summaryrefslogtreecommitdiff
path: root/numpy/lib/io.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/io.py')
-rw-r--r--numpy/lib/io.py61
1 files changed, 30 insertions, 31 deletions
diff --git a/numpy/lib/io.py b/numpy/lib/io.py
index 9e61ab2f8..4c7180245 100644
--- a/numpy/lib/io.py
+++ b/numpy/lib/io.py
@@ -232,37 +232,37 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None,
Parameters
----------
- fname : filename or a file handle.
+ fname : filename or a file handle.
Support for gzipped files is automatic, if the filename ends in .gz
- dtype : data-type
- Data type of the resulting array. If this is a record data-type, the
- resulting array will be 1-d and each row will be interpreted as an
- element of the array. The number of columns used must match the number
+ dtype : data-type
+ Data type of the resulting array. If this is a record data-type, the
+ resulting array will be 1-d and each row will be interpreted as an
+ element of the array. The number of columns used must match the number
of fields in the data-type in this case.
- comments : str
+ comments : str
The character used to indicate the start of a comment in the file.
delimiter : str
- A string-like character used to separate values in the file. If delimiter
+ A string-like character used to separate values in the file. If delimiter
is unspecified or none, any whitespace string is a separator.
converters : {}
- A dictionary mapping column number to a function that will convert that
- column to a float. Eg, if column 0 is a date string:
- converters={0:datestr2num}. Converters can also be used to provide
- a default value for missing data: converters={3:lambda s: float(s or 0)}.
-
+ A dictionary mapping column number to a function that will convert that
+ column to a float. Eg, if column 0 is a date string:
+ converters={0:datestr2num}. Converters can also be used to provide
+ a default value for missing data: converters={3:lambda s: float(s or 0)}.
+
skiprows : int
The number of rows from the top to skip.
usecols : sequence
- A sequence of integer column indexes to extract where 0 is the first
+ A sequence of integer column indexes to extract where 0 is the first
column, eg. usecols=(1,4,5) will extract the 2nd, 5th and 6th columns.
unpack : bool
- If True, will transpose the matrix allowing you to unpack into named
+ If True, will transpose the matrix allowing you to unpack into named
arguments on the left hand side.
Examples
@@ -271,8 +271,8 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None,
>>> x,y,z = load('somefile.dat', usecols=(3,5,7), unpack=True)
>>> r = np.loadtxt('record.dat', dtype={'names':('gender','age','weight'),
'formats': ('S1','i4', 'f4')})
-
- SeeAlso: scipy.io.loadmat to read and write matfiles.
+
+ SeeAlso: scipy.io.loadmat to read and write matfiles.
"""
if _string_like(fname):
@@ -332,23 +332,23 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '):
Parameters
----------
fname : filename or a file handle
- If the filename ends in .gz, the file is automatically saved in
- compressed gzip format. The load() command understands gzipped files
+ If the filename ends in .gz, the file is automatically saved in
+ compressed gzip format. The load() command understands gzipped files
transparently.
X : array or sequence
Data to write to file.
- fmt : string
- A format string %[flags][width][.precision]specifier. See notes below for
+ fmt : string
+ A format string %[flags][width][.precision]specifier. See notes below for
a description of some common flags and specifiers.
delimiter : str
Character separating columns.
-
+
Examples
--------
>>> savetxt('test.out', x, delimiter=',') # X is an array
>>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
- >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation
-
+ >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation
+
Notes on fmt
------------
flags:
@@ -362,19 +362,19 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '):
For e, E and f specifiers, the number of digits to print after the decimal
point.
For g and G, the maximum number of significant digits.
- For s, the maximum number of characters.
+ For s, the maximum number of characters.
specifiers:
c : character
d or i : signed decimal integer
- e or E : scientific notation with e or E.
+ e or E : scientific notation with e or E.
f : decimal floating point
g,G : use the shorter of e,E or f
o : signed octal
s : string of characters
u : unsigned decimal integer
x,X : unsigned hexadecimal integer
-
- This is not an exhaustive specification.
+
+ This is not an exhaustive specification.
"""
if _string_like(fname):
@@ -403,7 +403,7 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '):
import re
def fromregex(file, regexp, dtype):
"""Construct a record array from a text file, using regular-expressions parsing.
-
+
Array is constructed from all matches of the regular expression
in the file. Groups in the regular expression are converted to fields.
@@ -423,7 +423,7 @@ def fromregex(file, regexp, dtype):
>>> f.write("1312 foo\n1534 bar\n 444 qux")
>>> f.close()
>>> np.fromregex('test.dat', r"(\d+)\s+(...)", [('num', np.int64), ('key', 'S3')])
- array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
+ array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
dtype=[('num', '<i8'), ('key', '|S3')])
"""
@@ -433,7 +433,7 @@ def fromregex(file, regexp, dtype):
regexp = re.compile(regexp)
if not isinstance(dtype, np.dtype):
dtype = np.dtype(dtype)
-
+
seq = regexp.findall(file.read())
if seq and not isinstance(seq[0], tuple):
# make sure np.array doesn't interpret strings as binary data
@@ -441,4 +441,3 @@ def fromregex(file, regexp, dtype):
seq = [(x,) for x in seq]
output = np.array(seq, dtype=dtype)
return output
-