summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py82
1 files changed, 70 insertions, 12 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 5880ea154..2f8c07114 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -28,6 +28,7 @@ To do: Optionally return indices analogously to unique for all functions.
from __future__ import division, absolute_import, print_function
import numpy as np
+from numpy.core.overrides import array_function_dispatch
__all__ = [
@@ -36,6 +37,11 @@ __all__ = [
]
+def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
+ return (ary, to_end, to_begin)
+
+
+@array_function_dispatch(_ediff1d_dispatcher)
def ediff1d(ary, to_end=None, to_begin=None):
"""
The differences between consecutive elements of an array.
@@ -82,6 +88,11 @@ def ediff1d(ary, to_end=None, to_begin=None):
# force a 1d array
ary = np.asanyarray(ary).ravel()
+ # we have unit tests enforcing
+ # propagation of the dtype of input
+ # ary to returned result
+ dtype_req = ary.dtype
+
# fast track default case
if to_begin is None and to_end is None:
return ary[1:] - ary[:-1]
@@ -89,13 +100,23 @@ def ediff1d(ary, to_end=None, to_begin=None):
if to_begin is None:
l_begin = 0
else:
- to_begin = np.asanyarray(to_begin).ravel()
+ to_begin = np.asanyarray(to_begin)
+ if not np.can_cast(to_begin, dtype_req):
+ raise TypeError("dtype of to_begin must be compatible "
+ "with input ary")
+
+ to_begin = to_begin.ravel()
l_begin = len(to_begin)
if to_end is None:
l_end = 0
else:
- to_end = np.asanyarray(to_end).ravel()
+ to_end = np.asanyarray(to_end)
+ if not np.can_cast(to_end, dtype_req):
+ raise TypeError("dtype of to_end must be compatible "
+ "with input ary")
+
+ to_end = to_end.ravel()
l_end = len(to_end)
# do the calculation in place and copy to_begin and to_end
@@ -118,6 +139,12 @@ def _unpack_tuple(x):
return x
+def _unique_dispatcher(ar, return_index=None, return_inverse=None,
+ return_counts=None, axis=None):
+ return (ar,)
+
+
+@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False,
return_counts=False, axis=None):
"""
@@ -298,6 +325,12 @@ def _unique1d(ar, return_index=False, return_inverse=False,
return ret
+def _intersect1d_dispatcher(
+ ar1, ar2, assume_unique=None, return_indices=None):
+ return (ar1, ar2)
+
+
+@array_function_dispatch(_intersect1d_dispatcher)
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
"""
Find the intersection of two arrays.
@@ -312,12 +345,12 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
return_indices : bool
- If True, the indices which correspond to the intersection of the
- two arrays are returned. The first instance of a value is used
- if there are multiple. Default is False.
-
- .. versionadded:: 1.15.0
-
+ If True, the indices which correspond to the intersection of the two
+ arrays are returned. The first instance of a value is used if there are
+ multiple. Default is False.
+
+ .. versionadded:: 1.15.0
+
Returns
-------
intersect1d : ndarray
@@ -326,7 +359,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
The indices of the first occurrences of the common values in `ar1`.
Only provided if `return_indices` is True.
comm2 : ndarray
- The indices of the first occurrences of the common values in `ar2`.
+ The indices of the first occurrences of the common values in `ar2`.
Only provided if `return_indices` is True.
@@ -345,7 +378,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])
-
+
To return the indices of the values common to the input arrays
along with the intersected values:
>>> x = np.array([1, 1, 2, 3, 4])
@@ -355,8 +388,11 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
-
+
"""
+ ar1 = np.asanyarray(ar1)
+ ar2 = np.asanyarray(ar2)
+
if not assume_unique:
if return_indices:
ar1, ind1 = unique(ar1, return_index=True)
@@ -367,7 +403,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
else:
ar1 = ar1.ravel()
ar2 = ar2.ravel()
-
+
aux = np.concatenate((ar1, ar2))
if return_indices:
aux_sort_indices = np.argsort(aux, kind='mergesort')
@@ -389,6 +425,12 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
else:
return int1d
+
+def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
+ return (ar1, ar2)
+
+
+@array_function_dispatch(_setxor1d_dispatcher)
def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.
@@ -543,6 +585,11 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
return ret[rev_idx]
+def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None):
+ return (element, test_elements)
+
+
+@array_function_dispatch(_isin_dispatcher)
def isin(element, test_elements, assume_unique=False, invert=False):
"""
Calculates `element in test_elements`, broadcasting over `element` only.
@@ -641,6 +688,11 @@ def isin(element, test_elements, assume_unique=False, invert=False):
invert=invert).reshape(element.shape)
+def _union1d_dispatcher(ar1, ar2):
+ return (ar1, ar2)
+
+
+@array_function_dispatch(_union1d_dispatcher)
def union1d(ar1, ar2):
"""
Find the union of two arrays.
@@ -676,6 +728,12 @@ def union1d(ar1, ar2):
"""
return unique(np.concatenate((ar1, ar2), axis=None))
+
+def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
+ return (ar1, ar2)
+
+
+@array_function_dispatch(_setdiff1d_dispatcher)
def setdiff1d(ar1, ar2, assume_unique=False):
"""
Find the set difference of two arrays.