summaryrefslogtreecommitdiff
path: root/numpy/lib/histograms.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/histograms.py')
-rw-r--r--numpy/lib/histograms.py12
1 files changed, 3 insertions, 9 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py
index a770e3d31..536dc9be7 100644
--- a/numpy/lib/histograms.py
+++ b/numpy/lib/histograms.py
@@ -926,11 +926,9 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
hist = np.zeros(nbin, float).reshape(-1)
# Compute the sample indices in the flattened histogram matrix.
- ni = nbin.argsort()
xy = np.zeros(N, np.intp)
- for i in np.arange(0, D-1):
- xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod()
- xy += Ncount[ni[-1]]
+ for i in np.arange(0, D):
+ xy += Ncount[i] * nbin[i+1:].prod()
# Compute the number of repetitions in xy and assign it to the
# flattened histmat.
@@ -942,11 +940,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
hist[a] = flatcount
# Shape into a proper matrix
- hist = hist.reshape(np.sort(nbin))
- for i in np.arange(nbin.size):
- j = ni.argsort()[i]
- hist = hist.swapaxes(i, j)
- ni[i], ni[j] = ni[j], ni[i]
+ hist = hist.reshape(nbin)
# Remove outliers (indices 0 and -1 for each dimension).
core = D*(slice(1, -1),)