summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py12
1 files changed, 2 insertions, 10 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 6d9e65697..f3df3b96b 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -778,7 +778,7 @@ def select(condlist, choicelist, default=0):
S = S*ones(asarray(pfac).shape, S.dtype)
return choose(S, tuple(choicelist))
-def copy(a, order='C', maskna=None):
+def copy(a, order='C'):
"""
Return an array copy of the given object.
@@ -791,10 +791,6 @@ def copy(a, order='C', maskna=None):
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
- maskna : bool, optional
- If specifies, forces the copy to have or to not have an
- NA mask. This is a way to remove an NA mask from an array
- while making a copy.
Returns
-------
@@ -824,7 +820,7 @@ def copy(a, order='C', maskna=None):
False
"""
- return array(a, order=order, copy=True, maskna=maskna)
+ return array(a, order=order, copy=True)
# Basic operations
@@ -3377,7 +3373,6 @@ def delete(arr, obj, axis=None):
"invalid entry")
newshape[axis]-=1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
- new.flags.maskna = arr.flags.maskna
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = slice(obj,None)
@@ -3394,7 +3389,6 @@ def delete(arr, obj, axis=None):
return arr.copy()
newshape[axis] -= numtodel
new = empty(newshape, arr.dtype, arr.flags.fnc)
- new.flags.maskna = arr.flags.maskna
# copy initial chunk
if start == 0:
pass
@@ -3526,7 +3520,6 @@ def insert(arr, obj, values, axis=None):
"in dimension %d" % (obj, N, axis))
newshape[axis] += 1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
- new.flags.maskna = arr.flags.maskna
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = obj
@@ -3553,7 +3546,6 @@ def insert(arr, obj, values, axis=None):
index2 = setdiff1d(arange(numnew+N),index1)
newshape[axis] += numnew
new = empty(newshape, arr.dtype, arr.flags.fnc)
- new.flags.maskna = arr.flags.maskna
slobj2 = [slice(None)]*ndim
slobj[axis] = index1
slobj2[axis] = index2