summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py53
1 files changed, 45 insertions, 8 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index cd9a87931..19efbc452 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -74,7 +74,7 @@ def ediff1d(ary, to_end=None, to_begin=None):
return ed
-def unique1d(ar1, return_index=False):
+def unique1d(ar1, return_index=False, return_inverse=False):
"""
Find the unique elements of an array.
@@ -85,6 +85,9 @@ def unique1d(ar1, return_index=False):
return_index : bool, optional
If True, also return the indices against `ar1` that result in the
unique array.
+ return_inverse : bool, optional
+ If True, also return the indices against the unique array that
+ result in `ar1`.
Returns
-------
@@ -93,6 +96,9 @@ def unique1d(ar1, return_index=False):
unique_indices : ndarray, optional
The indices of the unique values. Only provided if `return_index` is
True.
+ unique_inverse : ndarray, optional
+ The indices to reconstruct the original array. Only provided if
+ `return_inverse` is True.
See Also
--------
@@ -107,21 +113,52 @@ def unique1d(ar1, return_index=False):
>>> np.unique1d(a)
array([1, 2, 3])
+ Reconstruct the input from unique values:
+
+ >>> np.unique1d([1,2,6,4,2,3,2], return_index=True)
+ >>> x = [1,2,6,4,2,3,2]
+ >>> u, i = np.unique1d(x, return_inverse=True)
+ >>> u
+ array([1, 2, 3, 4, 6])
+ >>> i
+ array([0, 1, 4, 3, 1, 2, 1])
+ >>> [u[p] for p in i]
+ [1, 2, 6, 4, 2, 3, 2]
+
"""
+ if return_index:
+ import warnings
+ warnings.warn("The order of the output arguments for "
+ "`return_index` has changed. Before, "
+ "the output was (indices, unique_arr), but "
+ "has now been reversed to be more consistent.")
+
ar = np.asarray(ar1).flatten()
if ar.size == 0:
- if return_index: return np.empty(0, np.bool), ar
- else: return ar
-
- if return_index:
+ if return_inverse and return_index:
+ return ar, np.empty(0, np.bool), np.empty(0, np.bool)
+ elif return_inverse or return_index:
+ return ar, np.empty(0, np.bool)
+ else:
+ return ar
+
+ if return_inverse or return_index:
perm = ar.argsort()
aux = ar[perm]
- flag = np.concatenate( ([True], aux[1:] != aux[:-1]) )
- return perm[flag], aux[flag]
+ flag = np.concatenate(([True], aux[1:] != aux[:-1]))
+ if return_inverse:
+ iflag = np.cumsum(flag) - 1
+ iperm = perm.argsort()
+ if return_index:
+ return aux[flag], perm[flag], iflag[iperm]
+ else:
+ return aux[flag], iflag[iperm]
+ else:
+ return aux[flag], perm[flag]
else:
ar.sort()
- flag = np.concatenate( ([True], ar[1:] != ar[:-1]) )
+ flag = np.concatenate(([True], ar[1:] != ar[:-1]))
return ar[flag]
def intersect1d(ar1, ar2):