diff options
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 48 |
1 files changed, 21 insertions, 27 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index c2680b016..ef8a26fe3 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -1,5 +1,3 @@ -from __future__ import division, absolute_import, print_function - try: # Accessing collections abstract classes from collections # has been deprecated since Python 3.3 @@ -772,14 +770,14 @@ def copy(a, order='K'): # Basic operations -def _gradient_dispatcher(f, *varargs, **kwargs): +def _gradient_dispatcher(f, *varargs, axis=None, edge_order=None): yield f for v in varargs: yield v @array_function_dispatch(_gradient_dispatcher) -def gradient(f, *varargs, **kwargs): +def gradient(f, *varargs, axis=None, edge_order=1): """ Return the gradient of an N-dimensional array. @@ -956,11 +954,10 @@ def gradient(f, *varargs, **kwargs): f = np.asanyarray(f) N = f.ndim # number of dimensions - axes = kwargs.pop('axis', None) - if axes is None: + if axis is None: axes = tuple(range(N)) else: - axes = _nx.normalize_axis_tuple(axes, N) + axes = _nx.normalize_axis_tuple(axis, N) len_axes = len(axes) n = len(varargs) @@ -974,13 +971,18 @@ def gradient(f, *varargs, **kwargs): # scalar or 1d array for each axis dx = list(varargs) for i, distances in enumerate(dx): - if np.ndim(distances) == 0: + distances = np.asanyarray(distances) + if distances.ndim == 0: continue - elif np.ndim(distances) != 1: + elif distances.ndim != 1: raise ValueError("distances must be either scalars or 1d") if len(distances) != f.shape[axes[i]]: raise ValueError("when 1d, distances must match " "the length of the corresponding dimension") + if np.issubdtype(distances.dtype, np.integer): + # Convert numpy integer types to float64 to avoid modular + # arithmetic in np.diff(distances). + distances = distances.astype(np.float64) diffx = np.diff(distances) # if distances are constant reduce to the scalar case # since it brings a consistent speedup @@ -990,10 +992,6 @@ def gradient(f, *varargs, **kwargs): else: raise TypeError("invalid number of arguments") - edge_order = kwargs.pop('edge_order', 1) - if kwargs: - raise TypeError('"{}" are not valid keyword arguments.'.format( - '", "'.join(kwargs.keys()))) if edge_order > 2: raise ValueError("'edge_order' greater than 2 not supported") @@ -1019,8 +1017,12 @@ def gradient(f, *varargs, **kwargs): elif np.issubdtype(otype, np.inexact): pass else: - # all other types convert to floating point - otype = np.double + # All other types convert to floating point. + # First check if f is a numpy integer type; if so, convert f to float64 + # to avoid modular arithmetic when computing the changes in f. + if np.issubdtype(otype, np.integer): + f = f.astype(np.float64) + otype = np.float64 for axis, ax_dx in zip(axes, dx): if f.shape[axis] < edge_order + 1: @@ -1863,7 +1865,7 @@ def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes): @set_module('numpy') -class vectorize(object): +class vectorize: """ vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None) @@ -4056,13 +4058,13 @@ def trapz(y, x=None, dx=1.0, axis=-1): return ret -def _meshgrid_dispatcher(*xi, **kwargs): +def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None): return xi # Based on scitools meshgrid @array_function_dispatch(_meshgrid_dispatcher) -def meshgrid(*xi, **kwargs): +def meshgrid(*xi, copy=True, sparse=False, indexing='xy'): """ Return coordinate matrices from coordinate vectors. @@ -4168,14 +4170,6 @@ def meshgrid(*xi, **kwargs): """ ndim = len(xi) - copy_ = kwargs.pop('copy', True) - sparse = kwargs.pop('sparse', False) - indexing = kwargs.pop('indexing', 'xy') - - if kwargs: - raise TypeError("meshgrid() got an unexpected keyword argument '%s'" - % (list(kwargs)[0],)) - if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") @@ -4193,7 +4187,7 @@ def meshgrid(*xi, **kwargs): # Return the full N-D matrix (not only the 1-D vector) output = np.broadcast_arrays(*output, subok=True) - if copy_: + if copy: output = [x.copy() for x in output] return output |