summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py192
1 files changed, 147 insertions, 45 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 1673ecf93..ca0269772 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -1,5 +1,5 @@
"""
-Set operations for 1D numeric arrays based on sort() function.
+Set operations for 1D numeric arrays based on sorting.
Contains:
ediff1d,
@@ -11,16 +11,16 @@ Contains:
union1d,
setdiff1d
-All functions work best with integer numerical arrays on input
-(e.g. indices). For floating point arrays, innacurate results may appear due to
-usual round-off and floating point comparison issues.
+All functions work best with integer numerical arrays on input (e.g. indices).
+For floating point arrays, innacurate results may appear due to usual round-off
+and floating point comparison issues.
Except unique1d, union1d and intersect1d_nu, all functions expect inputs with
-unique elements. Speed could be gained in some operations by an implementaion
-of sort(), that can provide directly the permutation vectors, avoiding thus
-calls to argsort().
+unique elements. Speed could be gained in some operations by an implementaion of
+sort(), that can provide directly the permutation vectors, avoiding thus calls
+to argsort().
-Run test_unique1d_speed() to compare performance of numpy.unique1d() and
+Run _test_unique1d_speed() to compare performance of numpy.unique1d() and
numpy.unique() - it should be the same.
To do: Optionally return indices analogously to unique1d for all functions.
@@ -28,7 +28,7 @@ To do: Optionally return indices analogously to unique1d for all functions.
Author: Robert Cimrman
created: 01.11.2005
-last revision: 12.10.2006
+last revision: 07.01.2007
"""
__all__ = ['ediff1d', 'unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d',
'setmember1d', 'union1d', 'setdiff1d']
@@ -37,30 +37,60 @@ import time
import numpy as nm
def ediff1d(ary, to_end = None, to_begin = None):
- """Array difference with prefixed and/or appended value.
-
- See also: unique1d, intersect1d, intersect1d_nu, setxor1d,
- setmember1d, union1d, setdiff1d
+ """The differences between consecutive elements of an array, possibly with
+ prefixed and/or appended values.
+
+ :Parameters:
+ - `ary` : array
+ This array will be flattened before the difference is taken.
+ - `to_end` : number, optional
+ If provided, this number will be tacked onto the end of the returned
+ differences.
+ - `to_begin` : number, optional
+ If provided, this number will be taked onto the beginning of the
+ returned differences.
+
+ :Returns:
+ - `ed` : array
+ The differences. Loosely, this will be (ary[1:] - ary[:-1]).
"""
ary = nm.asarray(ary).flat
ed = ary[1:] - ary[:-1]
+ arrays = [ed]
if to_begin is not None:
- if to_end is not None:
- ed = nm.r_[to_begin, ed, to_end]
- else:
- ed = nm.insert(ed, 0, to_begin)
- elif to_end is not None:
- ed = nm.append(ed, to_end)
-
+ arrays.insert(0, to_begin)
+ if to_end is not None:
+ arrays.append(to_end)
+
+ if len(arrays) != 1:
+ # We'll save ourselves a copy of a potentially large array in the common
+ # case where neither to_begin or to_end was given.
+ ed = nm.hstack(arrays)
+
return ed
def unique1d(ar1, return_index=False):
- """Unique elements of 1D array. When return_index is True, return
- also the indices indx such that ar1.flat[indx] is the resulting
- array of unique elements.
-
- See also: ediff1d, intersect1d, intersect1d_nu, setxor1d,
- setmember1d, union1d, setdiff1d
+ """Find the unique elements of 1D array.
+
+ Most of the other array set operations operate on the unique arrays
+ generated by this function.
+
+ :Parameters:
+ - `ar1` : array
+ This array will be flattened if it is not already 1D.
+ - `return_index` : bool, optional
+ If True, also return the indices against ar1 that result in the unique
+ array.
+
+ :Returns:
+ - `unique` : array
+ The unique values.
+ - `unique_indices` : int array, optional
+ The indices of the unique values. Only provided if return_index is True.
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
ar = nm.asarray(ar1).flatten()
if ar.size == 0:
@@ -81,8 +111,20 @@ def unique1d(ar1, return_index=False):
def intersect1d( ar1, ar2 ):
"""Intersection of 1D arrays with unique elements.
- See also: ediff1d, unique1d, intersect1d_nu, setxor1d,
- setmember1d, union1d, setdiff1d
+ Use unique1d() to generate arrays with only unique elements to use as inputs
+ to this function. Alternatively, use intersect1d_nu() which will find the
+ unique values for you.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
+
+ :Returns:
+ - `intersection` : array
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
aux = nm.concatenate((ar1,ar2))
aux.sort()
@@ -91,10 +133,20 @@ def intersect1d( ar1, ar2 ):
def intersect1d_nu( ar1, ar2 ):
"""Intersection of 1D arrays with any elements.
- See also: ediff1d, unique1d, intersect1d, setxor1d,
- setmember1d, union1d, setdiff1d
+ The input arrays do not have unique elements like intersect1d() requires.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
+
+ :Returns:
+ - `intersection` : array
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
- # Might be faster then unique1d( intersect1d( ar1, ar2 ) )?
+ # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
aux = nm.concatenate((unique1d(ar1), unique1d(ar2)))
aux.sort()
return aux[aux[1:] == aux[:-1]]
@@ -102,8 +154,20 @@ def intersect1d_nu( ar1, ar2 ):
def setxor1d( ar1, ar2 ):
"""Set exclusive-or of 1D arrays with unique elements.
- See also: ediff1d, unique1d, intersect1d, intersect1d_nu,
- setmember1d, union1d, setdiff1d
+ Use unique1d() to generate arrays with only unique elements to use as inputs
+ to this function.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
+
+ :Returns:
+ - `xor` : array
+ The values that are only in one, but not both, of the input arrays.
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
aux = nm.concatenate((ar1, ar2))
if aux.size == 0:
@@ -117,16 +181,31 @@ def setxor1d( ar1, ar2 ):
return aux[flag2]
def setmember1d( ar1, ar2 ):
- """Return an array of shape of ar1 containing 1 where the elements of
- ar1 are in ar2 and 0 otherwise.
+ """Return a boolean array of shape of ar1 containing True where the elements
+ of ar1 are in ar2 and False otherwise.
+
+ Use unique1d() to generate arrays with only unique elements to use as inputs
+ to this function.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
- See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d,
- union1d, setdiff1d
+ :Returns:
+ - `mask` : bool array
+ The values ar1[mask] are in ar2.
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
zlike = nm.zeros_like
ar = nm.concatenate( (ar1, ar2 ) )
tt = nm.concatenate( (zlike( ar1 ), zlike( ar2 ) + 1) )
- perm = ar.argsort()
+ # We need this to be a stable sort, so always use 'mergesort' here. The
+ # values from the first array should always come before the values from the
+ # second array.
+ perm = ar.argsort(kind='mergesort')
aux = ar[perm]
aux2 = tt[perm]
# flag = ediff1d( aux, 1 ) == 0
@@ -137,23 +216,46 @@ def setmember1d( ar1, ar2 ):
perm[ii+1] = perm[ii]
perm[ii] = aux
- indx = perm.argsort()[:len( ar1 )]
+ indx = perm.argsort(kind='mergesort')[:len( ar1 )]
return flag[indx]
def union1d( ar1, ar2 ):
"""Union of 1D arrays with unique elements.
- See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d,
- setmember1d, setdiff1d
+ Use unique1d() to generate arrays with only unique elements to use as inputs
+ to this function.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
+
+ :Returns:
+ - `union` : array
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
return unique1d( nm.concatenate( (ar1, ar2) ) )
def setdiff1d( ar1, ar2 ):
"""Set difference of 1D arrays with unique elements.
- See also: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d,
- setmember1d, union1d
+ Use unique1d() to generate arrays with only unique elements to use as inputs
+ to this function.
+
+ :Parameters:
+ - `ar1` : array
+ - `ar2` : array
+
+ :Returns:
+ - `difference` : array
+ The values in ar1 that are not in ar2.
+
+ :See also:
+ numpy.lib.arraysetops has a number of other functions for performing set
+ operations on arrays.
"""
aux = setmember1d(ar1,ar2)
if aux.size == 0:
@@ -161,7 +263,7 @@ def setdiff1d( ar1, ar2 ):
else:
return nm.asarray(ar1)[aux == 0]
-def test_unique1d_speed( plot_results = False ):
+def _test_unique1d_speed( plot_results = False ):
# exponents = nm.linspace( 2, 7, 9 )
exponents = nm.linspace( 2, 7, 9 )
ratios = []
@@ -222,4 +324,4 @@ def test_unique1d_speed( plot_results = False ):
pylab.show()
if (__name__ == '__main__'):
- test_unique1d_speed( plot_results = True )
+ _test_unique1d_speed( plot_results = True )