summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py148
1 files changed, 79 insertions, 69 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index ededb9dd0..e8eda297f 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -110,16 +110,25 @@ def ediff1d(ary, to_end=None, to_begin=None):
return result
+def _unpack_tuple(x):
+ """ Unpacks one-element tuples for use as return values """
+ if len(x) == 1:
+ return x[0]
+ else:
+ return x
+
+
def unique(ar, return_index=False, return_inverse=False,
return_counts=False, axis=None):
"""
Find the unique elements of an array.
Returns the sorted unique elements of an array. There are three optional
- outputs in addition to the unique elements: the indices of the input array
- that give the unique values, the indices of the unique array that
- reconstruct the input array, and the number of times each unique value
- comes up in the input array.
+ outputs in addition to the unique elements:
+
+ * the indices of the input array that give the unique values
+ * the indices of the unique array that reconstruct the input array
+ * the number of times each unique value comes up in the input array
Parameters
----------
@@ -135,16 +144,18 @@ def unique(ar, return_index=False, return_inverse=False,
return_counts : bool, optional
If True, also return the number of times each unique item appears
in `ar`.
+
.. versionadded:: 1.9.0
- axis : int or None, optional
- The axis to operate on. If None, `ar` will be flattened beforehand.
- Otherwise, duplicate items will be removed along the provided axis,
- with all the other axes belonging to the each of the unique elements.
- Object arrays or structured arrays that contain objects are not
- supported if the `axis` kwarg is used.
- .. versionadded:: 1.13.0
+ axis : int or None, optional
+ The axis to operate on. If None, `ar` will be flattened. If an integer,
+ the subarrays indexed by the given axis will be flattened and treated
+ as the elements of a 1-D array with the dimension of the given axis,
+ see the notes for more details. Object arrays or structured arrays
+ that contain objects are not supported if the `axis` kwarg is used. The
+ default is None.
+ .. versionadded:: 1.13.0
Returns
-------
@@ -159,6 +170,7 @@ def unique(ar, return_index=False, return_inverse=False,
unique_counts : ndarray, optional
The number of times each of the unique values comes up in the
original array. Only provided if `return_counts` is True.
+
.. versionadded:: 1.9.0
See Also
@@ -166,6 +178,17 @@ def unique(ar, return_index=False, return_inverse=False,
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
+ Notes
+ -----
+ When an axis is specified the subarrays indexed by the axis are sorted.
+ This is done by making the specified axis the first dimension of the array
+ and then flattening the subarrays in C order. The flattened subarrays are
+ then viewed as a structured type with each element given a label, with the
+ effect that we end up with a 1-D array of structured types that can be
+ treated in the same way as any other 1-D array. The result is that the
+ flattened subarrays are sorted in lexicographic order starting with the
+ first element.
+
Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
@@ -207,24 +230,21 @@ def unique(ar, return_index=False, return_inverse=False,
"""
ar = np.asanyarray(ar)
if axis is None:
- return _unique1d(ar, return_index, return_inverse, return_counts)
- if not (-ar.ndim <= axis < ar.ndim):
- raise ValueError('Invalid axis kwarg specified for unique')
+ ret = _unique1d(ar, return_index, return_inverse, return_counts)
+ return _unpack_tuple(ret)
+
+ # axis was specified and not None
+ try:
+ ar = np.swapaxes(ar, axis, 0)
+ except np.AxisError:
+ # this removes the "axis1" or "axis2" prefix from the error message
+ raise np.AxisError(axis, ar.ndim)
- ar = np.swapaxes(ar, axis, 0)
- orig_shape, orig_dtype = ar.shape, ar.dtype
# Must reshape to a contiguous 2D array for this to work...
+ orig_shape, orig_dtype = ar.shape, ar.dtype
ar = ar.reshape(orig_shape[0], -1)
ar = np.ascontiguousarray(ar)
-
- if ar.dtype.char in (np.typecodes['AllInteger'] +
- np.typecodes['Datetime'] + 'S'):
- # Optimization: Creating a view of your data with a np.void data type of
- # size the number of bytes in a full row. Handles any type where items
- # have a unique binary representation, i.e. 0 is only 0, not +0 and -0.
- dtype = np.dtype((np.void, ar.dtype.itemsize * ar.shape[1]))
- else:
- dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
+ dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
try:
consolidated = ar.view(dtype)
@@ -241,11 +261,9 @@ def unique(ar, return_index=False, return_inverse=False,
output = _unique1d(consolidated, return_index,
return_inverse, return_counts)
- if not (return_index or return_inverse or return_counts):
- return reshape_uniq(output)
- else:
- uniq = reshape_uniq(output[0])
- return (uniq,) + output[1:]
+ output = (reshape_uniq(output[0]),) + output[1:]
+ return _unpack_tuple(output)
+
def _unique1d(ar, return_index=False, return_inverse=False,
return_counts=False):
@@ -255,20 +273,6 @@ def _unique1d(ar, return_index=False, return_inverse=False,
ar = np.asanyarray(ar).flatten()
optional_indices = return_index or return_inverse
- optional_returns = optional_indices or return_counts
-
- if ar.size == 0:
- if not optional_returns:
- ret = ar
- else:
- ret = (ar,)
- if return_index:
- ret += (np.empty(0, np.intp),)
- if return_inverse:
- ret += (np.empty(0, np.intp),)
- if return_counts:
- ret += (np.empty(0, np.intp),)
- return ret
if optional_indices:
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
@@ -276,24 +280,24 @@ def _unique1d(ar, return_index=False, return_inverse=False,
else:
ar.sort()
aux = ar
- flag = np.concatenate(([True], aux[1:] != aux[:-1]))
-
- if not optional_returns:
- ret = aux[flag]
- else:
- ret = (aux[flag],)
- if return_index:
- ret += (perm[flag],)
- if return_inverse:
- iflag = np.cumsum(flag) - 1
- inv_idx = np.empty(ar.shape, dtype=np.intp)
- inv_idx[perm] = iflag
- ret += (inv_idx,)
- if return_counts:
- idx = np.concatenate(np.nonzero(flag) + ([ar.size],))
- ret += (np.diff(idx),)
+ mask = np.empty(aux.shape, dtype=np.bool_)
+ mask[:1] = True
+ mask[1:] = aux[1:] != aux[:-1]
+
+ ret = (aux[mask],)
+ if return_index:
+ ret += (perm[mask],)
+ if return_inverse:
+ imask = np.cumsum(mask) - 1
+ inv_idx = np.empty(mask.shape, dtype=np.intp)
+ inv_idx[perm] = imask
+ ret += (inv_idx,)
+ if return_counts:
+ idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
+ ret += (np.diff(idx),)
return ret
+
def intersect1d(ar1, ar2, assume_unique=False):
"""
Find the intersection of two arrays.
@@ -435,12 +439,12 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
- array([ True, False, True, False, True], dtype=bool)
+ array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
- array([False, True, False, True, False], dtype=bool)
+ array([False, True, False, True, False])
>>> test[mask]
array([1, 5])
"""
@@ -448,8 +452,14 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
ar1 = np.asarray(ar1).ravel()
ar2 = np.asarray(ar2).ravel()
- # This code is significantly faster when the condition is satisfied.
- if len(ar2) < 10 * len(ar1) ** 0.145:
+ # Check if one of the arrays may contain arbitrary objects
+ contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
+
+ # This code is run when
+ # a) the first condition is true, making the code significantly faster
+ # b) the second condition is true (i.e. `ar1` or `ar2` may contain
+ # arbitrary objects), since then sorting is not guaranteed to work
+ if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
if invert:
mask = np.ones(len(ar1), dtype=bool)
for a in ar2:
@@ -546,13 +556,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> mask = np.isin(element, test_elements)
>>> mask
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
>>> element[mask]
array([2, 4])
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
- [ False, True]], dtype=bool)
+ [ False, True]])
>>> element[mask]
array([0, 6])
@@ -562,13 +572,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[ False, False],
- [ False, False]], dtype=bool)
+ [ False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
@@ -608,7 +618,7 @@ def union1d(ar1, ar2):
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])
"""
- return unique(np.concatenate((ar1, ar2)))
+ return unique(np.concatenate((ar1, ar2), axis=None))
def setdiff1d(ar1, ar2, assume_unique=False):
"""