summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py83
1 files changed, 56 insertions, 27 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index c7ddbdb8d..af5a6e45c 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -8,7 +8,7 @@ import numpy as np
import numpy.core.numeric as _nx
from numpy.core import transpose
from numpy.core.numeric import (
- ones, zeros, arange, concatenate, array, asarray, asanyarray, empty,
+ ones, zeros_like, arange, concatenate, array, asarray, asanyarray, empty,
ndarray, around, floor, ceil, take, dot, where, intp,
integer, isscalar, absolute
)
@@ -593,7 +593,7 @@ def piecewise(x, condlist, funclist, *args, **kw):
not isinstance(condlist[0], (list, ndarray)) and x.ndim != 0):
condlist = [condlist]
- condlist = array(condlist, dtype=bool)
+ condlist = asarray(condlist, dtype=bool)
n = len(condlist)
if n == n2 - 1: # compute the "otherwise" condition.
@@ -606,7 +606,7 @@ def piecewise(x, condlist, funclist, *args, **kw):
.format(n, n, n+1)
)
- y = zeros(x.shape, x.dtype)
+ y = zeros_like(x)
for cond, func in zip(condlist, funclist):
if not isinstance(func, collections.abc.Callable):
y[cond] = func
@@ -671,11 +671,22 @@ def select(condlist, choicelist, default=0):
raise ValueError("select with an empty condition list is not possible")
choicelist = [np.asarray(choice) for choice in choicelist]
- choicelist.append(np.asarray(default))
+
+ try:
+ intermediate_dtype = np.result_type(*choicelist)
+ except TypeError as e:
+ msg = f'Choicelist elements do not have a common dtype: {e}'
+ raise TypeError(msg) from None
+ default_array = np.asarray(default)
+ choicelist.append(default_array)
# need to get the result type before broadcasting for correct scalar
# behaviour
- dtype = np.result_type(*choicelist)
+ try:
+ dtype = np.result_type(intermediate_dtype, default_array)
+ except TypeError as e:
+ msg = f'Choicelists and default value do not have a common dtype: {e}'
+ raise TypeError(msg) from None
# Convert conditions to arrays and broadcast conditions and choices
# as the shape is needed for the result. Doing it separately optimizes
@@ -846,7 +857,7 @@ def gradient(f, *varargs, axis=None, edge_order=1):
Returns
-------
gradient : ndarray or list of ndarray
- A set of ndarrays (or a single ndarray if there is only one dimension)
+ A list of ndarrays (or a single ndarray if there is only one dimension)
corresponding to the derivatives of f with respect to each dimension.
Each derivative has the same shape as f.
@@ -1290,7 +1301,7 @@ def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None):
@array_function_dispatch(_interp_dispatcher)
def interp(x, xp, fp, left=None, right=None, period=None):
"""
- One-dimensional linear interpolation.
+ One-dimensional linear interpolation for monotonically increasing sample points.
Returns the one-dimensional piecewise linear interpolant to a function
with given discrete data points (`xp`, `fp`), evaluated at `x`.
@@ -1337,8 +1348,8 @@ def interp(x, xp, fp, left=None, right=None, period=None):
--------
scipy.interpolate
- Notes
- -----
+ Warnings
+ --------
The x-coordinate sequence is expected to be increasing, but this is not
explicitly enforced. However, if the sequence `xp` is non-increasing,
interpolation results are meaningless.
@@ -2191,15 +2202,14 @@ class vectorize:
ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args)
# Convert args to object arrays first
- inputs = [array(a, copy=False, subok=True, dtype=object)
- for a in args]
+ inputs = [asanyarray(a, dtype=object) for a in args]
outputs = ufunc(*inputs)
if ufunc.nout == 1:
- res = array(outputs, copy=False, subok=True, dtype=otypes[0])
+ res = asanyarray(outputs, dtype=otypes[0])
else:
- res = tuple([array(x, copy=False, subok=True, dtype=t)
+ res = tuple([asanyarray(x, dtype=t)
for x, t in zip(outputs, otypes)])
return res
@@ -2268,13 +2278,13 @@ class vectorize:
def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None,
- fweights=None, aweights=None):
+ fweights=None, aweights=None, *, dtype=None):
return (m, y, fweights, aweights)
@array_function_dispatch(_cov_dispatcher)
def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
- aweights=None):
+ aweights=None, *, dtype=None):
"""
Estimate a covariance matrix, given data and weights.
@@ -2325,6 +2335,11 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
weights can be used to assign probabilities to observation vectors.
.. versionadded:: 1.10
+ dtype : data-type, optional
+ Data-type of the result. By default, the return data-type will have
+ at least `numpy.float64` precision.
+
+ .. versionadded:: 1.20
Returns
-------
@@ -2400,13 +2415,16 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
if m.ndim > 2:
raise ValueError("m has more than 2 dimensions")
- if y is None:
- dtype = np.result_type(m, np.float64)
- else:
+ if y is not None:
y = np.asarray(y)
if y.ndim > 2:
raise ValueError("y has more than 2 dimensions")
- dtype = np.result_type(m, y, np.float64)
+
+ if dtype is None:
+ if y is None:
+ dtype = np.result_type(m, np.float64)
+ else:
+ dtype = np.result_type(m, y, np.float64)
X = array(m, ndmin=2, dtype=dtype)
if not rowvar and X.shape[0] != 1:
@@ -2486,12 +2504,14 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
return c.squeeze()
-def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None):
+def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None, *,
+ dtype=None):
return (x, y)
@array_function_dispatch(_corrcoef_dispatcher)
-def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue):
+def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue, *,
+ dtype=None):
"""
Return Pearson product-moment correlation coefficients.
@@ -2525,6 +2545,11 @@ def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue):
Has no effect, do not use.
.. deprecated:: 1.10.0
+ dtype : data-type, optional
+ Data-type of the result. By default, the return data-type will have
+ at least `numpy.float64` precision.
+
+ .. versionadded:: 1.20
Returns
-------
@@ -2616,7 +2641,7 @@ def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue):
# 2015-03-15, 1.10
warnings.warn('bias and ddof have no effect and are deprecated',
DeprecationWarning, stacklevel=3)
- c = cov(x, y, rowvar)
+ c = cov(x, y, rowvar, dtype=dtype)
try:
d = diag(c)
except ValueError:
@@ -4085,9 +4110,12 @@ def trapz(y, x=None, dx=1.0, axis=-1):
Returns
-------
- trapz : float
- Definite integral as approximated by trapezoidal rule.
-
+ trapz : float or ndarray
+ Definite integral of 'y' = n-dimensional array as approximated along
+ a single axis by the trapezoidal rule. If 'y' is a 1-dimensional array,
+ then the result is a float. If 'n' is greater than 1, then the result
+ is an 'n-1' dimensional array.
+
See Also
--------
sum, cumsum
@@ -4230,7 +4258,7 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
See Also
--------
mgrid : Construct a multi-dimensional "meshgrid" using indexing notation.
- ogrid : Construct an open multi-dimensional "meshgrid" using indexing
+ ogrid : Construct an open multi-dimensional "meshgrid" using indexing
notation.
Examples
@@ -4259,7 +4287,8 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = np.meshgrid(x, y, sparse=True)
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
- >>> h = plt.contourf(x,y,z)
+ >>> h = plt.contourf(x, y, z)
+ >>> plt.axis('scaled')
>>> plt.show()
"""