diff options
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 143 |
1 files changed, 133 insertions, 10 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 29308d443..4701cb03e 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -4,23 +4,23 @@ __all__ = ['logspace', 'linspace', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'unique', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax', 'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average', - 'histogram', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', - 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', - 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', - 'delete', 'insert', 'append' + 'histogram', 'histogramnd', 'bincount', 'digitize', 'cov', + 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', + 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', + 'add_docstring', 'meshgrid', 'delete', 'insert', 'append' ] import types import numpy.core.numeric as _nx from numpy.core.numeric import ones, zeros, arange, concatenate, array, \ - asarray, asanyarray, empty, empty_like, asanyarray, ndarray + asarray, asanyarray, empty, empty_like, asanyarray, ndarray, around from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \ - integer + integer, isscalar from numpy.core.umath import pi, multiply, add, arctan2, \ - frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp + frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10 from numpy.core.fromnumeric import ravel, nonzero, choose, sort from numpy.core.numerictypes import typecodes -from numpy.lib.shape_base import atleast_1d +from numpy.lib.shape_base import atleast_1d, atleast_2d from numpy.lib.twodim_base import diag from _compiled_base import _insert, add_docstring from _compiled_base import digitize, bincount @@ -75,8 +75,7 @@ def histogram(a, bins=10, range=None, normed=False): ---------- bins: Number of bins range: Lower and upper bin edges (default: [sample.min(), sample.max()]). - Does not really work, all values greater than range are stored in - the last bin. + All values greater than range are stored in the last bin. normed: If False (default), return the number of samples in each bin. If True, return a frequency distribution. @@ -104,6 +103,130 @@ def histogram(a, bins=10, range=None, normed=False): else: return n, bins +def histogramnd(sample, bins=10, range=None, normed=False): + """histogramnd(sample, bins = 10, range = None, normed = False) -> H, edges + + Return the N-dimensional histogram computed from sample. + + Parameters + ---------- + sample: A sequence of N arrays, or an KxN array. + bins: A sequence of edge arrays, or a sequence of the number of bins. + If a scalar is given, it is assumed to be the number of bins + for all dimensions. + range: A sequence of lower and upper bin edges (default: [min, max]). + normed: If False, returns the number of samples in each bin. + If True, returns the frequency distribution. + + + Output + ------ + H: Histogram array. + edges: List of arrays defining the bin edges. + + Example: + x = random.randn(100,3) + H, edges = histogramnd(x, bins = (5, 6, 7)) + + See also: histogram + """ + + try: + N, D = sample.shape + except (AttributeError, ValueError): + ss = atleast_2d(sample) + sample = ss.transpose() + N, D = sample.shape + + nbin = empty(D, int) + edges = D*[None] + dedges = D*[None] + + try: + M = len(bins) + if M != D: + raise AttributeError, 'The dimension of bins must be a equal to the dimension of the sample x.' + except TypeError: + bins = D*[bins] + + if range is None: + smin = atleast_1d(sample.min(0)) + smax = atleast_1d(sample.max(0)) + else: + smin = zeros(D) + smax = zeros(D) + for i in arange(D): + smin[i], smax[i] = range[i] + + for i in arange(D): + if isscalar(bins[i]): + nbin[i] = bins[i] + edges[i] = linspace(smin[i], smax[i], nbin[i]+1) + else: + edges[i] = asarray(bins[i], float) + nbin[i] = len(edges[i])-1 + + + + Ncount = {} + nbin = asarray(nbin) + + for i in arange(D): + Ncount[i] = digitize(sample[:,i], edges[i]) + dedges[i] = diff(edges[i]) + # Remove values falling outside of bins + # Values that fall on an edge are put in the right bin. + # For the rightmost bin, we want values equal to the right + # edge to be counted in the last bin, and not as an outlier. + outliers = zeros(N, int) + for i in arange(D): + decimal = int(-log10(dedges[i].min())) +6 + on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1], decimal))[0] + Ncount[i][on_edge] -= 1 + outliers += (Ncount[i] == 0) | (Ncount[i] == nbin[i]+1) + indices = where(outliers == 0)[0] + for i in arange(D): + Ncount[i] = Ncount[i][indices] - 1 + N = len(indices) + + # Flattened histogram matrix (1D) + hist = zeros(nbin.prod(), int) + + # Compute the sample indices in the flattened histogram matrix. + ni = nbin.argsort() + shape = [] + xy = zeros(N, int) + for i in arange(0, D-1): + xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() + + xy += Ncount[ni[-1]] + + # Compute the number of repetitions in xy and assign it to the flattened histmat. + if len(xy) == 0: + return zeros(nbin, int) + + flatcount = bincount(xy) + a = arange(len(flatcount)) + hist[a] = flatcount + + # Shape into a proper matrix + hist = hist.reshape(sort(nbin)) + for i,j in enumerate(ni): + hist = hist.swapaxes(i,j) + if (hist.shape == nbin).all(): + break + + if normed: + s = hist.sum() + for i in arange(D): + shape = ones(D, int) + shape[i] = nbin[i] + hist = hist / dedges[i].reshape(shape) + hist /= s + + return hist, edges + + def average(a, axis=None, weights=None, returned=False): """average(a, axis=None weights=None, returned=False) |