summaryrefslogtreecommitdiff
path: root/numpy/lib/index_tricks.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/index_tricks.py')
-rw-r--r--numpy/lib/index_tricks.py19
1 files changed, 9 insertions, 10 deletions
diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py
index fa3a90e4f..abf9e1090 100644
--- a/numpy/lib/index_tricks.py
+++ b/numpy/lib/index_tricks.py
@@ -3,11 +3,10 @@ import sys
import math
import warnings
+import numpy as np
from .._utils import set_module
import numpy.core.numeric as _nx
-from numpy.core.numeric import (
- asarray, ScalarType, array, alltrue, cumprod, arange, ndim
-)
+from numpy.core.numeric import ScalarType, array
from numpy.core.numerictypes import find_common_type, issubdtype
import numpy.matrixlib as matrixlib
@@ -94,7 +93,7 @@ def ix_(*args):
nd = len(args)
for k, new in enumerate(args):
if not isinstance(new, _nx.ndarray):
- new = asarray(new)
+ new = np.asarray(new)
if new.size == 0:
# Explicitly type empty arrays to avoid float default
new = new.astype(_nx.intp)
@@ -396,7 +395,7 @@ class AxisConcatenator:
scalar = True
scalartypes.append(newobj.dtype)
else:
- item_ndim = ndim(item)
+ item_ndim = np.ndim(item)
newobj = array(item, copy=False, subok=True, ndmin=ndmin)
if trans1d != -1 and item_ndim < ndmin:
k2 = ndmin - item_ndim
@@ -596,7 +595,7 @@ class ndenumerate:
"""
def __init__(self, arr):
- self.iter = asarray(arr).flat
+ self.iter = np.asarray(arr).flat
def __next__(self):
"""
@@ -909,9 +908,9 @@ def fill_diagonal(a, val, wrap=False):
else:
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
- if not alltrue(diff(a.shape) == 0):
+ if not np.all(diff(a.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
- step = 1 + (cumprod(a.shape[:-1])).sum()
+ step = 1 + (np.cumprod(a.shape[:-1])).sum()
# Write the value out into the diagonal.
a.flat[:end:step] = val
@@ -982,7 +981,7 @@ def diag_indices(n, ndim=2):
[0, 1]]])
"""
- idx = arange(n)
+ idx = np.arange(n)
return (idx,) * ndim
@@ -1041,7 +1040,7 @@ def diag_indices_from(arr):
raise ValueError("input array must be at least 2-d")
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
- if not alltrue(diff(arr.shape) == 0):
+ if not np.all(diff(arr.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
return diag_indices(arr.shape[0], arr.ndim)