ *
+ * a loop nest can be described by the order of its loop indices, so
+ * this program takes as input a simple language describing these indices:
+ * <number>d ==> generate tiling loop for index i with step size of <number>
+ * <number>e ==> generate tiling loop for index j with step size of <number>
+ * <number>i ==> generate loop for index i with unrolling factor of <number>
+ * <number>j ==> generate loop for index j with unrolling factor of <number>
+ * ; ==> input terminator (required)
+ * rules are:
+ * i,j tokens must appear
+ * if d appears, it must appear before i
+ * if e appears, it must appear before j
+ * ; must appear
+ * matrix size is controlled by #define N in this program.
+ *
+ * this code was adapted from mmgen.c v1.2 and extended to generate pre-
+ * condition loops for unrolling factors that do not evenly divide the
+ * matrix size (or the tiling step size for loop nests with a tiling loop).
+ * note that this program only provides a preconditioning loop for the
+ * innermost loop. unrolling factors for non-innermost loops that do not
+ * evenly divide the matrix size (or step size) are not supported.
+ *
+ * my interest in this program generator is to hook it to a sentence
+ * generator and a minimum execution time finder, that is
+ * while((sentence=sgen())!=NULL){
+ * genprogram=tpgen(sentence);
+ * system("cc -O4 genprogram.c");
+ * system("a.out >> tpresults");
+ * }
+ * findmintime(tpresults);
+ * this will find the optimum algorithm for the host system via an
+ * exhaustive search.
+ *
+ * please report bugs and suggestions for enhancements to me.
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#define N 500
+
+#define ALLOC1 temp1=(struct line *)malloc(sizeof(struct line));\
+temp1->indentcnt=indentcnt;
+
+#define LINK1 temp1->next=insertbefore;\
+insertafter->next=temp1;\
+insertafter=temp1;
+
+#define INSERT1 temp1->next=start;\
+start=temp1;
+
+#define ALLOC2 temp1=(struct line *)malloc(sizeof(struct line));\
+temp2=(struct line *)malloc(sizeof(struct line));\
+temp1->indentcnt=indentcnt;\
+temp2->indentcnt=indentcnt++;
+
+#define LINK2 temp1->next=temp2;\
+temp2->next=insertbefore;\
+insertafter->next=temp1;\
+insertafter=temp1;\
+insertbefore=temp2;
+
+struct line{ int indentcnt; char line[256]; struct line *next; };
+
+int indentcnt;
+int iflag,jflag;
+int ijflag,jiflag;
+int dflag,eflag;
+int counter;
+int iistep,jjstep;
+int iunroll,junroll;
+int precond;
+
+char c;
+int i,ttp,nt;
+char *p0;
+char tptype[80];
+char number[10];
+
+struct line *start,*head,*insertafter,*insertbefore,*temp1,*temp2;
+
+void processloop();
+void processstmt();
+
+main(){
+
+ indentcnt=0;
+ iflag=jflag=0;
+ ijflag=jiflag=0;
+ dflag=eflag=0;
+ iunroll=junroll=0;
+ counter=1;
+ precond=0;
+ ttp=0;
+
+ start=NULL;
+ ALLOC2
+ sprintf(temp1->line,"/* begin */\nt_start=second();\n");
+ sprintf(temp2->line,"/* end */\nt_end = second();\n");
+ head=temp1; temp1->next=temp2; temp2->next=NULL;
+ insertafter=temp1; insertbefore=temp2;
+
+ while((c=getchar())!=';'){
+ tptype[ttp++]=c;
+ if(isdigit(c)){
+ nt=0;
+ while(isdigit(c)){
+ number[nt++]=c;
+ c=getchar();
+ if(c==';'){ fprintf(stderr,"unexpected ;!\n"); exit(1); }
+ tptype[ttp++]=c;
+ }
+ number[nt]='\0';
+ sscanf(number,"%d",&counter);
+ }
+ switch(c){
+ case 'd':
+ if(iflag){ fprintf(stderr,"d cannot appear after i!\n"); exit(1); }
+ dflag++;
+ ALLOC1
+ sprintf(temp1->line,"#define IISTEP %d\n",counter);
+ INSERT1
+ iistep=counter;
+ counter=1;
+ ALLOC2
+ sprintf(temp1->line,"for(ii=0;ii<%d;ii+=IISTEP){\n",N);
+ sprintf(temp2->line,"}\n",N);
+ LINK2
+ ALLOC1
+ sprintf(temp1->line,"it=min(ii+IISTEP,%d);\n",N);
+ LINK1
+ break;
+ case 'e':
+ if(jflag){ fprintf(stderr,"e cannot appear after j!\n"); exit(1); }
+ eflag++;
+ ALLOC1
+ sprintf(temp1->line,"#define JJSTEP %d\n",counter);
+ INSERT1
+ jjstep=counter;
+ counter=1;
+ ALLOC2
+ sprintf(temp1->line,"for(jj=0;jj<%d;jj+=JJSTEP){\n",N);
+ sprintf(temp2->line,"}\n",N);
+ LINK2
+ ALLOC1
+ sprintf(temp1->line,"jt=min(jj+JJSTEP,%d);\n",N);
+ LINK1
+ break;
+ case 'i':
+ iunroll=counter;
+ counter=1;
+ iflag++; if(jflag) jiflag++;
+ if(dflag) precond=iistep%iunroll; else precond=N%iunroll;
+ if(precond&&(jiflag==0)){
+ fprintf(stderr,"unrolling factor for outer loop i\n");
+ fprintf(stderr," does not evenly divide matrix/step size!\n");
+ exit(1);
+ }
+ if(dflag&&(iunroll>1)&&(N%iistep)){
+ fprintf(stderr,"with unrolling of i, step size for tiled loop ii\n");
+ fprintf(stderr," does not evenly divide matrix size!\n");
+ exit(1);
+ }
+ processloop('i',dflag,iunroll,precond,junroll);
+ break;
+ case 'j':
+ junroll=counter;
+ counter=1;
+ jflag++; if(iflag) ijflag++;
+ if(eflag) precond=jjstep%junroll; else precond=N%junroll;
+ if(precond&&(ijflag==0)){
+ fprintf(stderr,"unrolling factor for outer loop j\n");
+ fprintf(stderr," does not evenly divide matrix/step size!\n");
+ exit(1);
+ }
+ if(eflag&&(junroll>1)&&(N%jjstep)){
+ fprintf(stderr,"with unrolling of j, step size for tiled loop jj\n");
+ fprintf(stderr," does not evenly divide matrix size!\n");
+ exit(1);
+ }
+ processloop('j',eflag,junroll,precond,iunroll);
+ break;
+ default: break;
+ }
+ }
+ processstmt();
+
+ tptype[ttp++]=c;
+
+ if((iflag==0)||(jflag==0)){
+ fprintf(stderr,
+ "one of the loops (i,j) was not specified!\n");
+ exit(1);
+ }
+
+ temp1=start;
+ while(temp1!=NULL){
+ printf("%s",temp1->line);
+ temp1=temp1->next;
+ }
+ printf("#include <stdio.h>\n");
+ printf("#include <sys/time.h>\n");
+ printf("#include <sys/resource.h>\n");
+ if(dflag|eflag) printf("#define min(a,b) ((a)<=(b)?(a):(b))\n");
+ printf("double second();\n");
+ printf("double t_start,t_end,t_total;\n");
+ printf("int times;\n");
+ printf("\ndouble b[%d][%d],dummy[10000],bt[%d][%d];\n\nmain(){\n"
+ ,N,N,N,N);
+ if(precond) printf(" int i,j,n;\n"); else printf(" int i,j;\n");
+ if(dflag) printf(" int ii,it;\n");
+ if(eflag) printf(" int jj,jt;\n");
+ printf("/* set coefficients so that result matrix should have \n");
+ printf(" * column entries equal to column index\n");
+ printf(" */\n");
+ printf(" for (i=0;i<%d;i++){\n",N);
+ printf(" for (j=0;j<%d;j++){\n",N);
+ printf(" b[i][j] = (double) i;\n");
+ printf(" }\n");
+ printf(" }\n");
+ printf("\n t_total=0.0;\n for(times=0;times<10;times++){\n\n",N);
+ printf("/* try to flush cache */\n");
+ printf(" for(i=0;i<10000;i++){\n",N);
+ printf(" dummy[i] = 0.0;\n");
+ printf(" }\n");
+ printf("%s",head->line);
+ temp1=head->next;
+ while(temp1!=NULL){
+ for(i=0;i<temp1->indentcnt;i++) printf(" ");
+ while((p0=strstr(temp1->line,"+0"))!=NULL){
+ *p0++=' '; *p0=' ';
+ }
+ printf("%s",temp1->line);
+ temp1=temp1->next;
+ }
+ printf("\n t_total+=t_end-t_start;\n }\n");
+ printf("/* check result */\n");
+ printf(" for (j=0;j<%d;j++){\n",N);
+ printf(" for (i=0;i<%d;i++){\n",N);
+ printf(" if (bt[i][j]!=((double)j)){\n");
+ printf(" fprintf(stderr,\"error in bt[%cd][%cd]",'%','%');
+ printf("\\n\",i,j);\n");
+ printf(" fprintf(stderr,\" for %s\\n\");\n",tptype);
+ printf(" exit(1);\n");
+ printf(" }\n");
+ printf(" }\n");
+ printf(" }\n");
+ tptype[ttp]='\0';
+ printf(" printf(\"%c10.2f secs\",t_total);\n",'%');
+ printf(" printf(\" for 10 runs of %s\\n\");\n",tptype);
+ printf("}\n");
+ printf("double second(){\n");
+ printf(" void getrusage();\n");
+ printf(" struct rusage ru;\n");
+ printf(" double t;\n");
+ printf(" getrusage(RUSAGE_SELF,&ru);\n");
+ printf(" t = ((double)ru.ru_utime.tv_sec) +\n");
+ printf(" ((double)ru.ru_utime.tv_usec)/1.0e6;\n");
+ printf(" return t;\n");
+ printf("}\n");
+
+}
+
+void processloop(index,flag,unroll,precond,unroll2)
+char index;
+int flag,unroll,precond,unroll2;
+{
+ char build[80],temp[40];
+ int n;
+ if(precond){
+ ALLOC1
+ sprintf(temp1->line,"/* preconditioning loop for unrolling factor */\n");
+ LINK1
+ if(unroll2==1){
+ build[0]='\0';
+ if(flag){
+ if(index='i')
+ sprintf(temp,"n=IISTEP%c%d; ",'%',unroll);
+ else
+ sprintf(temp,"n=JJSTEP%c%d; ",'%',unroll);
+ strcat(build,temp);
+ sprintf(temp,"for(%c=%c%c;%c<%c%c+n;%c++) ",index,index,index,
+ index,index,index,index);
+ strcat(build,temp);
+ }else{
+ sprintf(temp,"n=%d%c%d; ",N,'%',unroll);
+ strcat(build,temp);
+ sprintf(temp,"for(%c=0;%c<n;%c++) ",index,index,index);
+ strcat(build,temp);
+ }
+ sprintf(temp,"bt[i][j]=b[j][i];\n");
+ strcat(build,temp);
+ ALLOC1
+ sprintf(temp1->line,"%s\n",build);
+ LINK1
+ }else{
+ if(flag){
+ ALLOC1
+ if(index=='i')
+ sprintf(temp1->line,"n=IISTEP%c%d;\n",'%',unroll);
+ else
+ sprintf(temp1->line,"n=JJSTEP%c%d;\n",'%',unroll);
+ LINK1
+ ALLOC1
+ sprintf(temp1->line,"for(%c=%c%c;%c<%c%c+n;%c++){\n",index,index,index,
+ index,index,index,index);
+ LINK1
+ }else{
+ ALLOC1
+ sprintf(temp1->line,"n=%d%c%d;\n",N,'%',unroll);
+ LINK1
+ ALLOC1
+ sprintf(temp1->line,"for(%c=0;%c<n;%c++){\n",index,index,index);
+ LINK1
+ }
+ if(index=='i'){
+ for(n=0;n<unroll2;n++){
+ ALLOC1
+ sprintf(temp1->line," bt[i][j+%d]=b[j+%d][i];\n",n,n);
+ LINK1
+ }
+ }else{
+ for(n=0;n<unroll2;n++){
+ ALLOC1
+ sprintf(temp1->line," bt[i+%d][j]=b[j][i+%d];\n",n,n);
+ LINK1
+ }
+ }
+ ALLOC1
+ sprintf(temp1->line,"}\n");
+ LINK1
+ }
+ ALLOC2
+ if(flag){
+ sprintf(temp1->line,"for(%c=%c%c+n;%c<%ct;%c+=%d){\n",index,index,index,
+ index,index,index,unroll);
+ }else{
+ sprintf(temp1->line,"for(%c=n;%c<%d;%c+=%d){\n",index,index,N,index,
+ unroll);
+ }
+ sprintf(temp2->line,"}\n",N);
+ LINK2
+ }else{
+ ALLOC2
+ if(unroll==1){
+ if(flag){
+ sprintf(temp1->line,"for(%c=%c%c;%c<%ct;%c++){\n",index,index,index,
+ index,index,index);
+ }else{
+ sprintf(temp1->line,"for(%c=0;%c<%d;%c++){\n",index,index,N,index);
+ }
+ }else{
+ if(flag){
+ sprintf(temp1->line,"for(%c=%c%c;%c<%ct;%c+=%d){\n",index,index,index,
+ index,index,index,unroll);
+ }else{
+ sprintf(temp1->line,"for(%c=0;%c<%d;%c+=%d){\n",index,index,N,index,
+ unroll);
+ }
+ }
+ sprintf(temp2->line,"}\n",N);
+ LINK2
+ }
+}
+
+void processstmt()
+{
+ int i,j;
+ for(i=0;i<iunroll;i++){
+ for(j=0;j<junroll;j++){
+ ALLOC1
+ sprintf(temp1->line,"bt[i+%d][j+%d]=b[j+%d][i+%d];\n",i,j,j,i);
+ LINK1
+ }
+ }
+}
+--
+Mark Smotherman, Computer Science Dept., Clemson University, Clemson, SC
+
+=======================================================================
+From: has (h.genceli@bre.com)
+ Subject: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+If I have a matrix nrows x ncols, I can store it in a vector.
+so A(i,j) is really a[i*ncols+j]. So really TRANS of A
+(say B) is really is also a vector B where
+
+0<=i b[j*nrows+i] <nrows, 0<=j<ncols
+b[j*nrows+i] = a[i*ncols+j].
+
+Fine but I want to use only one array a to do this transformation.
+
+i.e a[j*nrows+i] = a[i*ncols+j]. this will itself
+erase some elements so each time a swap is necessary in a loop.
+
+temp = a[j*nrows+i]
+a[j*nrows+i] = a[i*ncols+j]
+a[i*ncols+j] = temp
+
+but still this will lose some info as it is, so indexing
+should have more intelligence in it ???? anybody
+can give me a lead here, thanks.
+
+Has
+
+ From: wei-choon ng (wng@ux8.cso.uiuc.edu)
+ Subject: Re: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+has <h.genceli@bre.com> wrote:
+> If I have a matrix nrows x ncols, I can store it in a vector.
+> so A(i,j) is really a[i*ncols+j]. So really TRANS of A
+> (say B) is really is also a vector B where
+
+[snip]
+
+Hey, if you just want to do a transpose-matrix vector multiply, there is
+no need to explicitly store the transpose matrix in another array and
+doubling the storage!
+
+W.C.
+--
+
+ From: Robin Becker (robin@jessikat.fsnet.co.uk)
+ Subject: Re: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+In article <snr532fo3j1180@corp.supernews.com>, has <h.genceli@bre.com>
+writes
+>If I have a matrix nrows x ncols, I can store it in a vector.
+>so A(i,j) is really a[i*ncols+j]. So really TRANS of A
+>(say B) is really is also a vector B where
+>
+>0<=i b[j*nrows+i] <nrows, 0<=j<ncols
+>b[j*nrows+i] = a[i*ncols+j].
+>
+>Fine but I want to use only one array a to do this transformation.
+>
+>i.e a[j*nrows+i] = a[i*ncols+j]. this will itself
+>erase some elements so each time a swap is necessary in a loop.
+>
+>temp = a[j*nrows+i]
+>a[j*nrows+i] = a[i*ncols+j]
+>a[i*ncols+j] = temp
+>
+>but still this will lose some info as it is, so indexing
+>should have more intelligence in it ???? anybody
+>can give me a lead here, thanks.
+>
+>Has
+>
+>
+>
+
+void dmx_transpose(unsigned n, unsigned m, double* a, double* b)
+{
+ unsigned size = m*n;
+ if(b!=a){
+ real *bmn, *aij, *anm;
+ bmn = b + size; /*b+n*m*/
+ anm = a + size;
+ while(b<bmn) for(aij=a++;aij<anm; aij+=n ) *b++ = *aij;
+ }
+ else if(size>3){
+ unsigned i,row,column,current;
+ for(i=1, size -= 2;i<size;i++){
+ current = i;
+ do {
+ /*current = row+n*column*/
+ column = current/m;
+ row = current%m;
+ current = n*row + column;
+ } while(current < i);
+
+ if (current >i) {
+ real temp = a[i];
+ a[i] = a[current];
+ a[current] = temp;
+ }
+ }
+ }
+}
+--
+Robin Becker
+
+ From: E. Robert Tisdale (edwin@netwood.net)
+ Subject: Re: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+Take a look at
+The C++ Scalar, Vector, Matrix and Tensor class library
+
+ http://www.netwood.net/~edwin/svmt/
+
+<Type><System>SubVector&
+ <Type><System>SubVector::transpose(Extent p, Extent q) {
+ <Type><System>SubVector&
+ v = *this;
+ if (1 < p && 1 < q) {
+ // A vector v of extent n = qp is viewed as a q by p matrix U and
+ // a p by q matrix V where U_{ij} = v_{p*i+j} and V_{ij} = v_{q*i+j}.
+ // The vector v is modified in-place so that V is the transpose of U.
+ // The algorithm searches for every sequence k_s of S indices
+ // such that a circular shift of elements v_{k_s} <-- v_{k_{s+1}}
+ // and v_{k_{S-1}} <-- v_{k_0} effects an in-place transpose.
+ Extent n = q*p;
+ Extent m = 0; // count up to n-2
+ Offset l = 0; // 1 <= l <= n-2
+ while (++l < n-1 && m < n-2) {
+ Offset k = l;
+ Offset j = k;
+ while (l < (k = (j%p)*q + j/p)) { // Search backward for k < l.
+ j = k;
+ }
+ // If a sequence of indices beginning with l has any index k < l,
+ // it has already been transposed. The sequence length S = 1
+ // and diagonal element v_k is its own transpose if k = j.
+ // Skip every index sequence that has already been transposed.
+ if (k == l) { // a new sequence
+ if (k < j) { // with 1 < S
+ TYPE x = v[k]; // save v_{k_0}
+ do {
+ v[k] = v[j]; // v_{k_{s}} <-- v_{k_{s+1}}
+ k = j;
+ ++m;
+ } while (l < (j = (k%q)*p + k/q));
+ v[k] = x; // v_{k_{S-1}} <-- v_{k_0}
+ }
+ ++m;
+ }
+ }
+ } return v;
+ }
+
+
+
+<Type><System>SubVector&
+
+Read the rest of this message... (50 more lines)
+
+ From: Victor Eijkhout (eijkhout@disco.cs.utk.edu)
+ Subject: Re: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+"Alan Miller" <amiller @ vic.bigpond.net.au> writes:
+
+> The attached routine does an in situ transpose.
+> begin 666 Dtip.f90
+> M4U5"4D]55$E.12!D=&EP("AA+"!N,2P@;C(L(&YD:6TI#0HA("TM+2TM+2TM
+
+Hm. F90? You're not silently allocating a temporary I hope?
+
+(Why did you have to encode this? Now I have to save, this decode, ...
+and all for plain ascii?)
+
+--
+Victor Eijkhout
+"When I was coming up, [..] we knew exactly who the they were. It was us
+versus them, and it was clear who the them was were. Today, we are not
+so sure who the they are, but we know they're there." [G.W. Bush]
+
+ From: Alan Miller (amiller_@_vic.bigpond.net.au)
+ Subject: Re: transpose of a nxm matrix stored in a vector !!!
+ Newsgroups: sci.math.num-analysis
+ Date: 2000/07/25
+
+
+Victor Eijkhout wrote in message ...
+>"Alan Miller" <amiller @ vic.bigpond.net.au> writes:
+>
+>> The attached routine does an in situ transpose.
+>> begin 666 Dtip.f90
+>> M4U5"4D]55$E.12!D=&EP("AA+"!N,2P@;C(L(&YD:6TI#0HA("TM+2TM+2TM
+>
+>Hm. F90? You're not silently allocating a temporary I hope?
+>
+>(Why did you have to encode this? Now I have to save, this decode, ...
+>and all for plain ascii?)
+>
+
+I know the problem.
+I sometimes use a Unix system, and have to use decode64 to read
+attachments. On the other hand, Windows wraps lines around,
+formats then and generally makes the code unreadable.
+
+The straight code for dtip (double transpose in place) is attached
+this time.
+
+>--
+>Victor Eijkhout
+
+
+--
+Alan Miller, Retired Scientist (Statistician)
+CSIRO Mathematical & Information Sciences
+Alan.Miller -at- vic.cmis.csiro.au
+http://www.ozemail.com.au/~milleraj
+http://users.bigpond.net.au/amiller/
+
+
+=================================================================
+
+From: Darran Edmundson (dedmunds@sfu.ca)
+ Subject: array reordering algorithm?
+ Newsgroups: sci.math.num-analysis
+ Date: 1995/04/30
+
+
+A code I've written refers to a complex array as two separate real arrays.
+However, I have a canned subroutine which expects a single array where the
+real and imaginary values alternate. Essentially I have a case of mismatched
+data structures, yet for reasons that I'd rather not go into, I'm stuck with them.
+
+Assuming that the two real arrays A and B are sequential in memory, and
+that the single array of alternating real/imaginary values C shares the same
+space, what I need is a porting subroutine that remaps the data from one format
+to the other - using as little space as possible.
+
+I think of the problem as follows. Imagine an array of dimension 10 containing
+the values 1,3,5,7,9,2,4,6,8,10 in this order.
+
+ A(1) / 1 \ C(1)
+ A(2) | 3 | C(2)
+ A(3) | 5 | C(3)
+ A(4) | 7 | C(4)
+ A(5) \ 9 | C(5)
+ |
+ B(1) / 2 | C(6)
+ B(2) | 4 | C(7)
+ B(3) | 6 | C(8)
+ B(4) | 8 | C(9)
+ B(5) \ 10 / C(10)
+
+Given that I know this initial pattern, I want to sort the array C in-place *without
+making comparisons*. That is, the algorithm can only depend on the initial
+knowledge of the pattern. Do you see what a sort is going to do? It will
+make the A and B arrays alternate, i.e. C(1)=A(1), C(2)=B(1), C(3)=A(2),
+C(4)=B(2), etc. It's not a real sort though because I can't actually refer to the
+values above (i.e. no comparisons) because A and B will be holding real data,
+not this contrived pattern. The pattern above exists though - it's the
+natural ordering in memory of A and B.
+
+Either pair swapping only or a small amount of workspace can be used. The
+in-place is important - imagine scaling this problem up to an
+array of 32 or 64 million double precision values and you can easily see how
+duplicating the array is not a feasible solution.
+
+Any ideas? I've been stumped on this for a day and a half now.
+
+Darran Edmundson
+dedmunds@sfu.ca
+
+ From: Roger Critchlow (rec@elf115.elf.org)
+ Subject: Re: array reordering algorithm?
+ Newsgroups: sci.math.num-analysis
+ Date: 1995/04/30
+
+
+ Any ideas? I've been stumped on this for a day and a half now.
+
+Here's some code for in situ permutations of arrays that I wrote
+a few years ago. It all started from the in situ transposition
+algorithms in the Collected Algorithms of the ACM, the references
+for which always get lost during the decryption from fortran.
+
+This is the minimum space algorithm. All you need to supply is
+a function which computes the new order array index from the old
+order array index.
+
+If you can spare n*m bits to record the indexes of elements which
+have been permuted, then you can speed things up.
+
+-- rec --
+
+------------------------------------------------------------------------
+/*
+** Arbitrary in situ permutations of an m by n array of base type TYPE.
+** Copyright 1995 by Roger E Critchlow Jr, rec@elf.org, San Francisco, CA.
+** Fair use permitted, caveat emptor.
+*/
+typedef int TYPE;
+
+int transposition(int ij, int m, int n) /* transposition about diagonal from upper left to lower right */
+{ return ((ij%m)*n+ (ij/m)); }
+
+int countertrans(int ij, int m, int n) /* transposition about diagonal from upper right to lower left */
+{ return ((m-1-(ij%m))*n+ (n-1-(ij/m))); }
+
+int rotate90cw(int ij, int m, int n) /* 90 degree clockwise rotation */
+{ return ((m-1-(ij%m))*n+ (ij/m)); }
+
+int rotate90ccw(int ij, int m, int n) /* 90 degree counter clockwise rotation */
+{ return ((ij%m)*n+ (n-1-(ij/m))); }
+
+int rotate180(int ij, int m, int n) /* 180 degree rotation */
+{ return ((m-1-(ij/n))*n+ (n-1-(ij%n))); }
+
+int reflecth(int ij, int m, int n) /* reflection across horizontal plane */
+{ return ((m-1-(ij/n))*n+ (ij%n)); }
+
+int reflectv(int ij, int m, int n) /* reflection across vertical plane */
+{ return ((ij/n)*n+ (n-1-(ij%n))); }
+
+int in_situ_permutation(TYPE a[], int m, int n, int (*origination)(int ij, int m, int n))
+{
+ int ij, oij, dij, n_to_do;
+ TYPE b;
+ n_to_do = m*n;
+ for (ij = 0; ij < m*n && n_to_do > 0; ij += 1) {
+ /* Test for previously permuted */
+ for (oij = origination(ij,m,n); oij > ij; oij = origination(oij,m,n))
+ ;
+ if (oij < ij)
+ continue;
+ /* Chase the cycle */
+ dij = ij;
+ b = a[ij];
+ for (oij = origination(dij,m,n); oij != ij; oij = origination(dij,m,n)) {
+ a[dij] = a[oij];
+ dij = oij;
+ n_to_do -= 1;
+ }
+ a[dij] = b;
+ n_to_do -= 1;
+ } return 0;
+}
+
+#define TESTING 1
+#if TESTING
+
+/* fill a matrix with sequential numbers, row major ordering */
+void fill_matrix_rows(a, m, n) TYPE *a; int m, n;
+{
+ int i, j;
+ for (i = 0; i < m; i += 1)
+ for (j = 0; j < n; j += 1)
+ a[i*n+j] = i*n+j;
+}
+
+/* fill a matrix with sequential numbers, column major ordering */
+void fill_matrix_cols(a, m, n) TYPE *a; int m, n;
+{
+ int i, j;
+ for (i = 0; i < m; i += 1)
+ for (j = 0; j < n; j += 1)
+ a[i*n+j] = j*m+i;
+}
+
+/* test a matrix for sequential numbers, row major ordering */
+int test_matrix_rows(a, m, n) TYPE *a; int m, n;
+{
+ int i, j, o;
+ for (o = i = 0; i < m; i += 1)
+ for (j = 0; j < n; j += 1)
+ o += a[i*n+j] != i*n+j;
+ return o;
+}
+
+/* test a matrix for sequential numbers, column major ordering */
+int test_matrix_cols(a, m, n) TYPE *a; int m, n;
+{
+ int i, j, o;
+ for (o = i = 0; i < m; i += 1)
+ for (j = 0; j < n; j += 1)
+ o += a[i*n+j] != j*m+i;
+ return o;
+}
+
+/* print a matrix */
+void print_matrix(a, m, n) TYPE *a; int m, n;
+{
+ char *format;
+ int i, j;
+ if (m*n < 10) format = "%2d";
+ if (m*n < 100) format = "%3d";
+ if (m*n < 1000) format = "%4d";
+ if (m*n < 10000) format = "%5d";
+ for (i = 0; i < m; i += 1) {
+ for (j = 0; j < n; j += 1)
+ printf(format, a[i*n+j]);
+ printf("\n");
+ }
+}
+
+#if TEST_TRANSPOSE
+#define MAXSIZE 1000
+
+main()
+{
+ int i, j, m, n, o;
+ TYPE a[MAXSIZE];
+ for (m = 1; m < sizeof(a)/sizeof(a[0]); m += 1)
+ for (n = 1; m*n < sizeof(a)/sizeof(a[0]); n += 1) {
+ fill_matrix_rows(a, m, n); /* {0 1} {2 3} */
+ if (o = transpose(a, m, n))
+ printf(">> transpose returned %d for a[%d][%d], row major\n", o, m, n);
+ if ((o = test_matrix_cols(a, n, m)) != 0) /* {0 2} {1 3} */
+ printf(">> transpose made %d mistakes for a[%d][%d], row major\n", o, m, n);
+ /* column major */
+ fill_matrix_rows(a, m, n);
+ if (o = transpose(a, m, n))
+ printf(">> transpose returned %d for a[%d][%d], column major\n", o, m, n);
+ if ((o = test_matrix_cols(a, n, m)) != 0)
+ printf(">> transpose made %d mistakes for a[%d][%d], column major\n", o, m, n);
+ } return 0;
+}
+#endif /* TEST_TRANSPOSE */
+
+
+#define TEST_DISPLAY 1
+#if TEST_DISPLAY
+main(argc, argv) int argc; char *argv[];
+{
+ TYPE *a;
+ int m = 5, n = 5;
+ extern void *malloc();
+ if (argc > 1) {
+ m = atoi(argv[1]);
+ if (argc > 2)
+ n = atoi(argv[2]);
+ }
+ a = malloc(m*n*sizeof(TYPE));
+
+ printf("matrix\n");
+ fill_matrix_rows(a, m, n);
+ print_matrix(a, m, n);
+ printf("transposition\n");
+ in_situ_permutation(a, m, n, transposition);
+ print_matrix(a, n, m);
+
+ printf("counter transposition\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, countertrans);
+ print_matrix(a, n, m);
+
+ printf("rotate 90 degrees clockwise\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, rotate90cw);
+ print_matrix(a, n, m);
+
+ printf("rotate 90 degrees counterclockwise\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, rotate90ccw);
+ print_matrix(a, n, m);
+
+ printf("rotate 180 degrees\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, rotate180);
+ print_matrix(a, m, n);
+
+ printf("reflect across horizontal\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, reflecth);
+ print_matrix(a, m, n);
+
+ printf("reflect across vertical\n");
+ fill_matrix_rows(a, m, n);
+ in_situ_permutation(a, m, n, reflectv);
+ print_matrix(a, m, n);
+
+ return 0;
+}
+
+#endif
+#endif
+
diff --git a/numpy/f2py/doc/multiarrays.txt b/numpy/f2py/doc/multiarrays.txt
new file mode 100644
index 000000000..704208976
--- /dev/null
+++ b/numpy/f2py/doc/multiarrays.txt
@@ -0,0 +1,120 @@
+From pearu@ioc.ee Thu Dec 30 09:58:01 1999
+Date: Fri, 26 Nov 1999 12:02:42 +0200 (EET)
+From: Pearu Peterson <pearu@ioc.ee>
+To: Users of f2py2e -- Curtis Jensen <cjensen@be-research.ucsd.edu>,
+ Vladimir Janku <vjanku@kvet.sk>,
+ Travis Oliphant <Oliphant.Travis@mayo.edu>
+Subject: Multidimensional arrays in f2py2e
+
+
+Hi!
+
+Below I will describe how f2py2e wraps Fortran multidimensional arrays as
+it constantly causes confusion. As for example, consider Fortran code
+
+ subroutine foo(l,m,n,a)
+ integer l,m,n
+ real*8 a(l,m,n)
+ ..
+ end
+Running f2py2e with -h flag, it generates the following signature
+
+subroutine foo(l,m,n,a)
+ integer optional,check(shape(a,2)==l),depend(a) :: l=shape(a,2)
+ integer optional,check(shape(a,1)==m),depend(a) :: m=shape(a,1)
+ integer optional,check(shape(a,0)==n),depend(a) :: n=shape(a,0)
+ real*8 dimension(l,m,n),check(rank(a)==3) :: a
+end subroutine foo
+
+where parameters l,m,n are considered optional and they are initialized in
+Python C/API code using the array a. Note that a can be also a proper
+list, that is, asarray(a) should result in a rank-3 array. But then there
+is an automatic restriction that elements of a (in Python) are not
+changeable (in place) even if Fortran subroutine changes the array a (in
+C,Fortran).
+
+Hint: you can attribute the array a with 'intent(out)' which causes foo to
+return the array a (in Python) if you are to lazy to define a=asarray(a)
+before the call to foo (in Python).
+
+Calling f2py2e without the switch -h, a Python C/API module will be
+generated. After compiling it and importing it to Python
+>>> print foo.__doc__
+shows
+None = foo(a,l=shape(a,2),m=shape(a,1),n=shape(a,0))
+
+You will notice that f2py2e has changed the order of arguments putting the
+optional ones at the end of the argument list.
+Now, you have to be careful when specifying the parameters l,m,n (though
+situations where you need this should be rare). A proper definition
+of the array a should be, say
+
+ a = zeros(n,m,l)
+
+Note that the dimensions l,m,n are in reverse, that is, the array a should
+be transposed when feeding it to the wrapper.
+
+Hint (and a performance hit): To be always consistent with fortran
+arrays, you can define, for example
+ a = zeros(l,m,n)
+and call from Python
+ foo(transpose(a),l,m,n)
+which is equivalent with the given Fortran call
+ call foo(l,m,n,a)
+
+Another hint (not recommended, though): If you don't like optional
+arguments feature at all and want to be strictly consistent with Fortran
+signature, that is, you want to call foo from Python as
+ foo(l,m,n,a)
+then you should edit the signature to
+subroutine foo(l,m,n,a)
+ integer :: l
+ integer :: m
+ integer :: n
+ real*8 dimension(l,m,n),check(rank(a)==3),depend(l,m,n), &
+ check(shape(a,2)==l,shape(a,1)==m,shape(a,0)==n):: a
+end
+Important! Note that now the array a should depend on l,m,n
+so that the checks can be performed in the proper order.
+(you cannot check, say, shape(a,2)==l before initializing a or l)
+(There are other ways to edit the signature in order to get the same
+effect but they are not so safe and I will not discuss about them here).
+
+Hint: If the array a should be a work array (as used frequently in
+Fortran) and you a too lazy (its good lazyness;) to provide it (in Python)
+then you can define it as optional by ediding the signature:
+subroutine foo(l,m,n,a)
+ integer :: l
+ integer :: m
+ integer :: n
+ real*8 dimension(l,m,n),check(rank(a)==3),depend(l,m,n), &
+ check(shape(a,2)==l,shape(a,1)==m,shape(a,0)==n):: a
+ optional a
+end
+Note again that the array a must depend on l,m,n. Then the array a will be
+allocated in the Python C/API module. Not also that
+>>> print foo.__doc__
+shows then
+None = foo(l,m,n,a=)
+Performance hint: If you call the given foo lots of times from Python then
+you don't want to allocate/deallocate the memory in each call. So, it is
+then recommended to define a temporary array in Python, for instance
+>>> tmp = zeros(n,m,l)
+>>> for i in ...:
+>>> foo(l,m,n,a=tmp)
+
+Important! It is not good at all to define
+ >>> tmp = transpose(zeros(l,m,n))
+because tmp will be then a noncontiguous array and there will be a
+huge performance hit as in Python C/API a new array will be allocated and
+also a copying of arrays will be performed elementwise!
+But
+ >>> tmp = asarray(transpose(zeros(l,m,n)))
+is still ok.
+
+I hope that the above answers lots of your (possible) questions about
+wrapping Fortran multidimensional arrays with f2py2e.
+
+Regards,
+ Pearu
+
diff --git a/numpy/f2py/doc/notes.tex b/numpy/f2py/doc/notes.tex
new file mode 100644
index 000000000..2746b049d
--- /dev/null
+++ b/numpy/f2py/doc/notes.tex
@@ -0,0 +1,310 @@
+
+\section{Calling wrapper functions from Python}
+\label{sec:notes}
+
+\subsection{Scalar arguments}
+\label{sec:scalars}
+
+In general, for scalar argument you can pass in in
+addition to ordinary Python scalars (like integers, floats, complex
+values) also arbitrary sequence objects (lists, arrays, strings) ---
+then the first element of a sequence is passed in to the Fortran routine.
+
+It is recommended that you always pass in scalars of required type. This
+ensures the correctness as no type-casting is needed.
+However, no exception is raised if type-casting would produce
+inaccurate or incorrect results! For example, in place of an expected
+complex value you can give an integer, or vice-versa (in the latter case only
+a rounded real part of the complex value will be used).
+
+If the argument is \texttt{intent(inout)} then Fortran routine can change the
+value ``in place'' only if you pass in a sequence object, for
+instance, rank-0 array. Also make sure that the type of an array is of
+correct type. Otherwise type-casting will be performed and you may
+get inaccurate or incorrect results. The following example illustrates this
+\begin{verbatim}
+>>> a = array(0)
+>>> calculate_pi(a)
+>>> print a
+3
+\end{verbatim}
+
+If you pass in an ordinary Python scalar in place of
+\texttt{intent(inout)} variable, it will be used as an input argument
+since
+Python
+scalars cannot not be changed ``in place'' (all Python scalars
+are immutable objects).
+
+\subsection{String arguments}
+\label{sec:strings}
+
+You can pass in strings of arbitrary length. If the length is greater than
+required, only a required part of the string is used. If the length
+is smaller than required, additional memory is allocated and fulfilled
+with `\texttt{\bs0}'s.
+
+Because Python strings are immutable, \texttt{intent(inout)} argument
+expects an array version of a string --- an array of chars:
+\texttt{array("<string>")}.
+Otherwise, the change ``in place'' has no effect.
+
+
+\subsection{Array arguments}
+\label{sec:arrays}
+
+If the size of an array is relatively large, it is \emph{highly
+ recommended} that you pass in arrays of required type. Otherwise,
+type-casting will be performed which includes the creation of new
+arrays and their copying. If the argument is also
+\texttt{intent(inout)}, the wasted time is doubled. So, pass in arrays
+of required type!
+
+On the other hand, there are situations where it is perfectly all
+right to ignore this recommendation: if the size of an array is
+relatively small or the actual time spent in Fortran routine takes
+much longer than copying an array. Anyway, if you want to optimize
+your Python code, start using arrays of required types.
+
+Another source of performance hit is when you use non-contiguous
+arrays. The performance hit will be exactly the same as when using
+incorrect array types. This is because a contiguous copy is created
+to be passed in to the Fortran routine.
+
+\fpy provides a feature such that the ranks of array arguments need
+not to match --- only the correct total size matters. For example, if
+the wrapper function expects a rank-1 array \texttt{array([...])},
+then it is correct to pass in rank-2 (or higher) arrays
+\texttt{array([[...],...,[...]])} assuming that the sizes will match.
+This is especially useful when the arrays should contain only one
+element (size is 1). Then you can pass in arrays \texttt{array(0)},
+\texttt{array([0])}, \texttt{array([[0]])}, etc and all cases are
+handled correctly. In this case it is correct to pass in a Python
+scalar in place of an array (but then ``change in place'' is ignored,
+of course).
+
+\subsubsection{Multidimensional arrays}
+
+If you are using rank-2 or higher rank arrays, you must always
+remember that indexing in Fortran starts from the lowest dimension
+while in Python (and in C) the indexing starts from the highest
+dimension (though some compilers have switches to change this). As a
+result, if you pass in a 2-dimensional array then the Fortran routine
+sees it as the transposed version of the array (in multi-dimensional
+case the indexes are reversed).
+
+You must take this matter into account also when modifying the
+signature file and interpreting the generated Python signatures:
+
+\begin{itemize}
+\item First, when initializing an array using \texttt{init\_expr}, the index
+vector \texttt{\_i[]} changes accordingly to Fortran convention.
+\item Second, the result of CPP-macro \texttt{shape(<array>,0)}
+ corresponds to the last dimension of the Fortran array, etc.
+\end{itemize}
+Let me illustrate this with the following example:\\
+\begin{verbatim}
+! Fortran file: arr.f
+ subroutine arr(l,m,n,a)
+ integer l,m,n
+ real*8 a(l,m,n)
+ ...
+ end
+\end{verbatim}
+\fpy will generate the following signature file:\\
+\begin{verbatim}
+!%f90
+! Signature file: arr.f90
+python module arr ! in
+ interface ! in :arr
+ subroutine arr(l,m,n,a) ! in :arr:arr.f
+ integer optional,check(shape(a,2)==l),depend(a) :: l=shape(a,2)
+ integer optional,check(shape(a,1)==m),depend(a) :: m=shape(a,1)
+ integer optional,check(shape(a,0)==n),depend(a) :: n=shape(a,0)
+ real*8 dimension(l,m,n) :: a
+ end subroutine arr
+ end interface
+end python module arr
+\end{verbatim}
+and the following wrapper function will be produced
+\begin{verbatim}
+None = arr(a,l=shape(a,2),m=shape(a,1),n=shape(a,0))
+\end{verbatim}
+
+In general, I would suggest not to specify the given optional
+variables \texttt{l,m,n} when calling the wrapper function --- let the
+interface find the values of the variables \texttt{l,m,n}. But there
+are occasions when you need to specify the dimensions in Python.
+
+So, in Python a proper way to create an array from the given
+dimensions is
+\begin{verbatim}
+>>> a = zeros(n,m,l,'d')
+\end{verbatim}
+(note that the dimensions are reversed and correct type is specified),
+and then a complete call to \texttt{arr} is
+\begin{verbatim}
+>>> arr(a,l,m,n)
+\end{verbatim}
+
+From the performance point of view, always be consistent with Fortran
+indexing convention, that is, use transposed arrays. But if you do the
+following
+\begin{verbatim}
+>>> a = transpose(zeros(l,m,n,'d'))
+>>> arr(a)
+\end{verbatim}
+then you will get a performance hit! The reason is that here the
+transposition is not actually performed. Instead, the array \texttt{a}
+will be non-contiguous which means that before calling a Fortran
+routine, internally a contiguous array is created which
+includes memory allocation and copying. In addition, if
+the argument array is also \texttt{intent(inout)}, the results are
+copied back to the initial array which doubles the
+performance hit!
+
+So, to improve the performance: always pass in
+arrays that are contiguous.
+
+\subsubsection{Work arrays}
+
+Often Fortran routines use the so-called work arrays. The
+corresponding arguments can be declared as optional arguments, but be
+sure that all dimensions are specified (bounded) and defined before
+the initialization (dependence relations).
+
+On the other hand, if you call the Fortran routine many times then you
+don't want to allocate/deallocate the memory of the work arrays on
+every call. In this case it is recommended that you create temporary
+arrays with proper sizes in Python and use them as work arrays. But be
+careful when specifying the required type and be sure that the
+temporary arrays are contiguous. Otherwise the performance hit would
+be even harder than the hit when not using the temporary arrays from
+Python!
+
+
+
+\subsection{Call-back arguments}
+\label{sec:cbargs}
+
+\fpy builds a very flexible call-back mechanisms for call-back
+arguments. If the wrapper function expects a call-back function \texttt{fun}
+with the following Python signature to be passed in
+\begin{verbatim}
+def fun(a_1,...,a_n):
+ ...
+ return x_1,...,x_k
+\end{verbatim}
+but the user passes in a function \texttt{gun} with the signature
+\begin{verbatim}
+def gun(b_1,...,b_m):
+ ...
+ return y_1,...,y_l
+\end{verbatim}
+and the following extra arguments (specified as additional optional
+argument for the wrapper function):
+\begin{verbatim}
+fun_extra_args = (e_1,...,e_p)
+\end{verbatim}
+then the actual call-back is constructed accordingly to the following rules:
+\begin{itemize}
+\item if \texttt{p==0} then \texttt{gun(a\_1,...,a\_q)}, where
+ \texttt{q=min(m,n)};
+\item if \texttt{n+p<=m} then \texttt{gun(a\_1,...,a\_n,e\_1,...,e\_p)};
+\item if \texttt{p<=m<n+p} then \texttt{gun(a\_1,...,a\_q,e\_1,...,e\_p)},
+ where \texttt{q=m-p};
+\item if \texttt{p>m} then \texttt{gun(e\_1,...,e\_m)};
+\item if \texttt{n+p} is less than the number of required arguments
+ of the function \texttt{gun}, an exception is raised.
+\end{itemize}
+
+A call-back function \texttt{gun} may return any number of objects as a tuple:
+if \texttt{k<l}, then objects \texttt{y\_k+1,...,y\_l} are ignored;
+if \texttt{k>l}, then only objects \texttt{x\_1,...,x\_l} are set.
+
+
+\subsection{Obtaining information on wrapper functions}
+\label{sec:info}
+
+From the previous sections we learned that it is useful for the
+performance to pass in arguments of expected type, if possible. To
+know what are the expected types, \fpy generates a complete
+documentation strings for all wrapper functions. You can read them
+from Python by printing out \texttt{\_\_doc\_\_} attributes of the
+wrapper functions. For the example in Sec.~\ref{sec:intro}:
+\begin{verbatim}
+>>> print foobar.foo.__doc__
+Function signature:
+ foo(a)
+Required arguments:
+ a : in/output rank-0 array(int,'i')
+>>> print foobar.bar.__doc__
+Function signature:
+ bar = bar(a,b)
+Required arguments:
+ a : input int
+ b : input int
+Return objects:
+ bar : int
+\end{verbatim}
+
+In addition, \fpy generates a LaTeX document
+(\texttt{<modulename>module.tex}) containing a bit more information on
+the wrapper functions. See for example Appendix that contains a result
+of the documentation generation for the example module
+\texttt{foobar}. Here the file \texttt{foobar-smart.f90} (modified
+version of \texttt{foobar.f90}) is used --- it contains
+\texttt{note(<LaTeX text>)} attributes for specifying some additional
+information.
+
+\subsection{Wrappers for common blocks}
+\label{sec:wrapcomblock}
+
+[See examples \texttt{test-site/e/runme*}]
+
+What follows is obsolute for \fpy version higher that 2.264.
+
+\fpy generates wrapper functions for common blocks. For every common
+block with a name \texttt{<commonname>} a function
+\texttt{get\_<commonname>()} is constructed that takes no arguments
+and returns a dictionary. The dictionary represents maps between the
+names of common block fields and the arrays containing the common
+block fields (multi-dimensional arrays are transposed). So, in order
+to access to the common block fields, you must first obtain the
+references
+\begin{verbatim}
+commonblock = get_<commonname>()
+\end{verbatim}
+and then the fields are available through the arrays
+\texttt{commonblock["<fieldname>"]}.
+To change the values of common block fields, you can use for scalars
+\begin{verbatim}
+commonblock["<fieldname>"][0] = <new value>
+\end{verbatim}
+and for arrays
+\begin{verbatim}
+commonblock["<fieldname>"][:] = <new array>
+\end{verbatim}
+for example.
+
+For more information on the particular common block wrapping, see
+\texttt{get\_<commonname>.\_\_doc\_\_}.
+
+\subsection{Wrappers for F90/95 module data and routines}
+\label{sec:wrapf90modules}
+
+[See example \texttt{test-site/mod/runme\_mod}]
+
+\subsection{Examples}
+\label{sec:examples}
+
+Examples on various aspects of wrapping Fortran routines to Python can
+be found in directories \texttt{test-site/d/} and
+\texttt{test-site/e/}: study the shell scripts \texttt{runme\_*}. See
+also files in \texttt{doc/ex1/}.
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
diff --git a/numpy/f2py/doc/oldnews.html b/numpy/f2py/doc/oldnews.html
new file mode 100644
index 000000000..0e09c032f
--- /dev/null
+++ b/numpy/f2py/doc/oldnews.html
@@ -0,0 +1,121 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
+<HTML>
+<HEAD>
+<META name="Author" content="Pearu Peterson">
+<!-- You may add here some keywords (comma separeted list) -->
+<META name="Keywords" content="fortran,python,interface,f2py,f2py2e,wrapper,fpig">
+<TITLE>F2PY - Fortran to Python Interface Generator</TITLE>
+<LINK rel="stylesheet" type="text/css" href="/styles/userstyle.css">
+</HEAD>
+
+<body>
+<h2><a href="http://cens.ioc.ee/projects/f2py2e">F2PY</a> old news.</h2>
+
+<dl>
+ <dt> February 23, 2002
+ <dd> Fixed a bug of incorrect shapes of multi-dimensional arrays
+ when returning from Fortran routine (thanks to Eric for pointing
+ this out).
+ <code>F2PY_REPORT_ATEXIT</code> is disabled by default under Win32.
+ <dt> February 14, 2002
+ <dd> Introduced <code>callprotoargument</code> statement so that
+ proper prototypes can be specified (this fixes SEGFAULTs when
+ wrapping C functions with <code>f2py</code>, see <a
+ href="NEWS.txt">NEWS.txt</a> for more details). Updated for the
+ latest <code>numpy_distutils</code>. Fixed few bugs.
+ <dt> February 3, 2002
+ <dd> Introduced <code>intent(overwrite),intent(out=name)</code>
+ attributes, <code>callstatement C-expr;</code> statement, and
+ reviewed reference counting in callback mechanism. Fixed bugs.
+ <dt> January 18, 2002
+ <dd> Introduced extra keyword argument <code>copy_#varname#=1</code>
+ for <code>intent(copy)</code> variables,
+ <code>-DF2PY_REPORT_ATEXIT</code> for reporting <code>f2py</code>
+ performance,
+ <code>has_column_major_storage</code> member function for generated
+ modules, and <a href="http://dmalloc.com/">dmalloc</a> support.
+ <dt> January 16, 2002
+ <dd> BREAKING NEWS! Solved long lasted dilemma of wrapping
+ multi-dimensional arrays where different
+ storage orders in C and Fortran come into account. From now on
+ this difference is dealt automatically by the f2py generated
+ module and in a very efficient way. For example, the corresponding
+ element A(i,j) of a Fortran array can be accessed in Python as
+ A[i,j].
+ <dt> January 13, 2002
+ <dd> Fifth Public Release is coming soon..., a snapshot is available
+ for download, now with updates.
+ <dt> December 17, 2001
+ <dd> <a href="Release-4.x.txt">Fourth Public Release</a>: Win32 support.
+ <dd> Making <code>f2py2e</code> a module. Currently it has only one
+ member function <code>run_main(comline_list)</code>.
+ <dd> Removed command line arguments <code>-fix,-f90,-f77</code>
+ and introduced many new ones. See <a href="NEWS.txt">NEWS.txt</a>.
+ <dd> <code>intent(..)</code> statement with empty name list defines
+ default <code>intent(..)</code> attribute for all routine arguments.
+ <dd> Refinements in Win32 support. Eric Jones has provided a f2py
+ HOWTO for Windows users. See <a href="win32_notes.txt">win32_notes.txt</a>.
+ <dd> Major rewrote of the code generator to achieve
+ a higher quality of generated C/API modules (-Wall messages are
+ considerably reduced, especially for callback functions).
+ <dd> Many bugs were fixed.
+ <dt> December 12, 2001
+ <dd> Win32 support (thanks to Eric Jones and Tiffany Kamm). Minor
+ cleanups and fixes.
+ <dt> December 4, 2001
+ <dd> <a href="Release-3.x.txt">Third Public Release</a>: <code>f2py</code> supports <code>distutils</code>. It can be
+ installed with one and it generates <code>setup_modulename.py</code>
+ to be used for building Python extension modules.
+ <dd> Introduced <code>threadsafe</code>, <code>fortranname</code>,
+ and <code>intent(c)</code> statements.
+ <dt> August 13, 2001
+ <dd> Changed the name FPIG to F2PY for avoiding confusion with project names.
+ <dd> Updated <code>f2py</code> for use with Numeric version 20.x.
+ <dt> January 12, 2001
+ <dd> Example usages of <a href="pyfobj.html"><code>PyFortranObject</code></a>.
+ Fixed bugs. Updated the
+ <a href="f2python9.html">Python 9 Conference paper</a> (F2PY paper).
+ <dt> December 9, 2000
+ <dd> Implemented support for <code>PARAMETER</code> statement.
+ <dt> November 6, 2000
+ <dd> Submitted a paper for 9th Python Conference (accepted). It is available in <a
+ href="f2python9.html">html</a>, <a href="f2python9.pdf">PDF</a>,
+ and <a href="f2python9.ps.gz">Gzipped PS</a> formats.
+ <dt> September 17, 2000
+ <dd> Support for F90/95 module data and routines. COMMON block
+ wrapping is rewritten. New signature file syntax:
+ <code>pythonmodule</code>. Signature files generated with
+ f2py-2.264 or earlier, are incompatible (need replacement
+ <code>module</code> with
+ <code>pythonmodule</code>).
+ <dt> September 12, 2000
+ <dd> The second public release of <code>f2py</code> is out. See <a
+ href="Release-2.x.txt">Release notes</a>.
+ <dt> September 11, 2000
+ <dd> Now <code>f2py</code> supports wrapping Fortran 90/95 module routines
+ (support for F90/95 module data coming soon)
+ <dt> June 12, 2000
+ <dd> Now <code>f2py</code> has a mailing list <a
+href="#f2py-users">f2py-users</a> open for discussion.
+
+</dl>
+
+
+<!-- End of user text -->
+<HR>
+<ADDRESS>
+<A href="http://validator.w3.org/"><IMG border=0 align=right src="/icons/vh40.gif" alt="Valid HTML 4.0!" height=31 width=88></A>
+<A href="http://cens.ioc.ee/~pearu/" target="_top">Pearu Peterson</A>
+<A href="mailto:pearu (at) ioc.ee">&lt;pearu(at)ioc.ee&gt;</A><BR>
+<!-- hhmts start -->
+Last modified: Mon Dec 3 19:40:26 EET 2001
+<!-- hhmts end -->
+</ADDRESS>
+<!-- You may want to comment the following line out when the document is final-->
+<!-- Check that the reference is right -->
+<!--A href="http://validator.w3.org/check?uri=http://cens.ioc.ee/projects/f2py2e/index.html;ss"> Submit this page for validation</A-->
+
+</BODY>
+
+
+</HTML>
diff --git a/numpy/f2py/doc/options.tex b/numpy/f2py/doc/options.tex
new file mode 100644
index 000000000..84d9410f8
--- /dev/null
+++ b/numpy/f2py/doc/options.tex
@@ -0,0 +1,63 @@
+
+\section{\fpy command line options}
+\label{sec:opts}
+
+\fpy has the following command line syntax (run \fpy without arguments
+to get up to date options!!!):
+\begin{verbatim}
+f2py [<options>] <fortran files> [[[only:]||[skip:]] <fortran functions> ]\
+ [: <fortran files> ...]
+\end{verbatim}
+where
+\begin{description}
+\item[\texttt{<options>}] --- the following options are available:
+ \begin{description}
+ \item[\texttt{-f77}] --- \texttt{<fortran files>} are in Fortran~77
+ fixed format (default).
+ \item[\texttt{-f90}] --- \texttt{<fortran files>} are in
+ Fortran~90/95 free format (default for signature files).
+ \item[\texttt{-fix}] --- \texttt{<fortran files>} are in
+ Fortran~90/95 fixed format.
+ \item[\texttt{-h <filename>}] --- after scanning the
+ \texttt{<fortran files>} write the signatures of Fortran routines
+ to file \texttt{<filename>} and exit. If \texttt{<filename>}
+ exists, \fpy quits without overwriting the file. Use
+ \texttt{-{}-overwrite-signature} to overwrite.
+ \item[\texttt{-m <modulename>}] --- specify the name of the module
+ when scanning Fortran~77 codes for the first time. \fpy will
+ generate Python C/API module source \texttt{<modulename>module.c}.
+ \item[\texttt{-{}-lower/-{}-no-lower}] --- lower/do not lower the cases
+ when scanning the \texttt{<fortran files>}. Default when
+ \texttt{-h} flag is specified/unspecified (that is for Fortran~77
+ codes/signature files).
+ \item[\texttt{-{}-short-latex}] --- use this flag when you want to
+ include the generated LaTeX document to another LaTeX document.
+ \item[\texttt{-{}-debug-capi}] --- create a very verbose C/API
+ code. Useful for debbuging.
+% \item[\texttt{-{}-h-force}] --- if \texttt{-h <filename>} is used then
+% overwrite the file \texttt{<filename>} (if it exists) and continue
+% with constructing the C/API module source.
+ \item[\texttt{-makefile <options>}] --- run \fpy without arguments
+ for more information.
+ \item[\texttt{-{}-use-libs}] --- see \texttt{-makefile}.
+ \item[\texttt{-{}-overwrite-makefile}] --- overwrite existing
+ \texttt{Makefile-<modulename>}.
+ \item[\texttt{-v}] --- print \fpy version number and exit.
+ \item[\texttt{-pyinc}] --- print Python include path and exit.
+ \end{description}
+\item[\texttt{<fortran files>}] --- are the paths to Fortran files or
+ to signature files that will be scanned for \texttt{<fortran
+ functions>} in order to determine their signatures.
+\item[\texttt{<fortran functons>}] --- are the names of Fortran
+ routines for which Python C/API wrapper functions will be generated.
+ Default is all that are found in \texttt{<fortran files>}.
+\item[\texttt{only:}/\texttt{skip:}] --- are flags for filtering
+ in/out the names of fortran routines to be wrapped. Run \fpy without
+ arguments for more information about the usage of these flags.
+\end{description}
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
diff --git a/numpy/f2py/doc/python9.tex b/numpy/f2py/doc/python9.tex
new file mode 100644
index 000000000..cda3cd18b
--- /dev/null
+++ b/numpy/f2py/doc/python9.tex
@@ -0,0 +1,1046 @@
+\documentclass[twocolumn]{article}
+\usepackage{epsfig}
+\usepackage{xspace}
+\usepackage{verbatim}
+
+
+\headsep=0pt
+\topmargin=0pt
+\headheight=0pt
+\oddsidemargin=0pt
+\textwidth=6.5in
+\textheight=9in
+%%tth:\newcommand{\xspace}{ }
+\newcommand{\fpy}{\texttt{f2py}\xspace}
+\newcommand{\bs}{\symbol{`\\}}
+% need bs here:
+%%tth:\newcommand{\bs}{\texttt{<backslash>}}
+
+\newcommand{\tthhide}[1]{#1}
+\newcommand{\latexhide}[1]{}
+%%tth:\newcommand{\tthhide}[1]{}
+%%tth:\newcommand{\latexhide}[1]{#1}
+
+\newcommand{\shell}[1]{
+\latexhide{
+ \special{html:
+<BLOCKQUOTE>
+<pre>
+sh> #1
+</pre>
+</BLOCKQUOTE>}
+}
+\tthhide{
+ \\[1ex]
+ \hspace*{1em}
+ \texttt{sh> \begin{minipage}[t]{0.8\textwidth}#1\end{minipage}}\\[1ex]
+}
+}
+
+\newcommand{\email}[1]{\special{html:<A href="mailto:#1">}\texttt{<#1>}\special{html:</A>}}
+\newcommand{\wwwsite}[1]{\special{html:<A href="#1">}{#1}\special{html:</A>}}
+\title{Fortran to Python Interface Generator with
+an Application to Aerospace Engineering}
+\author{
+\large Pearu Peterson\\
+\small \email{pearu@cens.ioc.ee}\\
+\small Center of Nonlinear Studies\\
+\small Institute of Cybernetics at TTU\\
+\small Akadeemia Rd 21, 12618 Tallinn, ESTONIA\\[2ex]
+\large Joaquim R. R. A. Martins and Juan J. Alonso\\
+\small \email{joaquim.martins@stanford.edu}, \email{jjalonso@stanford.edu}\\
+\small Department of Aeronautics and Astronautics\\
+\small Stanford University, CA
+}
+\date{$Revision: 1.17 $\\\today}
+\begin{document}
+
+\maketitle
+
+\special{html: Other formats of this document:
+<A href=f2python9.ps.gz>Gzipped PS</A>,
+<A href=f2python9.pdf>PDF</A>
+}
+
+\begin{abstract}
+ FPIG --- Fortran to Python Interface Generator --- is a tool for
+ generating Python C/API extension modules that interface
+ Fortran~77/90/95 codes with Python. This tool automates the process
+ of interface generation by scanning the Fortran source code to
+ determine the signatures of Fortran routines and creating a
+ Python C/API module that contains the corresponding interface
+ functions. FPIG also attempts to find dependence relations between
+ the arguments of a Fortran routine call (e.g. an array and its
+ dimensions) and constructs interface functions with potentially
+ fewer arguments. The tool is extremely flexible since the user has
+ control over the generation process of the interface by specifying the
+ desired function signatures. The home page for FPIG can be found at
+ \wwwsite{http://cens.ioc.ee/projects/f2py2e/}.
+
+ FPIG has been used successfully to wrap a large number of Fortran
+ programs and libraries. Advances in computational science have led
+ to large improvements in the modeling of physical systems which are
+ often a result of the coupling of a variety of physical models that
+ were typically run in isolation. Since a majority of the available
+ physical models have been previously written in Fortran, the
+ importance of FPIG in accomplishing these couplings cannot be
+ understated. In this paper, we present an application of FPIG to
+ create an object-oriented framework for aero-structural analysis and
+ design of aircraft.
+\end{abstract}
+
+%%tth:
+\tableofcontents
+
+\section{Preface}
+\label{sec:preface}
+
+The use of high-performance computing has made it possible to tackle
+many important problems and discover new physical phenomena in science
+and engineering. These accomplishments would not have been achieved
+without the computer's ability to process large amounts of data in a
+reasonably short time. It can safely be said that the computer has
+become an essential tool for scientists and engineers. However, the
+diversity of problems in science and engineering has left its mark as
+computer programs have been developed in different programming
+languages, including languages developed to describe certain specific
+classes of problems.
+
+In interdisciplinary fields it is not uncommon for scientists and
+engineers to face problems that have already been solved in a
+different programming environment from the one they are familiar with.
+Unfortunately, researchers may not have the time or willingness to
+learn a new programming language and typically end up developing the
+corresponding tools in the language that they normally use. This
+approach to the development of new software can substantially impact
+the time to develop and the quality of the resulting product: firstly,
+it usually takes longer to develop and test a new tool than to learn a
+new programming environment, and secondly it is very unlikely that a
+non-specialist in a given field can produce a program that is more
+efficient than more established tools.
+
+To avoid situations such as the one described above, one alternative
+would be to provide automatic or semi-automatic interfaces between programming
+languages. Another possibility would be to provide language
+translators, but these obviously require more work than interface
+generators --- a translator must understand all language constructs
+while an interface generator only needs to understand a subset of these
+constructs. With an automatic interface between two languages, scientists or
+engineers can effectively use programs written in other programming
+languages without ever having to learn them.
+
+Although it is clear that it is impossible to interface arbitrary programming
+languages with each other, there is no reason for doing so. Low-level languages such as C and Fortran are well known for
+their speed and are therefore suitable for applications where
+performance is critical. High-level scripting languages, on the other
+hand, are generally slower but much easier to learn and use,
+especially when performing interactive analysis. Therefore, it makes
+sense to create interfaces only in one direction: from lower-level
+languages to higher-level languages.
+
+In an ideal world, scientists and engineers would use higher-level
+languages for the manipulation of the mathematical formulas in a problem
+rather than having to struggle with tedious programming details. For tasks
+that are computationally demanding, they would use interfaces to
+high-performance routines that are written in a lower-level language
+optimized for execution speed.
+
+
+\section{Introduction}
+\label{sec:intro}
+
+This paper presents a tool that has been developed for the creation of
+interfaces between Fortran and Python.
+
+
+The Fortran language is popular in
+scientific computing, and is used mostly in applications that use
+extensive matrix manipulations (e.g. linear algebra). Since Fortran
+ has been the standard language among scientists and engineers for
+ at least three decades, there is a large number of legacy codes available that
+ perform a variety of tasks using very sophisticated algorithms (see
+e.g. \cite{netlib}).
+
+The Python language \cite{python}, on the other hand, is a relatively
+new programming language. It is a very high-level scripting language
+that supports object-oriented programming. What makes Python
+especially appealing is its very clear and natural syntax, which makes it
+easy to learn and use. With Python one can implement relatively
+complicated algorithms and tasks in a short time with very compact
+source code.
+
+Although there are ongoing projects for extending Python's usage in
+scientific computation, it lacks reliable tools that are common in
+scientific and engineering such as ODE integrators, equation solvers,
+tools for FEM, etc. The implementation of all of these tools in Python
+would be not only too time-consuming but also inefficient. On the
+other hand, these tools are already developed in other,
+computationally more efficient languages such as Fortran or C.
+Therefore, the perfect role for Python in the context of scientific
+computing would be that of a ``gluing'' language. That is, the role
+of providing high-level interfaces to C, C++ and Fortran libraries.
+
+There are a number of widely-used tools that can be used for interfacing
+software libraries to Python. For binding C libraries with various
+scripting languages, including Python, the tool most often used is
+SWIG \cite{swig}. Wrapping Fortran routines with Python is less
+popular, mainly because there are many platform and compiler-specific
+issues that need to be addressed. Nevertheless, there is great
+interest in interfacing Fortran libraries because they provide
+invaluable tools for scientific computing. At LLNL, for example, a tool
+called PyFort has been developed for connecting Fortran and
+Python~\cite{pyfort}.
+
+The tools mentioned above require an input file describing signatures
+of functions to be interfaced. To create these input files, one needs
+to have a good knowledge of either C or Fortran. In addition,
+binding libraries that have thousands of routines can certainly constitute a
+very tedious task, even with these tools.
+
+The tool that is introduced in this paper, FPIG (Fortran to Python
+Interface Generator)~\cite{fpig}, automatically generates interfaces
+between Fortran and Python. It is different from the tools mentioned
+above in that FPIG can create signature files automatically by
+scanning the source code of the libraries and then construct Python
+C/API extension modules. Note that the user need not be experienced
+in C or even Fortran. In addition, FPIG is designed to wrap large
+Fortran libraries containing many routines with only one or two
+commands. This process is very flexible since one can always modify
+the generated signature files to insert additional attributes in order
+to achieve more sophisticated interface functions such as taking care
+of optional arguments, predicting the sizes of array arguments and
+performing various checks on the correctness of the input arguments.
+
+The organization of this paper is as follows. First, a simple example
+of FPIG usage is given. Then FPIG's basic features are described and
+solutions to platform and compiler specific issues are discussed.
+Unsolved problems and future work on FPIG's development are also
+addressed. Finally, an application to a large aero-structural solver
+is presented as real-world example of FPIG's usage.
+
+\section{Getting Started}
+\label{sec:getstart}
+
+To get acquainted with FPIG, let us consider the simple Fortran~77
+subroutine shown in Fig. \ref{fig:exp1.f}.
+\begin{figure}[htb]
+ \latexhide{\label{fig:exp1.f}}
+ \special{html:<BLOCKQUOTE>}
+ \verbatiminput{examples/exp1.f}
+ \special{html:</BLOCKQUOTE>}
+ \caption{Example Fortran code \texttt{exp1.f}. This routine calculates
+ the simplest rational lower and upper approximations to $e$ (for
+ details of
+ the algorithm see \cite{graham-etal}, p.122)}
+ \tthhide{\label{fig:exp1.f}}
+\end{figure}
+In the sections that follow, two ways of creating interfaces to this
+Fortran subroutine are described. The first and simplest way is
+suitable for Fortran codes that are developed in connection with \fpy.
+The second and not much more difficult method, is suitable for
+interfacing existing Fortran libraries which might have been developed
+by other programmers.
+
+Numerical Python~\cite{numpy} is needed in order to compile extension
+modules generated by FPIG.
+
+\subsection{Interfacing Simple Routines}
+\label{sec:example1}
+
+In order to call the Fortran routine \texttt{exp1} from Python, let us
+create an interface to it by using \fpy (FPIG's front-end program). In
+order to do this, we issue the following command, \shell{f2py -m foo
+exp1.f} where the option \texttt{-m foo} sets the name of the Python
+C/API extension module that \fpy will create to
+\texttt{foo}. To learn more about the \fpy command line options, run \fpy
+without arguments.
+
+The output messages in Fig. \ref{fig:f2pyoutmess}
+illustrate the procedure followed by \fpy:
+ (i) it scans the Fortran source code specified in the command line,
+ (ii) it analyses and determines the routine signatures,
+ (iii) it constructs the corresponding Python C/API extension modules,
+ (iv) it writes documentation to a LaTeX file, and
+ (v) it creates a GNU Makefile for building the shared modules.
+\begin{figure}[htb]
+ \latexhide{\label{fig:f2pyoutmess}}
+ \special{html:<BLOCKQUOTE>}
+ {\tthhide{\small}
+ \verbatiminput{examples/exp1mess.txt}
+ }
+ \special{html:</BLOCKQUOTE>}
+ \caption{Output messages of \texttt{f2py -m foo exp1.f}.}
+ \tthhide{\label{fig:f2pyoutmess}}
+\end{figure}
+
+Now we can build the \texttt{foo} module:
+\shell{make -f Makefile-foo}
+
+Figure \ref{fig:exp1session} illustrates a sample session for
+ calling the Fortran routine \texttt{exp1} from Python.
+\begin{figure}[htb]
+ \latexhide{\label{fig:exp1session}}
+ \special{html:<BLOCKQUOTE>}
+ \verbatiminput{examples/exp1session.txt}
+ \special{html:</BLOCKQUOTE>}
+ \caption{Calling Fortran routine \texttt{exp1} from Python. Here
+ \texttt{l[0]/l[1]} gives an estimate to $e$ with absolute error
+ less than \texttt{u[0]/u[1]-l[0]/l[1]} (this value may depend on
+ the platform and compiler used).}
+ \tthhide{\label{fig:exp1session}}
+\end{figure}
+
+Note the difference between the signatures of the Fortran routine
+\texttt{exp1(l,u,n)} and the corresponding wrapper function
+\texttt{l,u=exp1([n])}. Clearly, the later is more informative to
+the user: \texttt{exp1} takes one optional argument \texttt{n} and it
+returns \texttt{l}, \texttt{u}. This exchange of signatures is
+achieved by special comment lines (starting with \texttt{Cf2py}) in
+the Fortran source code --- these lines are interpreted by \fpy as
+normal Fortran code. Therefore, in the given example the line \texttt{Cf2py
+ integer*4 :: n = 1} informs \fpy that the variable \texttt{n} is
+optional with a default value equal to one. The line \texttt{Cf2py
+ intent(out) l,u} informs \fpy that the variables \texttt{l,u} are to be
+returned to Python after calling Fortran function \texttt{exp1}.
+
+\subsection{Interfacing Libraries}
+\label{sec:example2}
+
+In our example the Fortran source \texttt{exp1.f} contains \fpy
+specific information, though only as comments. When interfacing
+libraries from other parties, it is not recommended to modify their
+source. Instead, one should use a special auxiliary file to collect
+the signatures of all Fortran routines and insert \fpy specific
+declaration and attribute statements in that file. This auxiliary file
+is called a \emph{signature file} and is identified by the extension
+\texttt{.pyf}.
+
+We can use \fpy to generate these signature files by using the
+\texttt{-h <filename>.pyf} option.
+In our example, \fpy could have been called as follows,
+\shell{f2py -m foo -h foo.pyf exp1.f}
+where the option \texttt{-h foo.pyf} requests \fpy to read the
+routine signatures, save them to the file \texttt{foo.pyf}, and then
+exit.
+If \texttt{exp1.f} in Fig.~\ref{fig:exp1.f} were to
+contain no lines starting with \texttt{Cf2py}, the corresponding
+signature file \texttt{foo.pyf} would be as shown in Fig.~\ref{fig:foo.pyf}.
+In order to obtain the exchanged and more convenient signature
+\texttt{l,u=foo.exp1([n])}, we would edit \texttt{foo.pyf} as shown in
+Fig.~\ref{fig:foom.pyf}.
+The Python C/API extension module \texttt{foo} can be constructed by
+applying \fpy to the signature file with the following command:
+\shell{f2py foo.pyf}
+The procedure for building the corresponding shared module and using
+it in Python is identical to the one described in the previous section.
+
+\begin{figure}[htb]
+ \latexhide{\label{fig:foo.pyf}}
+ \special{html:<BLOCKQUOTE>}
+ \verbatiminput{examples/foo.pyf}
+ \special{html:</BLOCKQUOTE>}
+ \caption{Raw signature file \texttt{foo.pyf} generated with
+ \texttt{f2py -m foo -h foo.pyf exp1.f}}
+ \tthhide{\label{fig:foo.pyf}}
+\end{figure}
+\begin{figure}[htb]
+ \latexhide{\label{fig:foom.pyf}}
+ \special{html:<BLOCKQUOTE>}
+ \verbatiminput{examples/foom.pyf}
+ \special{html:</BLOCKQUOTE>}
+ \caption{Modified signature file \texttt{foo.pyf}}
+ \tthhide{\label{fig:foom.pyf}}
+\end{figure}
+
+As we can see, the syntax of the signature file is an
+extension of the Fortran~90/95 syntax. This means that only a few new
+constructs are introduced for \fpy in addition to all standard Fortran
+constructs; signature files can even be written in fixed form. A
+complete set of constructs that are used when creating interfaces, is
+described in the \fpy User's Guide \cite{f2py-ug}.
+
+
+\section{Basic Features}
+\label{sec:features}
+
+In this section a short overview of \fpy features is given.
+\begin{enumerate}
+\item All basic Fortran types are supported. They include
+the following type specifications:
+\begin{verbatim}
+integer[ | *1 | *2 | *4 | *8 ]
+logical[ | *1 | *2 | *4 | *8 ]
+real[ | *4 | *8 | *16 ]
+complex[ | *8 | *16 | *32 ]
+double precision, double complex
+character[ |*(*)|*1|*2|*3|...]
+\end{verbatim}
+In addition, they can all be in the kind-selector form
+(e.g. \texttt{real(kind=8)}) or char-selector form
+(e.g. \texttt{character(len=5)}).
+\item Arrays of all basic types are supported. Dimension
+ specifications can be of form \texttt{<dimension>} or
+ \texttt{<start>:<end>}. In addition, \texttt{*} and \texttt{:}
+ dimension specifications can be used for input arrays.
+ Dimension specifications may contain also \texttt{PARAMETER}'s.
+\item The following attributes are supported:
+ \begin{itemize}
+ \item
+ \texttt{intent(in)}: used for input-only arguments.
+ \item
+ \texttt{intent(inout)}: used for arguments that are changed in
+ place.
+ \item
+ \texttt{intent(out)}: used for return arguments.
+ \item
+ \texttt{intent(hide)}: used for arguments to be removed from
+ the signature of the Python function.
+ \item
+ \texttt{intent(in,out)}, \texttt{intent(inout,out)}: used for
+ arguments with combined behavior.
+ \item
+ \texttt{dimension(<dimspec>)}
+ \item
+ \texttt{depend([<names>])}: used
+ for arguments that depend on other arguments in \texttt{<names>}.
+ \item
+ \texttt{check([<C booleanexpr>])}: used for checking the
+ correctness of input arguments.
+ \item
+ \texttt{note(<LaTeX text>)}: used for
+ adding notes to the module documentation.
+ \item
+ \texttt{optional}, \texttt{required}
+ \item
+ \texttt{external}: used for call-back arguments.
+ \item
+ \texttt{allocatable}: used for Fortran 90/95 allocatable arrays.
+ \end{itemize}
+\item Using \fpy one can call arbitrary Fortran~77/90/95 subroutines
+ and functions from Python, including Fortran 90/95 module routines.
+\item Using \fpy one can access data in Fortran~77 COMMON blocks and
+ variables in Fortran 90/95 modules, including allocatable arrays.
+\item Using \fpy one can call Python functions from Fortran (call-back
+ functions). \fpy supports very flexible hooks for call-back functions.
+\item Wrapper functions perform the necessary type conversations for their
+ arguments resulting in contiguous Numeric arrays that are suitable for
+ passing to Fortran routines.
+\item \fpy generates documentation strings
+for \texttt{\_\_doc\_\_} attributes of the wrapper functions automatically.
+\item \fpy scans Fortran codes and creates the signature
+ files. It automatically detects the signatures of call-back functions,
+ solves argument dependencies, decides the order of initialization of
+ optional arguments, etc.
+\item \fpy automatically generates GNU Makefiles for compiling Fortran
+ and C codes, and linking them to a shared module.
+ \fpy detects available Fortran and C compilers. The
+ supported compilers include the GNU project C Compiler (gcc), Compaq
+ Fortran, VAST/f90 Fortran, Absoft F77/F90, and MIPSpro 7 Compilers, etc.
+ \fpy has been tested to work on the following platforms: Intel/Alpha
+ Linux, HP-UX, IRIX64.
+\item Finally, the complete \fpy User's Guide is available in various
+ formats (ps, pdf, html, dvi). A mailing list,
+ \email{f2py-users@cens.ioc.ee}, is open for support and feedback. See
+ the FPIG's home page for more information \cite{fpig}.
+\end{enumerate}
+
+
+\section{Implementation Issues}
+\label{sec:impl}
+
+The Fortran to Python interface can be thought of as a three layer
+``sandwich'' of different languages: Python, C, and Fortran. This
+arrangement has two interfaces: Python-C and C-Fortran. Since Python
+itself is written in C, there are no basic difficulties in
+implementing the Python-C interface~\cite{python-doc:ext}. The C-Fortran
+interface, on the other hand, results in many platform and compiler specific
+issues that have to be dealt with. We will now discuss these issues
+in some detail and describe how they are solved in FPIG.
+
+\subsection{Mapping Fortran Types to C Types}
+\label{sec:mapF2Ctypes}
+
+Table \ref{tab:mapf2c} defines how Fortran types are mapped to C types
+in \fpy.
+\begin{table}[htb]
+ \begin{center}
+ \begin{tabular}[c]{l|l}
+ Fortran type & C type \\\hline
+ \texttt{integer *1} & \texttt{char}\\
+ \texttt{byte} & \texttt{char}\\
+ \texttt{integer *2} & \texttt{short}\\
+ \texttt{integer[ | *4]} & \texttt{int}\\
+ \texttt{integer *8} & \texttt{long long}\\
+ \texttt{logical *1} & \texttt{char}\\
+ \texttt{logical *2} & \texttt{short}\\
+ \texttt{logical[ | *4]} & \texttt{int}\\
+ \texttt{logical *8} & \texttt{int}\\
+ \texttt{real[ | *4]} & \texttt{float}\\
+ \texttt{real *8} & \texttt{double}\\
+ \texttt{real *16} & \texttt{long double}\\
+ \texttt{complex[ | *8]} & \texttt{struct \{float r,i;\}}\\
+ \texttt{complex *16} & \texttt{struct \{double r,i;\}}\\
+ \texttt{complex *32} & \texttt{struct \{long double r,i;\}}\\
+ \texttt{character[*...]} & \texttt{char *}\\
+ \end{tabular}
+ \caption{Mapping Fortran types to C types.}
+ \label{tab:mapf2c}
+ \end{center}
+\end{table}
+Users may redefine these mappings by creating a \texttt{.f2py\_f2cmap}
+file in the working directory. This file should contain a Python
+dictionary of dictionaries, e.g. \texttt{\{'real':\{'low':'float'\}\}},
+that informs \fpy to map Fortran type \texttt{real(low)}
+to C type \texttt{float} (here \texttt{PARAMETER low = ...}).
+
+
+\subsection{Calling Fortran (Module) Routines}
+\label{sec:callrout}
+
+When mixing Fortran and C codes, one has to know how function names
+are mapped to low-level symbols in their object files. Different
+compilers may use different conventions for this purpose. For example, gcc
+appends the underscore \texttt{\_} to a Fortran routine name. Other
+compilers may use upper case names, prepend or append different
+symbols to Fortran routine names or both. In any case, if the
+low-level symbols corresponding to Fortran routines are valid for the
+C language specification, compiler specific issues can be solved by
+using CPP macro features.
+
+Unfortunately, there are Fortran compilers that use symbols in
+constructing low-level routine names that are not valid for C. For
+example, the (IRIX64) MIPSpro 7 Compilers use `\$' character in the
+low-level names of module routines which makes it impossible (at
+least directly) to call such routines from C when using the MIPSpro 7
+C Compiler.
+
+In order to overcome this difficulty, FPIG introduces an unique
+solution: instead of using low-level symbols for calling Fortran
+module routines from C, the references to such routines are determined
+at run-time by using special wrappers. These wrappers are called once
+during the initialization of an extension module. They are simple
+Fortran subroutines that use a Fortran module and call another C
+function with Fortran module routines as arguments in order to save
+their references to C global variables that are later used for calling
+the corresponding Fortran module routines. This arrangement is
+set up as follows. Consider the following Fortran 90 module with the
+subroutine \texttt{bar}:
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+module fun
+ subroutine bar()
+ end
+end
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+Figure \ref{fig:capi-sketch} illustrates a Python C/API extension
+module for accessing the F90 module subroutine \texttt{bar} from Python.
+When the Python module \texttt{foo} is loaded, \texttt{finitbar} is
+called. \texttt{finitbar} calls \texttt{init\_bar} by passing the
+reference of the Fortran 90 module subroutine \texttt{bar} to C where it is
+saved to the variable \texttt{bar\_ptr}. Now, when one executes \texttt{foo.bar()}
+from Python, \texttt{bar\_ptr} is used in \texttt{bar\_capi} to call
+the F90 module subroutine \texttt{bar}.
+\begin{figure}[htb]
+ \latexhide{\label{fig:capi-sketch}}
+ \special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+#include "Python.h"
+...
+char *bar_ptr;
+void init_bar(char *bar) {
+ bar_ptr = bar;
+}
+static PyObject *
+bar_capi(PyObject *self,PyObject *args) {
+ ...
+ (*((void *)bar_ptr))();
+ ...
+}
+static PyMethodDef
+foo_module_methods[] = {
+ {"bar",bar_capi,METH_VARARGS},
+ {NULL,NULL}
+};
+extern void finitbar_; /* GCC convention */
+void initfoo() {
+ ...
+ finitbar_(init_bar);
+ Py_InitModule("foo",foo_module_methods);
+ ...
+}
+\end{verbatim}
+ \special{html:</BLOCKQUOTE>}
+ \caption{Sketch of Python C/API for accessing F90 module subroutine
+ \texttt{bar}. The Fortran function \texttt{finitbar} is defined in
+ Fig.~\ref{fig:wrapbar}.}
+ \tthhide{\label{fig:capi-sketch}}
+\end{figure}
+\begin{figure}[ht]
+ \latexhide{\label{fig:wrapbar}}
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+ subroutine finitbar(cinit)
+ use fun
+ extern cinit
+ call cinit(bar)
+ end
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+ \caption{Wrapper for passing the reference of \texttt{bar} to C code.}
+ \tthhide{\label{fig:wrapbar}}
+\end{figure}
+
+Surprisingly, mixing C code and Fortran modules in this way is as
+portable and compiler independent as mixing C and ordinary Fortran~77
+code.
+
+Note that extension modules generated by \fpy actually use
+\texttt{PyFortranObject} that implements above described scheme with
+exchanged functionalities (see Section \ref{sec:PFO}).
+
+
+\subsection{Wrapping Fortran Functions}
+\label{sec:wrapfunc}
+
+The Fortran language has two types of routines: subroutines and
+functions. When a Fortran function returns a composed type such as
+\texttt{COMPLEX} or \texttt{CHARACTER}-array then calling this
+function directly from C may not work for all compilers, as C
+functions are not supposed to return such references. In order to
+avoid this, FPIG constructs an additional Fortran wrapper subroutine
+for each such Fortran function. These wrappers call just the
+corresponding functions in the Fortran layer and return the result to
+C through its first argument.
+
+
+\subsection{Accessing Fortran Data}
+\label{sec:accsdata}
+
+In Fortran one can use \texttt{COMMON} blocks and Fortran module
+variables to save data that is accessible from other routines. Using
+FPIG, one can also access these data containers from Python. To achieve
+this, FPIG uses special wrapper functions (similar to the ones used
+for wrapping Fortran module routines) to save the references to these
+data containers so that they can later be used from C.
+
+FPIG can also handle \texttt{allocatable} arrays. For example, if a
+Fortran array is not yet allocated, then by assigning it in Python,
+the Fortran to Python interface will allocate and initialize the
+array. For example, the F90 module allocatable array \texttt{bar}
+defined in
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+module fun
+ integer, allocatable :: bar(:)
+end module
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+can be allocated from Python as follows
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+>>> import foo
+>>> foo.fun.bar = [1,2,3,4]
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+
+\subsection{\texttt{PyFortranObject}}
+\label{sec:PFO}
+
+In general, we would like to access from Python the following Fortran
+objects:
+\begin{itemize}
+\item subroutines and functions,
+\item F90 module subroutines and functions,
+\item items in COMMON blocks,
+\item F90 module data.
+\end{itemize}
+Assuming that the Fortran source is available, we can determine the signatures
+of these objects (the full specification of routine arguments, the
+layout of Fortran data, etc.). In fact, \fpy gets this information
+while scanning the Fortran source.
+
+In order to access these Fortran objects from C, we need to determine
+their references. Note that the direct access of F90 module objects is
+extremely compiler dependent and in some cases even impossible.
+Therefore, FPIG uses various wrapper functions for obtaining the
+references to Fortran objects. These wrapper functions are ordinary
+F77 subroutines that can easily access objects from F90 modules and
+that pass the references to Fortran objects as C variables.
+
+
+\fpy generated Python C/API extension modules use
+\texttt{PyFortranObject} to store the references of Fortran objects.
+In addition to the storing functionality, the \texttt{PyFortranObject}
+also provides methods for accessing/calling Fortran objects from
+Python in a user-friendly manner. For example, the item \texttt{a} in
+\texttt{COMMON /bar/ a(2)} can be accessed from Python as
+\texttt{foo.bar.a}.
+
+Detailed examples of \texttt{PyFortranObject} usage can be found in
+\cite{PFO}.
+
+\subsection{Callback Functions}
+\label{sec:callback}
+
+Fortran routines may have arguments specified as \texttt{external}.
+These arguments are functions or subroutines names that the receiving Fortran routine
+will call from its body. For such arguments FPIG
+constructs a call-back mechanism (originally contributed by Travis
+Oliphant) that allows Fortran routines to call Python functions. This
+is actually realized using a C layer between Python and
+Fortran. Currently, the call-back mechanism is compiler independent
+unless a call-back function needs to return a composed type
+(e.g. \texttt{COMPLEX}).
+
+The signatures of call-back functions are determined when \fpy scans
+the Fortran source code. To illustrate this, consider the following
+example:
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+ subroutine foo(bar, fun, boo)
+ integer i
+ real r
+ external bar,fun,boo
+ call bar(i, 1.2)
+ r = fun()
+ call sun(boo)
+ end
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+\fpy recognizes the signatures of the user routines \texttt{bar} and
+\texttt{fun} using the information contained in the lines \texttt{call
+ bar(i, 1.2)} and \texttt{r = fun()}:
+\special{html:<BLOCKQUOTE>}
+\begin{verbatim}
+subroutine bar(a,b)
+ integer a
+ real b
+end
+function fun()
+ real fun
+end
+\end{verbatim}
+\special{html:</BLOCKQUOTE>}
+But \fpy cannot determine the signature of the user routine
+\texttt{boo} because the source contains no information at all about
+the \texttt{boo} specification. Here user needs to provide the
+signature of \texttt{boo} manually.
+
+\section{Future Work}
+\label{sec:future}
+
+FPIG can be used to wrap almost any Fortran code. However, there are
+still issues that need to be resolved. Some of them are listed below:
+\begin{enumerate}
+\item One of the FPIG's goals is to become as platform and compiler
+ independent as possible. Currently FPIG can be used on
+ any UN*X platform that has gcc installed in it. In the future, FPIG
+ should be also tested on Windows systems.
+\item Another goal of FPIG is to become as simple to use as
+ possible. To achieve that, FPIG should start using the facilities of
+ \texttt{distutils}, the new Python standard to distribute and build
+ Python modules. Therefore, a contribution to \texttt{distutils}
+ that can handle Fortran extensions should be developed.
+\item Currently users must be aware of
+ the fact that multi-dimensional arrays are stored differently in C
+ and Fortran (they must provide transposed multi-dimensional arrays
+ to wrapper functions). In the future a solution should be found such
+ that users do not need to worry about this rather
+ confusing and technical detail.
+\item Finally, a repository of signature files for widely-used Fortran
+ libraries (e.g. BLAS, LAPACK, MINPACK, ODEPACK, EISPACK, LINPACK) should be
+ provided.
+\end{enumerate}
+
+
+\section{Application to a Large Aero-Structural Analysis Framework}
+\label{sec:app}
+
+
+\subsection{The Need for Python and FPIG}
+\label{sec:appsub1}
+
+As a demonstration of the power and usefulness of FPIG, we will
+present work that has been done at the Aerospace Computing Laboratory
+at Stanford University. The focus of the research is on aircraft
+design optimization using high-fidelity analysis tools such as
+Computational Fluid Dynamics (CFD) and Computational Structural
+Mechanics (CSM)~\cite{reno99}.
+
+The group's analysis programs are written mainly in Fortran and are the result
+of many years of development. Until now, any researcher that needed
+to use these tools would have to learn a less than user-friendly
+interface and become relatively familiar with the inner workings of
+the codes before starting the research itself. The need to
+couple analyses of different disciplines revealed the additional
+inconvenience of gluing and scripting the different codes with
+Fortran.
+
+It was therefore decided that the existing tools should be wrapped
+using an object-oriented language in order to improve their ease of
+use and versatility. The use of several different languages such as
+C++, Java and Perl was investigated but Python seemed to provide the
+best solution. The fact that it combines scripting capability
+with a fully-featured object-oriented programming language, and that
+it has a clean syntax were factors that determined our choice. The
+introduction of tools that greatly facilitate the task of wrapping
+Fortran with Python provided the final piece needed to realize our
+objective.
+
+\subsection{Wrapping the Fortran Programs}
+
+In theory, it would have been possible to wrap our Fortran programs
+with C and then with Python by hand. However, this would have been a
+labor intensive task that would detract from our research. The use of
+tools that automate the task of wrapping has been extremely useful.
+
+The first such tool that we used was PyFort. This tool created the C
+wrappers and Python modules automatically, based on signature files
+(\texttt{.pyf}) provided by the user. Although it made the task of
+wrapping considerably easier, PyFort was limited by the fact that any
+Fortran data that was needed at the Python level had to be passed in
+the argument list of the Fortran subroutine. Since the bulk of the
+data in our programs is shared by using Fortran~77 common blocks and
+Fortran~90 modules, this required adding many more arguments to the
+subroutine headers. Furthermore, since Fortran does not allow common
+block variables or module data to be specified in a subroutine
+argument list, a dummy pointer for each desired variable had to be
+created and initialized.
+
+The search for a better solution to this problem led us to \fpy.
+Since \fpy provides a solution for accessing common block and module
+variables, there was no need to change the Fortran source anymore,
+making the wrapping process even easier. With \fpy we also
+experienced an increased level of automation since it produces the
+signature files automatically, as well as a Makefile for the joint
+compilation of the original Fortran and C wrapper codes. This increased
+automation did not detract from its flexibility since it was always
+possible to edit the signature files to provide different functionality.
+
+Once Python interfaces were created for each Fortran application
+by running \fpy, it was just a matter of using Python to achieve the
+final objective of developing an object-oriented framework for our
+multidisciplinary solvers. The Python modules that we designed are
+discussed in the following section.
+
+
+\subsection{Module Design}
+\label{ssec:module}
+
+The first objective of this effort was to design the classes for each
+type of analysis, each representing an independent Python module. In
+our case, we are interested in performing aero-structural analysis and
+optimization of aircraft wings. We therefore needed an analysis tool
+for the flow (CFD), another for analyzing the structure (CSM), as well
+as a geometry database. In addition, we needed to interface these two
+tools in order to analyze the coupled system. The object design for
+each of these modules should be general enough that the underlying
+analysis code in Fortran can be changed without changing the Python
+interface. Another requirement was that the modules be usable on
+their own for single discipline analysis.
+
+\subsubsection{Geometry}
+
+The \emph{Geometry} class provides a database for the outer mold
+geometry of the aircraft. This database needs to be accessed by both
+the flow and structural solvers. It contains a parametric description
+of the aircraft's surface as well as methods that extract and update
+this information.
+
+
+\subsubsection{Flow}
+
+The flow solver was wrapped in a class called \emph{Flow}. The class
+was designed so that it can wrap any type of CFD solver. It contains
+two main objects: the computational mesh and a solver object. A graph
+showing the hierarchy of the objects in \emph{Flow} is shown in
+Fig.~\ref{fig:flow}.
+\tthhide{
+\begin{figure}[h]
+ \centering
+ \epsfig{file=./flow.eps, angle=0, width=.7\linewidth}
+ \caption{The \emph{Flow} container class.}
+ \label{fig:flow}
+\end{figure}
+}
+\latexhide{
+\begin{figure}[h]
+ \label{fig:flow}
+\special{html:
+<CENTER>
+ <IMG SRC="flow.jpg" WIDTH="400">
+</CENTER>
+}
+ \caption{The \emph{Flow} container class.}
+\end{figure}
+}
+Methods in the flow class include those used for the initialization of
+all the class components as well as methods that write the current
+solution to a file.
+
+
+\subsubsection{Structure}
+
+The \emph{Structure} class wraps a structural analysis code. The class
+stores the information about the structure itself in an object called
+\emph{Model} which also provides methods for changing and exporting
+its information. A list of the objects contained in this class can be
+seen in Fig.~\ref{fig:structure}.
+\tthhide{
+\begin{figure}[h]
+ \centering
+ \epsfig{file=./structure.eps, angle=0, width=.7\linewidth}
+ \caption{The \emph{Structure} container class.}
+ \label{fig:structure}
+\end{figure}
+}
+\latexhide{
+\begin{figure}[h]
+ \label{fig:structure}
+\special{html:
+<CENTER>
+ <IMG SRC="structure.jpg" WIDTH="400">
+</CENTER>
+}
+ \caption{The \emph{Structure} container class.}
+\end{figure}
+}
+Since the \emph{Structure} class contains a
+dictionary of \emph{LoadCase} objects, it is able to store and solve
+multiple load cases, a capability that the original Fortran code
+does not have.
+
+
+\subsubsection{Aerostructure}
+
+The \emph{Aerostructure} class is the main class in the
+aero-structural analysis module and contains a \emph{Geometry}, a
+\emph{Flow} and a \emph{Structure}. In addition, the class defines
+all the functions that are necessary to translate aerodynamic
+loads to structural loads and structural displacements to
+geometry surface deformations.
+
+One of the main methods of this class is the one that solves the
+aeroelastic system. This method is printed below:
+\begin{verbatim}
+def Iterate(self, load_case):
+ """Iterates the aero-structural solution."""
+ self.flow.Iterate()
+ self._UpdateStructuralLoads()
+ self.structure.CalcDisplacements(load_case)
+ self.structure.CalcStresses(load_case)
+ self._UpdateFlowMesh()
+ return
+\end{verbatim}
+This is indeed a very readable script, thanks to Python, and any
+high-level changes to the solution procedure can be easily
+implemented.
+The \emph{Aerostructure} class also contains methods that export all
+the information on the current solution for visualization, an example
+of which is shown in the next section.
+
+
+\subsection{Results}
+
+In order to visualize results, and because we needed to view results
+from multiple disciplines simultaneously, we selected OpenDX. Output
+files in DX format are written at the Python level and the result can
+be seen in Fig.~\ref{fig:aerostructure} for the case of a transonic
+airliner configuration.
+\tthhide{
+\begin{figure*}[t]
+ \centering
+ \epsfig{file=./aerostructure.eps, angle=-90, width=\linewidth}
+ \caption{Aero-structural model and results.}
+ \label{fig:aerostructure}
+\end{figure*}
+}
+\latexhide{
+\begin{figure}[h]
+ \label{fig:aerostructure}
+\special{html:
+<CENTER>
+ <IMG SRC="aerostructure.jpg" WIDTH="600">
+</CENTER>
+}
+ \caption{Aero-structural model and results.}
+\end{figure}
+}
+
+
+The figure illustrates the multidisciplinary nature of the
+problem. The grid pictured in the background is the mesh used by the
+flow solver and is colored by the pressure values computed at the
+cell centers. The wing in the foreground and its outer surface is
+clipped to show the internal structural components which are colored
+by their stress value.
+
+In conclusion, \fpy and Python have been extremely useful tools in our
+pursuit for increasing the usability and flexibility of existing Fortran
+tools.
+
+
+\begin{thebibliography}{99}
+\bibitem{netlib}
+\newblock Netlib repository at UTK and ORNL.
+\newblock \\\wwwsite{http://www.netlib.org/}
+\bibitem{python}
+Python language.
+\newblock \\\wwwsite{http://www.python.org/}
+\bibitem{swig}
+SWIG --- Simplified Wrapper and Interface Generator.
+\newblock \\\wwwsite{http://www.swig.org/}
+\bibitem{pyfort}
+PyFort --- The Python-Fortran connection tool.
+\newblock \\\wwwsite{http://pyfortran.sourceforge.net/}
+\bibitem{fpig}
+FPIG --- Fortran to Python Interface Generator.
+\newblock \\\wwwsite{http://cens.ioc.ee/projects/f2py2e/}
+\bibitem{numpy}
+Numerical Extension to Python.
+\newblock \\\wwwsite{http://numpy.sourceforge.net/}
+\bibitem{graham-etal}
+R. L. Graham, D. E. Knuth, and O. Patashnik.
+\newblock {\em {C}oncrete {M}athematics: a foundation for computer science.}
+\newblock Addison-Wesley, 1988
+\bibitem{f2py-ug}
+P. Peterson.
+\newblock {\em {\tt f2py} - Fortran to Python Interface Generator. Second Edition.}
+\newblock 2000
+\newblock
+\\\wwwsite{http://cens.ioc.ee/projects/f2py2e/usersguide.html}
+\bibitem{python-doc:ext}
+Python Documentation: Extending and Embedding.
+\newblock \\\wwwsite{http://www.python.org/doc/ext/}
+\bibitem{PFO}
+P. Peterson. {\em {\tt PyFortranObject} example usages.}
+\newblock 2001
+\newblock \\\wwwsite{http://cens.ioc.ee/projects/f2py2e/pyfobj.html}
+\bibitem{reno99}
+Reuther, J., J. J. Alonso, J. R. R. A. Martins, and
+S. C. Smith.
+\newblock ``A Coupled Aero-Structural Optimization Method for
+ Complete Aircraft Configurations'',
+\newblock {\em Proceedings of the 37th Aerospace Sciences Meeting},
+\newblock AIAA Paper 1999-0187. Reno, NV, January, 1999
+\end{thebibliography}
+
+%\end{multicols}
+
+%\begin{figure}[htbp]
+% \begin{center}
+% \epsfig{file=aerostructure2b.ps,width=0.75\textwidth}
+% \end{center}
+%\end{figure}
+
+
+
+\end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End:
+
+
diff --git a/numpy/f2py/doc/signaturefile.tex b/numpy/f2py/doc/signaturefile.tex
new file mode 100644
index 000000000..3cd16d890
--- /dev/null
+++ b/numpy/f2py/doc/signaturefile.tex
@@ -0,0 +1,368 @@
+
+\section{Signature file}
+\label{sec:signaturefile}
+
+The syntax of a signature file is borrowed from the Fortran~90/95
+language specification. Almost all Fortran~90/95 standard constructs
+are understood. Recall that Fortran~77 is a subset of Fortran~90/95.
+This tool introduces also some new attributes that are used for
+controlling the process of Fortran to Python interface construction.
+In the following, a short overview of the constructs
+used in signature files will be given.
+
+
+\subsection{Module block}
+\label{sec:moduleblock}
+
+A signature file contains one or more \texttt{pythonmodule} blocks. A
+\texttt{pythonmodule} block has the following structure:
+\begin{verbatim}
+python module <modulename>
+ interface
+ <routine signatures>
+ end [interface]
+ interface
+ module <F90/95 modulename>
+ <F90 module data type declarations>
+ <F90 module routine signatures>
+ end [module [<F90/95 modulename>]]
+ end [interface]
+end [pythonmodule [<modulename>]]
+\end{verbatim}
+For each \texttt{pythonmodule} block \fpy will generate a C-file
+\texttt{<modulename>module.c} (see step (iii)). (This is not true if
+\texttt{<modulename>} contains substring \texttt{\_\_user\_\_}, see
+Sec.~\ref{sec:cbmodule} and \texttt{external} attribute).
+
+\subsection{Signatures of Fortran routines and Python functions}
+\label{sec:routineblock}
+
+
+The signature of a Fortran routine has the following structure:
+\begin{verbatim}
+[<typespec>] function|subroutine <routine name> [([<arguments>])] \
+ [result (<entityname>)]
+ [<argument type declarations>]
+ [<argument attribute statements>]
+ [<use statements>]
+ [<common block statements>]
+ [<other statements>]
+end [function|subroutine [<routine name>]]
+\end{verbatim}
+
+Let us introduce also the signature of the corresponding wrapper
+function:
+\begin{verbatim}
+def <routine name>(<required arguments>[,<optional arguments>]):
+ ...
+ return <return variables>
+\end{verbatim}
+
+Before you edit the signature file, you should first decide what is the
+desired signature of the corresponding Python function. \fpy offers
+many possibilities to control the interface construction process: you
+may want to insert/change/remove various attributes in the
+declarations of the arguments in order to change the appearance
+of the arguments in the Python wrapper function.
+
+\begin{itemize}
+\item
+The definition of the \texttt{<argument type declaration>} is
+\begin{verbatim}
+<typespec> [[<attrspec>]::] <entitydecl>
+\end{verbatim}
+where
+\begin{verbatim}
+<typespec> := byte | character[<charselector>]
+ | complex[<kindselector>] | real[<kindselector>]
+ | double complex | double precision
+ | integer[<kindselector>] | logical[<kindselector>]
+\end{verbatim}
+\begin{verbatim}
+<charselector> := *<charlen> | ([len=]<len>[,[kind]<kind>])
+ | (kind=<kind>[,len=<len>])
+<kindselector> := *<intlen> | ([kind=]<kind>)
+\end{verbatim}
+(there is no sense to modify \texttt{<typespec>}s generated by \fpy).
+\texttt{<attrspec>} is a comma separated list of attributes (see
+Sec.~\ref{sec:attributes});
+\begin{verbatim}
+<entitydecl> := <name> [[*<charlen>][(<arrayspec>)]
+ | [(<arrayspec>)]*<charlen>]
+ | [/<init_expr>/ | =<init_expr>] [,<entitydecl>]
+\end{verbatim}
+where \texttt{<arrayspec>} is a comma separated list of dimension
+bounds; \texttt{<init\_expr>} is a C-expression (see
+Sec.~\ref{sec:C-expr}). If an argument is not defined with
+\texttt{<argument type declaration>}, its type is determined by
+applying \texttt{implicit} rules (if it is not specifyied, then
+standard rules are applied).
+
+\item The definition of the \texttt{<argument attribute statement>} is
+a short form of the \texttt{<argument type declaration>}:
+\begin{verbatim}
+<attrspec> <entitydecl>
+\end{verbatim}
+
+\item \texttt{<use statement>} is defined as follows
+\begin{verbatim}
+use <modulename> [,<rename_list> | ,ONLY:<only_list>]
+<rename_list> := local_name=>use_name [,<rename_list>]
+\end{verbatim}
+ Currently the \texttt{use} statement is used to link call-back
+ modules (Sec.~\ref{sec:cbmodule}) and the \texttt{external}
+ arguments (call-back functions).
+
+\item \texttt{<common block statement>} is defined as follows
+\begin{verbatim}
+common /<commonname>/ <shortentitydecl>
+\end{verbatim}
+where
+\begin{verbatim}
+<shortentitydecl> := <name> [(<arrayspec>)] [,<shortentitydecl>]
+\end{verbatim}
+One \texttt{module} block should not contain two or more
+\texttt{common} blocks with the same name. Otherwise, the later ones
+are ignored. The types of variables in \texttt{<shortentitydecl>} can
+be defined in \texttt{<argument type declarations>}. Note that there
+you can specify also the array specifications; then you don't need to
+do that in \texttt{<shortentitydecl>}.
+\end{itemize}
+
+\subsection{Attributes}
+\label{sec:attributes}
+
+The following attributes are used by \fpy:
+\begin{description}
+\item[\texttt{optional}] --- the variable is moved to the end of
+ optional argument list of the wrapper function. Default value of an
+ optional argument can be specified using \texttt{<init\_expr>} in
+ \texttt{entitydecl}. You can use \texttt{optional} attribute also for
+ \texttt{external} arguments (call-back functions), but it is your
+ responsibility to ensure that it is given by the user if Fortran
+ routine wants to call it.
+\item[\texttt{required}] --- the variable is considered as a required
+ argument (that is default). You will need this in order to overwrite
+ the \texttt{optional} attribute that is automatically set when
+ \texttt{<init\_expr>} is used. However, usage of this attribute
+ should be rare.
+\item[\texttt{dimension(<arrayspec>)}] --- used when the variable is
+ an array. For unbounded dimensions symbols `\texttt{*}' or
+ `\texttt{:}' can be used (then internally the corresponding
+ dimensions are set to -1; you'll notice this when certain exceptions
+ are raised).
+\item[\texttt{external}] --- the variable is a call-back function. \fpy will
+ construct a call-back mechanism for this function. Also call-back
+ functions must be defined by their signatures, and there are several
+ ways to do that. In most cases, \fpy will be able to determine the signatures
+ of call-back functions from the Fortran source code; then it
+ builds an additional \texttt{module} block with a name containing
+ string `\texttt{\_\_user\_\_}' (see Sec.~\ref{sec:cbmodule}) and
+ includes \texttt{use} statement to the routines signature. Anyway,
+ you should check that the generated signature is correct.
+
+ Alternatively, you can specify the signature by inserting to the
+ routines block a ``model'' how the call-back function would be called
+ from Fortran. For subroutines you should use\\
+ \hspace*{2em}\texttt{call <call-back name>(<arguments>)}\\
+ and for functions\\%
+ \hspace*{2em}\texttt{<return value> = <call-back name>(<arguments>)}\\
+ The variables in \texttt{<arguments>} and \texttt{<return value>}
+ must be defined as well. You can use the arguments of the main
+ routine, for instance.
+\item[\texttt{intent(<intentspec>)}] --- this specifies the
+ ``intention'' of the variable. \texttt{<intentspec>} is a comma
+ separated list of the following specifications:
+ \begin{description}
+ \item[\texttt{in}] --- the variable is considered to be an input
+ variable (default). It means that the Fortran function uses only
+ the value(s) of the variable and is assumed not to change it.
+ \item[\texttt{inout}] --- the variable is considered to be an
+ input/output variable which means that Fortran routine may change
+ the value(s) of the variable. Note that in Python only array
+ objects can be changed ``in place''. (\texttt{intent(outin)} is
+ \texttt{intent(inout)}.)
+ \item[\texttt{out}] --- the value of the (output) variable is
+ returned by the wrapper function: it is appended to the list of
+ \texttt{<returned variables>}. If \texttt{out} is specified alone,
+ also \texttt{hide} is assumed.
+ \item[\texttt{hide}] --- use this if the variable \emph{should not}
+ or \emph{need not} to be in the list of wrapper function arguments
+ (not even in optional ones). For example, this is assumed if
+ \texttt{intent(out)} is used. You can ``hide'' an argument if it
+ has always a constant value specified in \texttt{<init\_expr>},
+ for instance.
+ \end{description}
+ The following rules apply:
+ \begin{itemize}
+ \item if no \texttt{intent} attribute is specified, \texttt{intent(in)} is
+ assumed;
+ \item \texttt{intent(in,inout)} is \texttt{intent(in)};
+ \item \texttt{intent(in,hide)}, \texttt{intent(inout,hide)} are \texttt{intent(hide)};
+ \item \texttt{intent(out)} is \texttt{intent(out,hide)};
+\item \texttt{intent(inout)} is NOT \texttt{intent(in,out)}.
+ \end{itemize}
+ In conclusion, the following combinations are ``minimal'':
+ \texttt{intent(in)}, \texttt{intent(inout)}, \texttt{intent(out)},
+ \texttt{intent(hide)}, \texttt{intent(in,out)}, and
+ \texttt{intent(inout,out)}.
+\item[\texttt{check([<C-booleanexpr>])}] --- if
+ \texttt{<C-booleanexpr>} evaluates to zero, an exception is raised
+ about incorrect value or size or any other incorrectness of the
+ variable. If \texttt{check()} or \texttt{check} is used then \fpy
+ will not try to guess the checks automatically.
+\item[\texttt{depend([<names>])}] --- the variable depends on other
+ variables listed in \texttt{<names>}. These dependence relations
+ determine the order of internal initialization of the variables. If
+ you need to change these relations then be careful not to break the
+ dependence relations of other relevant variables. If
+ \texttt{depend()} or \texttt{depend} is used then \fpy will not try
+ to guess the dependence relations automatically.
+\item[\texttt{note(<LaTeX text>)}] --- with this attribute you can
+ include human readable documentation strings to the LaTeX document
+ that \fpy generates. Do not insert here information that \fpy can
+ establish by itself, such as, types, sizes, lengths of the
+ variables. Here you can insert almost arbitrary LaTeX text. Note
+ that \texttt{<LaTeX text>} is mainly used inside the LaTeX
+ \texttt{description} environment. Hint: you can use
+ \texttt{\bs{}texttt\{<name>\}} for typesetting variable \texttt{<name>}
+ in LaTeX. In order to get a new line to the LaTeX document, use
+ \texttt{\bs{}n} followed by a space. For longer text, you may want
+ to use line continuation feature of Fortran 90/95 language: set
+ \texttt{\&} (ampersand)
+ to be the last character in a line.
+\item[\texttt{parameter}] --- the variable is parameter and it must
+ have a value. If the parameter is used in dimension specification,
+ it is replaced by its value. (Are there any other usages of
+ parameters except in dimension specifications? Let me know and I'll
+ add support for it).
+\end{description}
+
+
+\subsection{C-expressions}
+\label{sec:C-expr}
+
+The signature of a routine may contain C-expressions in
+\begin{itemize}
+\item \texttt{<init\_expr>} for initializing particular variable, or in
+\item \texttt{<C-booleanexpr>} of the \texttt{check} attribute, or in
+\item \texttt{<arrayspec>} of the \texttt{dimension} attribute.
+\end{itemize}
+A C-expression may contain
+\begin{itemize}
+\item standard C-statement,
+\item functions offered in \texttt{math.h},
+\item previously initialized variables (study
+the dependence relations) from the argument list, and
+\item the following CPP-macros:
+ \begin{description}
+ \item[\texttt{len(<name>)}] --- the length of an array \texttt{<name>};
+ \item[\texttt{shape(<name>,<n>)}] --- the $n$-th dimension of an array
+ \texttt{<name>};
+ \item[\texttt{rank(<name>)}] --- the rank of an array \texttt{<name>};
+ \item[\texttt{slen(<name>)}] --- the length of a string \texttt{<name>}.
+ \end{description}
+\end{itemize}
+
+
+In addition, when initializing arrays, an index vector \texttt{int
+ \_i[rank(<name>)];}
+is available: \texttt{\_i[0]} refers to
+the index of the first dimension, \texttt{\_i[1]} to the index of
+the second dimension, etc. For example, the argument type declaration\\
+\hspace*{2em}\texttt{integer a(10) = \_i[0]}\\
+is equivalent with the following Python statement\\
+\hspace*{2em}\texttt{a = array(range(10))}
+
+
+\subsection{Required/optional arguments}
+\label{sec:reqoptargs}
+
+When \texttt{optional} attribute is used (including the usage of
+\texttt{<init\_expr>} without the \texttt{required} attribute), the
+corresponding variable in the argument list of a Fortran routine is
+appended to the optional argument list of the wrapper function.
+
+For optional array argument all dimensions must be bounded (not
+\texttt{(*)} or \texttt{(:)}) and defined at the time of
+initialization (dependence relations).
+
+If the \texttt{None} object is passed in in place of a required array
+argument, it will be considered as optional: that is, the memory is
+allocated (of course, if it has unbounded dimensions, an exception
+will be raised), and if \texttt{<init\_expr>} is defined,
+initialization is carried out.
+
+
+\subsection{Internal checks}
+\label{sec:intchecks}
+
+All array arguments are checked against the correctness of their rank.
+If there is a mismatch, \fpy attempts to fix that by constructing an
+array with a correct rank from the given array argument (there will be
+no performance hit as no data is copied). The freedom to do so is
+given only if some dimensions are unbounded or their value is 1. An
+exception is raised when the sizes will not match.
+
+All bounded dimensions of an array are checked to be larger or equal
+to the dimensions specified in the signature.
+
+So, you don't need to give explicit \texttt{check} attributes to check
+these internal checks.
+
+
+\subsection{Call-back modules}
+\label{sec:cbmodule}
+
+A Fortran routine may have \texttt{external} arguments (call-back
+functions). The signatures of the call-back functions must be defined
+in a call-back \texttt{module} block (its name contains
+\texttt{\_\_user\_\_}), in general; other possibilities are described
+in the \texttt{external} attribute specification (see
+Sec.~\ref{sec:attributes}). For the signatures of call-back
+functions the following restrictions apply:
+\begin{itemize}
+\item Attributes \texttt{external}, \texttt{check(...)}, and
+ initialization statements are ignored.
+\item Attribute \texttt{optional} is used only for changing the order
+ of the arguments.
+\item For arrays all dimension bounds must be specified. They may be
+ C-expressions containing variables from the argument list.
+ Note that here CPP-macros \texttt{len}, \texttt{shape},
+ \texttt{rank}, and \texttt{slen} are not available.
+\end{itemize}
+
+
+\subsection{Common blocks}
+\label{sec:commonblocks}
+
+All fields in a common block are mapped to arrays of appropriate sizes
+and types. Scalars are mapped to rank-0 arrays. For multi-dimensional
+fields the corresponding arrays are transposed. In the type
+declarations of the variables representing the common block fields,
+only \texttt{dimension(<arrayspec>)}, \texttt{intent(hide)}, and
+\texttt{note(<LaTeX text>)} attributes are used, others are ignored.
+
+\subsection{Including files}
+\label{sec:include}
+
+You can include files to the signature file using
+\begin{verbatim}
+include '<filename>'
+\end{verbatim}
+statement. It can be used in any part of the signature file.
+If the file \texttt{<filename>} does not exists or it is not in the path,
+the \texttt{include} line is ignored.
+
+\subsection{\fpy directives}
+\label{sec:directives}
+
+You can insert signature statements directly to Fortran source codes
+as comments. Anything that follows \texttt{<comment char>f2py} is
+regarded as normal statement for \fpy.
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "f2py2e"
+%%% End:
+
diff --git a/numpy/f2py/doc/using_F_compiler.txt b/numpy/f2py/doc/using_F_compiler.txt
new file mode 100644
index 000000000..3067f0776
--- /dev/null
+++ b/numpy/f2py/doc/using_F_compiler.txt
@@ -0,0 +1,147 @@
+
+Title: Wrapping F compiled Fortran 90 modules with F2PY
+ ================================================
+
+Rationale: The F compiler does not support external procedures which
+ makes it impossible to use it in F2PY in a normal way.
+ This document describes a workaround to this problem so
+ that F compiled codes can be still wrapped with F2PY.
+
+Author: Pearu Peterson
+Date: May 8, 2002
+
+Acknowledgement: Thanks to Siegfried Gonzi who hammered me to produce
+ this document.
+
+Normally wrapping Fortran 90 modules to Python using F2PY is carried
+out with the following command
+
+ f2py -c -m fun foo.f90
+
+where file foo.f90 contains, for example,
+
+module foo
+ public :: bar
+ contains
+ subroutine bar (a)
+ integer,intent(inout) :: a
+ print *,"Hello from foo.bar"
+ print *,"a=",a
+ a = a + 5
+ print *,"a=",a
+ end subroutine bar
+end module foo
+
+Then with a supported F90 compiler (running `f2py -c --help-compiler'
+will display the found compilers) f2py will generate an extension
+module fun.so into the current directory and the Fortran module foo
+subroutine bar can be called from Python as follows
+
+>>> import fun
+>>> print fun.foo.bar.__doc__
+bar - Function signature:
+ bar(a)
+Required arguments:
+ a : in/output rank-0 array(int,'i')
+
+>>> from Numeric import array
+>>> a = array(3)
+>>> fun.foo.bar(a)
+ Hello from foo.bar
+ a= 3
+ a= 8
+>>> a
+8
+>>>
+
+This works nicely with all supported Fortran compilers.
+
+However, the F compiler (http://www.fortran.com/F/compilers.html) is
+an exception. Namely, the F compiler is designed to recognize only
+module procedures (and main programs, of course) but F2PY needs to
+compile also the so-called external procedures that it generates to
+facilitate accessing Fortran F90 module procedures from C and
+subsequently from Python. As a result, wrapping F compiled Fortran
+procedures to Python is _not_ possible using the simple procedure as
+described above. But, there is a workaround that I'll describe below
+in five steps.
+
+1) Compile foo.f90:
+
+ F -c foo.f90
+
+This creates an object file foo.o into the current directory.
+
+2) Create the signature file:
+
+ f2py foo.f90 -h foo.pyf
+
+This creates a file foo.pyf containing
+
+module foo ! in foo.f90
+ real public :: bar
+ subroutine bar(a) ! in foo.f90:foo
+ integer intent(inout) :: a
+ end subroutine bar
+end module foo
+
+3) Open the file foo.pyf with your favorite text editor and change the
+ above signature to
+
+python module foo
+ interface
+ subroutine bar(a)
+ fortranname foo_MP_bar
+ intent(c) bar
+ integer intent(in,out) :: a
+ end subroutine bar
+ end interface
+end python module foo
+
+The most important modifications are
+
+ a) adding `python' keyword everywhere before the `module' keyword
+
+ b) including an `interface' block around the all subroutine blocks.
+
+ c) specifying the real symbol name of the subroutine using
+ `fortranname' statement. F generated symbol names are in the form
+ <module name>_MP_<subroutine name>
+
+ d) specifying that subroutine is `intent(c)'.
+
+Notice that the `intent(inout)' attribute is changed to
+`intent(in,out)' that instructs the wrapper to return the modified
+value of `a'.
+
+4) Build the extension module
+
+ f2py -c foo.pyf foo.o --fcompiler=Gnu /opt/F/lib/quickfit.o \
+ /opt/F/lib/libf96.a
+
+This will create the extension module foo.so into the current
+directory. Notice that you must use Gnu compiler (gcc) for linking.
+And the paths to F specific object files and libraries may differ for
+your F installation.
+
+5) Finally, we can call the module subroutine `bar' from Python
+
+>>> import foo
+>>> print foo.bar.__doc__
+bar - Function signature:
+ a = bar(a)
+Required arguments:
+ a : input int
+Return objects:
+ a : int
+
+>>> foo.bar(3)
+8
+>>>
+
+Notice that the F compiled module procedures are called as ordinary
+external procedures. Also I/O seems to be lacking for F compiled
+Fortran modules.
+
+Enjoy,
+ Pearu
diff --git a/numpy/f2py/doc/win32_notes.txt b/numpy/f2py/doc/win32_notes.txt
new file mode 100644
index 000000000..1b7b9029c
--- /dev/null
+++ b/numpy/f2py/doc/win32_notes.txt
@@ -0,0 +1,85 @@
+The following notes are from Eric Jones.
+
+My Setup:
+
+For Python/Fortran development, I run Windows 2000 and use the mingw32
+(www.mingw.org) set of gcc/g77 compilers and tools (gcc 2.95.2) to build python
+extensions. I'll also ocassionally use MSVC for extension development, but
+rarely on projects that include Fortran code. This short HOWTO describes how
+I use f2py in the Windows environment. Pretty much everything is done from
+a CMD (DOS) prompt, so you'll need to be familiar with using shell commands.
+
+Installing f2py:
+
+Before installing f2py, you'll need to install python. I use python2.1 (maybe
+python2.2 will be out by the time you read this). Any version of Python beyond
+version 1.52 should be fine. See www.python.org for info on installing Python.
+
+You'll also need Numeric which is available at
+http://sourceforge.net/projects/numpy/. The latest version is 20.3.
+
+Since Pearu has moved to a setup.py script, installation is pretty easy. You
+can download f2py from http://cens.ioc.ee/projects/f2py2e/. The latest public
+release is http://cens.ioc.ee/projects/f2py2e/rel-3.x/f2py-3.latest.tgz. Even
+though this is a .tgz file instead of a .zip file, most standard compression
+utilities such as WinZip (www.winzip.com) handle unpacking .tgz files
+automatically. Here are the download steps:
+
+ 1. Download the latest version of f2py and save it to disk.
+
+ 2. Use WinZip or some other tool to open the "f2py.xxx.tgz" file.
+ a. When WinZip says archive contains one file, "f2py.xxx.tar"
+ and ask if it should open it, respond with "yes".
+ b. Extract (use the extract button at the top) all the files
+ in the archive into a file. I'll use c:\f2py2e
+
+ 3. Open a cmd prompt by clicking start->run and typing "cmd.exe".
+ Now type the following commands.
+
+ C:\WINDOWS\SYSTEM32> cd c:\f2py2e
+ C:\F2PY2E> python setup.py install
+
+ This will install f2py in the c:\python21\f2py2e directory. It
+ also copies a few scripts into the c:\python21\Scripts directory.
+ Thats all there is to installing f2py. Now lets set up the environment
+ so that f2py is easy to use.
+
+ 4. You need to set up a couple of environement variables. The path
+ "c:\python21\Scripts" needs to be added to your path variables.
+ To do this, go to the enviroment variables settings page. This is
+ where it is on windows 2000:
+
+ Desktop->(right click)My Computer->Properties->Advanced->
+ Environment Variables
+
+ a. Add "c:\python21\Scripts" to the end of the Path variable.
+ b. If it isn't already there, add ".py" to the PATHEXT variable.
+ This tells the OS to execute f2py.py even when just "f2py" is
+ typed at a command prompt.
+
+ 5. Well, there actually isn't anything to be done here. The Python
+ installation should have taken care of associating .py files with
+ Python for execution, so you shouldn't have to do anything to
+ registry settings.
+
+To test your installation, open a new cmd prompt, and type the following:
+
+ C:\WINDOWS\SYSTEM32> f2py
+ Usage:
+ f2py [<options>] <fortran files> [[[only:]||[skip:]] \
+ <fortran functions> ] \
+ [: <fortran files> ...]
+ ...
+
+This prints out the usage information for f2py. If it doesn't, there is
+something wrong with the installation.
+
+Testing:
+The f2py test scripts are kinda Unix-centric, so they don't work under windows.
+
+XXX include test script XXX.
+
+Compiler and setup.py issues:
+
+XXX
+