summaryrefslogtreecommitdiff
path: root/numpy/lib/shape_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/shape_base.py')
-rw-r--r--numpy/lib/shape_base.py574
1 files changed, 457 insertions, 117 deletions
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index 8ebcf04b4..ac2a25604 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -1,14 +1,17 @@
from __future__ import division, absolute_import, print_function
+import functools
import warnings
import numpy.core.numeric as _nx
from numpy.core.numeric import (
- asarray, zeros, outer, concatenate, isscalar, array, asanyarray
+ asarray, zeros, outer, concatenate, array, asanyarray
)
from numpy.core.fromnumeric import product, reshape, transpose
from numpy.core.multiarray import normalize_axis_index
+from numpy.core import overrides
from numpy.core import vstack, atleast_3d
+from numpy.core.shape_base import _arrays_for_stack_dispatcher
from numpy.lib.index_tricks import ndindex
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
@@ -16,10 +19,254 @@ from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm
__all__ = [
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
- 'apply_along_axis', 'kron', 'tile', 'get_array_wrap'
+ 'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
+ 'put_along_axis'
]
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+def _make_along_axis_idx(arr_shape, indices, axis):
+ # compute dimensions to iterate over
+ if not _nx.issubdtype(indices.dtype, _nx.integer):
+ raise IndexError('`indices` must be an integer array')
+ if len(arr_shape) != indices.ndim:
+ raise ValueError(
+ "`indices` and `arr` must have the same number of dimensions")
+ shape_ones = (1,) * indices.ndim
+ dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
+
+ # build a fancy index, consisting of orthogonal aranges, with the
+ # requested index inserted at the right location
+ fancy_index = []
+ for dim, n in zip(dest_dims, arr_shape):
+ if dim is None:
+ fancy_index.append(indices)
+ else:
+ ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
+ fancy_index.append(_nx.arange(n).reshape(ind_shape))
+
+ return tuple(fancy_index)
+
+
+def _take_along_axis_dispatcher(arr, indices, axis):
+ return (arr, indices)
+
+
+@array_function_dispatch(_take_along_axis_dispatcher)
+def take_along_axis(arr, indices, axis):
+ """
+ Take values from the input array by matching 1d index and data slices.
+
+ This iterates over matching 1d slices oriented along the specified axis in
+ the index and data arrays, and uses the former to look up values in the
+ latter. These slices can be different lengths.
+
+ Functions returning an index along an axis, like `argsort` and
+ `argpartition`, produce suitable indices for this function.
+
+ .. versionadded:: 1.15.0
+
+ Parameters
+ ----------
+ arr: ndarray (Ni..., M, Nk...)
+ Source array
+ indices: ndarray (Ni..., J, Nk...)
+ Indices to take along each 1d slice of `arr`. This must match the
+ dimension of arr, but dimensions Ni and Nj only need to broadcast
+ against `arr`.
+ axis: int
+ The axis to take 1d slices along. If axis is None, the input array is
+ treated as if it had first been flattened to 1d, for consistency with
+ `sort` and `argsort`.
+
+ Returns
+ -------
+ out: ndarray (Ni..., J, Nk...)
+ The indexed result.
+
+ Notes
+ -----
+ This is equivalent to (but faster than) the following use of `ndindex` and
+ `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
+
+ Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
+ J = indices.shape[axis] # Need not equal M
+ out = np.empty(Nk + (J,) + Nk)
+
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nk):
+ a_1d = a [ii + s_[:,] + kk]
+ indices_1d = indices[ii + s_[:,] + kk]
+ out_1d = out [ii + s_[:,] + kk]
+ for j in range(J):
+ out_1d[j] = a_1d[indices_1d[j]]
+
+ Equivalently, eliminating the inner loop, the last two lines would be::
+
+ out_1d[:] = a_1d[indices_1d]
+
+ See Also
+ --------
+ take : Take along an axis, using the same indices for every 1d slice
+ put_along_axis :
+ Put values into the destination array by matching 1d index and data slices
+
+ Examples
+ --------
+
+ For this sample array
+
+ >>> a = np.array([[10, 30, 20], [60, 40, 50]])
+
+ We can sort either by using sort directly, or argsort and this function
+
+ >>> np.sort(a, axis=1)
+ array([[10, 20, 30],
+ [40, 50, 60]])
+ >>> ai = np.argsort(a, axis=1); ai
+ array([[0, 2, 1],
+ [1, 2, 0]])
+ >>> np.take_along_axis(a, ai, axis=1)
+ array([[10, 20, 30],
+ [40, 50, 60]])
+
+ The same works for max and min, if you expand the dimensions:
+
+ >>> np.expand_dims(np.max(a, axis=1), axis=1)
+ array([[30],
+ [60]])
+ >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
+ >>> ai
+ array([[1],
+ [0]])
+ >>> np.take_along_axis(a, ai, axis=1)
+ array([[30],
+ [60]])
+
+ If we want to get the max and min at the same time, we can stack the
+ indices first
+
+ >>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1)
+ >>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1)
+ >>> ai = np.concatenate([ai_min, ai_max], axis=1)
+ >>> ai
+ array([[0, 1],
+ [1, 0]])
+ >>> np.take_along_axis(a, ai, axis=1)
+ array([[10, 30],
+ [40, 60]])
+ """
+ # normalize inputs
+ if axis is None:
+ arr = arr.flat
+ arr_shape = (len(arr),) # flatiter has no .shape
+ axis = 0
+ else:
+ axis = normalize_axis_index(axis, arr.ndim)
+ arr_shape = arr.shape
+
+ # use the fancy index
+ return arr[_make_along_axis_idx(arr_shape, indices, axis)]
+
+
+def _put_along_axis_dispatcher(arr, indices, values, axis):
+ return (arr, indices, values)
+
+
+@array_function_dispatch(_put_along_axis_dispatcher)
+def put_along_axis(arr, indices, values, axis):
+ """
+ Put values into the destination array by matching 1d index and data slices.
+
+ This iterates over matching 1d slices oriented along the specified axis in
+ the index and data arrays, and uses the former to place values into the
+ latter. These slices can be different lengths.
+
+ Functions returning an index along an axis, like `argsort` and
+ `argpartition`, produce suitable indices for this function.
+
+ .. versionadded:: 1.15.0
+
+ Parameters
+ ----------
+ arr: ndarray (Ni..., M, Nk...)
+ Destination array.
+ indices: ndarray (Ni..., J, Nk...)
+ Indices to change along each 1d slice of `arr`. This must match the
+ dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
+ against `arr`.
+ values: array_like (Ni..., J, Nk...)
+ values to insert at those indices. Its shape and dimension are
+ broadcast to match that of `indices`.
+ axis: int
+ The axis to take 1d slices along. If axis is None, the destination
+ array is treated as if a flattened 1d view had been created of it.
+
+ Notes
+ -----
+ This is equivalent to (but faster than) the following use of `ndindex` and
+ `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
+
+ Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
+ J = indices.shape[axis] # Need not equal M
+
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nk):
+ a_1d = a [ii + s_[:,] + kk]
+ indices_1d = indices[ii + s_[:,] + kk]
+ values_1d = values [ii + s_[:,] + kk]
+ for j in range(J):
+ a_1d[indices_1d[j]] = values_1d[j]
+
+ Equivalently, eliminating the inner loop, the last two lines would be::
+
+ a_1d[indices_1d] = values_1d
+
+ See Also
+ --------
+ take_along_axis :
+ Take values from the input array by matching 1d index and data slices
+
+ Examples
+ --------
+
+ For this sample array
+
+ >>> a = np.array([[10, 30, 20], [60, 40, 50]])
+
+ We can replace the maximum values with:
+
+ >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
+ >>> ai
+ array([[1],
+ [0]])
+ >>> np.put_along_axis(a, ai, 99, axis=1)
+ >>> a
+ array([[10, 99, 20],
+ [99, 40, 50]])
+
+ """
+ # normalize inputs
+ if axis is None:
+ arr = arr.flat
+ axis = 0
+ arr_shape = (len(arr),) # flatiter has no .shape
+ else:
+ axis = normalize_axis_index(axis, arr.ndim)
+ arr_shape = arr.shape
+
+ # use the fancy index
+ arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
+
+
+def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
+ return (arr,)
+
+
+@array_function_dispatch(_apply_along_axis_dispatcher)
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
"""
Apply a function to 1-D slices along the given axis.
@@ -27,14 +274,32 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
Execute `func1d(a, *args)` where `func1d` operates on 1-D arrays and `a`
is a 1-D slice of `arr` along `axis`.
+ This is equivalent to (but faster than) the following use of `ndindex` and
+ `s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nk):
+ f = func1d(arr[ii + s_[:,] + kk])
+ Nj = f.shape
+ for jj in ndindex(Nj):
+ out[ii + jj + kk] = f[jj]
+
+ Equivalently, eliminating the inner loop, this can be expressed as::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nk):
+ out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
+
Parameters
----------
- func1d : function
+ func1d : function (M,) -> (Nj...)
This function should accept 1-D arrays. It is applied to 1-D
slices of `arr` along the specified axis.
axis : integer
Axis along which `arr` is sliced.
- arr : ndarray
+ arr : ndarray (Ni..., M, Nk...)
Input array.
args : any
Additional arguments to `func1d`.
@@ -46,11 +311,11 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
Returns
-------
- apply_along_axis : ndarray
- The output array. The shape of `outarr` is identical to the shape of
+ out : ndarray (Ni..., Nj..., Nk...)
+ The output array. The shape of `out` is identical to the shape of
`arr`, except along the `axis` dimension. This axis is removed, and
replaced with new dimensions equal to the shape of the return value
- of `func1d`. So if `func1d` returns a scalar `outarr` will have one
+ of `func1d`. So if `func1d` returns a scalar `out` will have one
fewer dimensions than `arr`.
See Also
@@ -64,9 +329,9 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
- array([ 4., 5., 6.])
+ array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
- array([ 2., 5., 8.])
+ array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
`outarr` is the same as `arr`.
@@ -85,11 +350,9 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
array([[[1, 0, 0],
[0, 2, 0],
[0, 0, 3]],
-
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
-
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])
@@ -103,8 +366,10 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
in_dims = list(range(nd))
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
- # compute indices for the iteration axes
+ # compute indices for the iteration axes, and append a trailing ellipsis to
+ # prevent 0d arrays decaying to scalars, which fixes gh-8642
inds = ndindex(inarr_view.shape[:-1])
+ inds = (ind + (Ellipsis,) for ind in inds)
# invoke the function on the first item
try:
@@ -149,6 +414,11 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
return res.__array_wrap__(out_arr)
+def _apply_over_axes_dispatcher(func, a, axes):
+ return (a,)
+
+
+@array_function_dispatch(_apply_over_axes_dispatcher)
def apply_over_axes(func, a, axes):
"""
Apply a function repeatedly over multiple axes.
@@ -184,7 +454,7 @@ def apply_over_axes(func, a, axes):
Notes
------
This function is equivalent to tuple axis arguments to reorderable ufuncs
- with keepdims=True. Tuple axis arguments to ufuncs have been availabe since
+ with keepdims=True. Tuple axis arguments to ufuncs have been available since
version 1.7.0.
Examples
@@ -231,21 +501,33 @@ def apply_over_axes(func, a, axes):
val = res
else:
raise ValueError("function is not returning "
- "an array of the correct shape")
+ "an array of the correct shape")
return val
+
+def _expand_dims_dispatcher(a, axis):
+ return (a,)
+
+
+@array_function_dispatch(_expand_dims_dispatcher)
def expand_dims(a, axis):
"""
Expand the shape of an array.
- Insert a new axis, corresponding to a given position in the array shape.
+ Insert a new axis that will appear at the `axis` position in the expanded
+ array shape.
+
+ .. note:: Previous to NumPy 1.13.0, neither ``axis < -a.ndim - 1`` nor
+ ``axis > a.ndim`` raised errors or put the new axis where documented.
+ Those axis values are now deprecated and will raise an AxisError in the
+ future.
Parameters
----------
a : array_like
Input array.
axis : int
- Position (amongst axes) where new axis is to be inserted.
+ Position in the expanded axes where the new axis is placed.
Returns
-------
@@ -255,6 +537,8 @@ def expand_dims(a, axis):
See Also
--------
+ squeeze : The inverse operation, removing singleton dimensions
+ reshape : Insert, remove, and combine dimensions, and resize existing ones
doc.indexing, atleast_1d, atleast_2d, atleast_3d
Examples
@@ -271,7 +555,7 @@ def expand_dims(a, axis):
>>> y.shape
(1, 2)
- >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis]
+ >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis]
>>> y
array([[1],
[2]])
@@ -285,13 +569,33 @@ def expand_dims(a, axis):
True
"""
- a = asarray(a)
+ if isinstance(a, matrix):
+ a = asarray(a)
+ else:
+ a = asanyarray(a)
+
shape = a.shape
- axis = normalize_axis_index(axis, a.ndim + 1)
+ if axis > a.ndim or axis < -a.ndim - 1:
+ # 2017-05-17, 1.13.0
+ warnings.warn("Both axis > a.ndim and axis < -a.ndim - 1 are "
+ "deprecated and will raise an AxisError in the future.",
+ DeprecationWarning, stacklevel=2)
+ # When the deprecation period expires, delete this if block,
+ if axis < 0:
+ axis = axis + a.ndim + 1
+ # and uncomment the following line.
+ # axis = normalize_axis_index(axis, a.ndim + 1)
return a.reshape(shape[:axis] + (1,) + shape[axis:])
+
row_stack = vstack
+
+def _column_stack_dispatcher(tup):
+ return _arrays_for_stack_dispatcher(tup)
+
+
+@array_function_dispatch(_column_stack_dispatcher)
def column_stack(tup):
"""
Stack 1-D arrays as columns into a 2-D array.
@@ -313,7 +617,7 @@ def column_stack(tup):
See Also
--------
- hstack, vstack, concatenate
+ stack, hstack, vstack, concatenate
Examples
--------
@@ -333,29 +637,36 @@ def column_stack(tup):
arrays.append(arr)
return _nx.concatenate(arrays, 1)
+
+def _dstack_dispatcher(tup):
+ return _arrays_for_stack_dispatcher(tup)
+
+
+@array_function_dispatch(_dstack_dispatcher)
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third axis).
- Takes a sequence of arrays and stack them along the third axis
- to make a single array. Rebuilds arrays divided by `dsplit`.
- This is a simple way to stack 2D arrays (images) into a single
- 3D array for processing.
+ This is equivalent to concatenation along the third axis after 2-D arrays
+ of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
+ `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
+ `dsplit`.
- This function continues to be supported for backward compatibility, but
- you should prefer ``np.concatenate`` or ``np.stack``. The ``np.stack``
- function was added in NumPy 1.10.
+ This function makes most sense for arrays with up to 3 dimensions. For
+ instance, for pixel-data with a height (first axis), width (second axis),
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
+ `block` provide more general stacking and concatenation operations.
Parameters
----------
tup : sequence of arrays
- Arrays to stack. All of them must have the same shape along all
- but the third axis.
+ The arrays must have the same shape along all but the third axis.
+ 1-D or 2-D arrays must have the same shape.
Returns
-------
stacked : ndarray
- The array formed by stacking the given arrays.
+ The array formed by stacking the given arrays, will be at least 3-D.
See Also
--------
@@ -365,10 +676,6 @@ def dstack(tup):
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split array along third axis.
- Notes
- -----
- Equivalent to ``np.concatenate(tup, axis=2)``.
-
Examples
--------
>>> a = np.array((1,2,3))
@@ -388,6 +695,7 @@ def dstack(tup):
"""
return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
+
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if _nx.ndim(sub_arys[i]) == 0:
@@ -396,6 +704,12 @@ def _replace_zero_by_x_arrays(sub_arys):
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
return sub_arys
+
+def _array_split_dispatcher(ary, indices_or_sections, axis=None):
+ return (ary, indices_or_sections)
+
+
+@array_function_dispatch(_array_split_dispatcher)
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
@@ -403,7 +717,9 @@ def array_split(ary, indices_or_sections, axis=0):
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
- divide the axis.
+ divide the axis. For an array of length l that should be split
+ into n sections, it returns l % n sub-arrays of size l//n + 1
+ and the rest of size l//n.
See Also
--------
@@ -413,7 +729,11 @@ def array_split(ary, indices_or_sections, axis=0):
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
- [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
+
+ >>> x = np.arange(7.0)
+ >>> np.array_split(x, 3)
+ [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])]
"""
try:
@@ -421,7 +741,7 @@ def array_split(ary, indices_or_sections, axis=0):
except AttributeError:
Ntotal = len(ary)
try:
- # handle scalar case.
+ # handle array case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
@@ -433,7 +753,7 @@ def array_split(ary, indices_or_sections, axis=0):
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
- div_points = _nx.array(section_sizes).cumsum()
+ div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
@@ -445,7 +765,12 @@ def array_split(ary, indices_or_sections, axis=0):
return sub_arys
-def split(ary,indices_or_sections,axis=0):
+def _split_dispatcher(ary, indices_or_sections, axis=None):
+ return (ary, indices_or_sections)
+
+
+@array_function_dispatch(_split_dispatcher)
+def split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
@@ -500,14 +825,14 @@ def split(ary,indices_or_sections,axis=0):
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
- [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])]
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
- [array([ 0., 1., 2.]),
- array([ 3., 4.]),
- array([ 5.]),
- array([ 6., 7.]),
+ [array([0., 1., 2.]),
+ array([3., 4.]),
+ array([5.]),
+ array([6., 7.]),
array([], dtype=float64)]
"""
@@ -522,6 +847,12 @@ def split(ary,indices_or_sections,axis=0):
res = array_split(ary, indices_or_sections, axis)
return res
+
+def _hvdsplit_dispatcher(ary, indices_or_sections):
+ return (ary, indices_or_sections)
+
+
+@array_function_dispatch(_hvdsplit_dispatcher)
def hsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays horizontally (column-wise).
@@ -538,43 +869,43 @@ def hsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
- [ 12., 13.]]),
+ [12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
- [ 10., 11.],
- [ 14., 15.]])]
+ [10., 11.],
+ [14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
- [array([[ 0., 1., 2.],
- [ 4., 5., 6.],
- [ 8., 9., 10.],
- [ 12., 13., 14.]]),
- array([[ 3.],
- [ 7.],
- [ 11.],
- [ 15.]]),
- array([], dtype=float64)]
+ [array([[ 0., 1., 2.],
+ [ 4., 5., 6.],
+ [ 8., 9., 10.],
+ [12., 13., 14.]]),
+ array([[ 3.],
+ [ 7.],
+ [11.],
+ [15.]]),
+ array([], shape=(4, 0), dtype=float64)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
- array([[[ 0., 1.],
- [ 2., 3.]],
- [[ 4., 5.],
- [ 6., 7.]]])
+ array([[[0., 1.],
+ [2., 3.]],
+ [[4., 5.],
+ [6., 7.]]])
>>> np.hsplit(x, 2)
- [array([[[ 0., 1.]],
- [[ 4., 5.]]]),
- array([[[ 2., 3.]],
- [[ 6., 7.]]])]
+ [array([[[0., 1.]],
+ [[4., 5.]]]),
+ array([[[2., 3.]],
+ [[6., 7.]]])]
"""
if _nx.ndim(ary) == 0:
@@ -584,6 +915,8 @@ def hsplit(ary, indices_or_sections):
else:
return split(ary, indices_or_sections, 0)
+
+@array_function_dispatch(_hvdsplit_dispatcher)
def vsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays vertically (row-wise).
@@ -600,41 +933,39 @@ def vsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
- [array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.]]),
- array([[ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])]
+ [array([[0., 1., 2., 3.],
+ [4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
- [array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.]]),
- array([[ 12., 13., 14., 15.]]),
- array([], dtype=float64)]
+ [array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
- array([[[ 0., 1.],
- [ 2., 3.]],
- [[ 4., 5.],
- [ 6., 7.]]])
+ array([[[0., 1.],
+ [2., 3.]],
+ [[4., 5.],
+ [6., 7.]]])
>>> np.vsplit(x, 2)
- [array([[[ 0., 1.],
- [ 2., 3.]]]),
- array([[[ 4., 5.],
- [ 6., 7.]]])]
+ [array([[[0., 1.],
+ [2., 3.]]]), array([[[4., 5.],
+ [6., 7.]]])]
"""
if _nx.ndim(ary) < 2:
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
return split(ary, indices_or_sections, 0)
+
+@array_function_dispatch(_hvdsplit_dispatcher)
def dsplit(ary, indices_or_sections):
"""
Split array into multiple sub-arrays along the 3rd axis (depth).
@@ -651,30 +982,28 @@ def dsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
- array([[[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.]],
- [[ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]]])
+ array([[[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.]],
+ [[ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]]])
>>> np.dsplit(x, 2)
- [array([[[ 0., 1.],
- [ 4., 5.]],
- [[ 8., 9.],
- [ 12., 13.]]]),
- array([[[ 2., 3.],
- [ 6., 7.]],
- [[ 10., 11.],
- [ 14., 15.]]])]
+ [array([[[ 0., 1.],
+ [ 4., 5.]],
+ [[ 8., 9.],
+ [12., 13.]]]), array([[[ 2., 3.],
+ [ 6., 7.]],
+ [[10., 11.],
+ [14., 15.]]])]
>>> np.dsplit(x, np.array([3, 6]))
- [array([[[ 0., 1., 2.],
- [ 4., 5., 6.]],
- [[ 8., 9., 10.],
- [ 12., 13., 14.]]]),
- array([[[ 3.],
- [ 7.]],
- [[ 11.],
- [ 15.]]]),
- array([], dtype=float64)]
-
+ [array([[[ 0., 1., 2.],
+ [ 4., 5., 6.]],
+ [[ 8., 9., 10.],
+ [12., 13., 14.]]]),
+ array([[[ 3.],
+ [ 7.]],
+ [[11.],
+ [15.]]]),
+ array([], shape=(2, 2, 0), dtype=float64)]
"""
if _nx.ndim(ary) < 3:
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
@@ -704,6 +1033,12 @@ def get_array_wrap(*args):
return wrappers[-1][-1]
return None
+
+def _kron_dispatcher(a, b):
+ return (a, b)
+
+
+@array_function_dispatch(_kron_dispatcher)
def kron(a, b):
"""
Kronecker product of two arrays.
@@ -748,15 +1083,15 @@ def kron(a, b):
Examples
--------
>>> np.kron([1,10,100], [5,6,7])
- array([ 5, 6, 7, 50, 60, 70, 500, 600, 700])
+ array([ 5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
- array([ 5, 50, 500, 6, 60, 600, 7, 70, 700])
+ array([ 5, 50, 500, ..., 7, 70, 700])
>>> np.kron(np.eye(2), np.ones((2,2)))
- array([[ 1., 1., 0., 0.],
- [ 1., 1., 0., 0.],
- [ 0., 0., 1., 1.],
- [ 0., 0., 1., 1.]])
+ array([[1., 1., 0., 0.],
+ [1., 1., 0., 0.],
+ [0., 0., 1., 1.],
+ [0., 0., 1., 1.]])
>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
@@ -803,6 +1138,11 @@ def kron(a, b):
return result
+def _tile_dispatcher(A, reps):
+ return (A, reps)
+
+
+@array_function_dispatch(_tile_dispatcher)
def tile(A, reps):
"""
Construct an array by repeating A the number of times given by reps.