summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py12
1 files changed, 7 insertions, 5 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 3d8ffc586..0a1d05f77 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -367,8 +367,8 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
Ncount[i] = digitize(sample[:, i], edges[i])
# Using digitize, values that fall on an edge are put in the right bin.
- # For the rightmost bin, we want values equal to the right
- # edge to be counted in the last bin, and not as an outlier.
+ # For the rightmost bin, we want values equal to the right edge to be
+ # counted in the last bin, and not as an outlier.
for i in arange(D):
# Rounding precision
mindiff = dedges[i].min()
@@ -376,7 +376,8 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
decimal = int(-log10(mindiff)) + 6
# Find which points are on the rightmost edge.
not_smaller_than_edge = (sample[:, i] >= edges[i][-1])
- on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal))
+ on_edge = (around(sample[:, i], decimal) ==
+ around(edges[i][-1], decimal))
# Shift these points one bin to the left.
Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1
@@ -1622,6 +1623,7 @@ class vectorize(object):
further degrades performance.
"""
+
def __init__(self, pyfunc, otypes='', doc=None, excluded=None,
cache=False):
self.pyfunc = pyfunc
@@ -3375,7 +3377,7 @@ def meshgrid(*xi, **kwargs):
raise TypeError("meshgrid() got an unexpected keyword argument '%s'"
% (list(kwargs)[0],))
- if not indexing in ['xy', 'ij']:
+ if indexing not in ['xy', 'ij']:
raise ValueError(
"Valid values for `indexing` are 'xy' and 'ij'.")
@@ -3436,7 +3438,7 @@ def delete(arr, obj, axis=None):
Notes
-----
Often it is preferable to use a boolean mask. For example:
-
+
>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]