summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py65
1 files changed, 57 insertions, 8 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index e8eda297f..4d3f35183 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -298,7 +298,7 @@ def _unique1d(ar, return_index=False, return_inverse=False,
return ret
-def intersect1d(ar1, ar2, assume_unique=False):
+def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
"""
Find the intersection of two arrays.
@@ -307,15 +307,28 @@ def intersect1d(ar1, ar2, assume_unique=False):
Parameters
----------
ar1, ar2 : array_like
- Input arrays.
+ Input arrays. Will be flattened if not already 1D.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
-
+ return_indices : bool
+ If True, the indices which correspond to the intersection of the
+ two arrays are returned. The first instance of a value is used
+ if there are multiple. Default is False.
+
+ .. versionadded:: 1.15.0
+
Returns
-------
intersect1d : ndarray
Sorted 1D array of common and unique elements.
+ comm1 : ndarray
+ The indices of the first occurrences of the common values in `ar1`.
+ Only provided if `return_indices` is True.
+ comm2 : ndarray
+ The indices of the first occurrences of the common values in `ar2`.
+ Only provided if `return_indices` is True.
+
See Also
--------
@@ -332,14 +345,49 @@ def intersect1d(ar1, ar2, assume_unique=False):
>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])
+
+ To return the indices of the values common to the input arrays
+ along with the intersected values:
+ >>> x = np.array([1, 1, 2, 3, 4])
+ >>> y = np.array([2, 1, 4, 6])
+ >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
+ >>> x_ind, y_ind
+ (array([0, 2, 4]), array([1, 0, 2]))
+ >>> xy, x[x_ind], y[y_ind]
+ (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
+
"""
if not assume_unique:
- # Might be faster than unique( intersect1d( ar1, ar2 ) )?
- ar1 = unique(ar1)
- ar2 = unique(ar2)
+ if return_indices:
+ ar1, ind1 = unique(ar1, return_index=True)
+ ar2, ind2 = unique(ar2, return_index=True)
+ else:
+ ar1 = unique(ar1)
+ ar2 = unique(ar2)
+ else:
+ ar1 = ar1.ravel()
+ ar2 = ar2.ravel()
+
aux = np.concatenate((ar1, ar2))
- aux.sort()
- return aux[:-1][aux[1:] == aux[:-1]]
+ if return_indices:
+ aux_sort_indices = np.argsort(aux, kind='mergesort')
+ aux = aux[aux_sort_indices]
+ else:
+ aux.sort()
+
+ mask = aux[1:] == aux[:-1]
+ int1d = aux[:-1][mask]
+
+ if return_indices:
+ ar1_indices = aux_sort_indices[:-1][mask]
+ ar2_indices = aux_sort_indices[1:][mask] - ar1.size
+ if not assume_unique:
+ ar1_indices = ind1[ar1_indices]
+ ar2_indices = ind2[ar2_indices]
+
+ return int1d, ar1_indices, ar2_indices
+ else:
+ return int1d
def setxor1d(ar1, ar2, assume_unique=False):
"""
@@ -660,3 +708,4 @@ def setdiff1d(ar1, ar2, assume_unique=False):
ar1 = unique(ar1)
ar2 = unique(ar2)
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
+