summaryrefslogtreecommitdiff
path: root/numpy/lib/histograms.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/histograms.py')
-rw-r--r--numpy/lib/histograms.py58
1 files changed, 55 insertions, 3 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py
index 422b356f7..1ff25b81f 100644
--- a/numpy/lib/histograms.py
+++ b/numpy/lib/histograms.py
@@ -8,6 +8,7 @@ import warnings
import numpy as np
from numpy.compat.py3k import basestring
+from numpy.core.overrides import array_function_dispatch
__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges']
@@ -220,6 +221,14 @@ _hist_bin_selectors = {'auto': _hist_bin_auto,
def _ravel_and_check_weights(a, weights):
""" Check a and weights have matching shapes, and ravel both """
a = np.asarray(a)
+
+ # Ensure that the array is a "subtractable" dtype
+ if a.dtype == np.bool_:
+ warnings.warn("Converting input from {} to {} for compatibility."
+ .format(a.dtype, np.uint8),
+ RuntimeWarning, stacklevel=2)
+ a = a.astype(np.uint8)
+
if weights is not None:
weights = np.asarray(weights)
if weights.shape != a.shape:
@@ -260,6 +269,32 @@ def _get_outer_edges(a, range):
return first_edge, last_edge
+def _unsigned_subtract(a, b):
+ """
+ Subtract two values where a >= b, and produce an unsigned result
+
+ This is needed when finding the difference between the upper and lower
+ bound of an int16 histogram
+ """
+ # coerce to a single type
+ signed_to_unsigned = {
+ np.byte: np.ubyte,
+ np.short: np.ushort,
+ np.intc: np.uintc,
+ np.int_: np.uint,
+ np.longlong: np.ulonglong
+ }
+ dt = np.result_type(a, b)
+ try:
+ dt = signed_to_unsigned[dt.type]
+ except KeyError:
+ return np.subtract(a, b, dtype=dt)
+ else:
+ # we know the inputs are integers, and we are deliberately casting
+ # signed to unsigned
+ return np.subtract(a, b, casting='unsafe', dtype=dt)
+
+
def _get_bin_edges(a, bins, range, weights):
"""
Computes the bins used internally by `histogram`.
@@ -311,7 +346,7 @@ def _get_bin_edges(a, bins, range, weights):
# Do not call selectors on empty arrays
width = _hist_bin_selectors[bin_name](a)
if width:
- n_equal_bins = int(np.ceil((last_edge - first_edge) / width))
+ n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width))
else:
# Width can be zero for some estimators, e.g. FD when
# the IQR of the data is zero.
@@ -366,6 +401,11 @@ def _search_sorted_inclusive(a, v):
))
+def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None):
+ return (a, bins, weights)
+
+
+@array_function_dispatch(_histogram_bin_edges_dispatcher)
def histogram_bin_edges(a, bins=10, range=None, weights=None):
r"""
Function to calculate only the edges of the bins used by the `histogram` function.
@@ -560,6 +600,12 @@ def histogram_bin_edges(a, bins=10, range=None, weights=None):
return bin_edges
+def _histogram_dispatcher(
+ a, bins=None, range=None, normed=None, weights=None, density=None):
+ return (a, bins, weights)
+
+
+@array_function_dispatch(_histogram_dispatcher)
def histogram(a, bins=10, range=None, normed=None, weights=None,
density=None):
r"""
@@ -703,7 +749,7 @@ def histogram(a, bins=10, range=None, normed=None, weights=None,
n = np.zeros(n_equal_bins, ntype)
# Pre-compute histogram scaling factor
- norm = n_equal_bins / (last_edge - first_edge)
+ norm = n_equal_bins / _unsigned_subtract(last_edge, first_edge)
# We iterate over blocks here for two reasons: the first is that for
# large arrays, it is actually faster (for example for a 10^8 array it
@@ -731,7 +777,7 @@ def histogram(a, bins=10, range=None, normed=None, weights=None,
# Compute the bin indices, and for values that lie exactly on
# last_edge we need to subtract one
- f_indices = (tmp_a - first_edge) * norm
+ f_indices = _unsigned_subtract(tmp_a, first_edge) * norm
indices = f_indices.astype(np.intp)
indices[indices == n_equal_bins] -= 1
@@ -812,6 +858,12 @@ def histogram(a, bins=10, range=None, normed=None, weights=None,
return n, bin_edges
+def _histogramdd_dispatcher(sample, bins=None, range=None, normed=None,
+ weights=None, density=None):
+ return (sample, bins, weights)
+
+
+@array_function_dispatch(_histogramdd_dispatcher)
def histogramdd(sample, bins=10, range=None, normed=None, weights=None,
density=None):
"""