summaryrefslogtreecommitdiff
path: root/numpy/lib/shape_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/shape_base.py')
-rw-r--r--numpy/lib/shape_base.py62
1 files changed, 31 insertions, 31 deletions
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index c63f8140d..1363a3213 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -1,7 +1,7 @@
from __future__ import division, absolute_import, print_function
-__all__ = ['column_stack','row_stack', 'dstack','array_split','split','hsplit',
- 'vsplit','dsplit','apply_over_axes','expand_dims',
+__all__ = ['column_stack', 'row_stack', 'dstack', 'array_split', 'split', 'hsplit',
+ 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
'apply_along_axis', 'kron', 'tile', 'get_array_wrap']
import numpy.core.numeric as _nx
@@ -68,18 +68,18 @@ def apply_along_axis(func1d,axis,arr,*args):
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
- % (axis,nd))
+ % (axis, nd))
ind = [0]*(nd-1)
- i = zeros(nd,'O')
+ i = zeros(nd, 'O')
indlist = list(range(nd))
indlist.remove(axis)
- i[axis] = slice(None,None)
+ i[axis] = slice(None, None)
outshape = asarray(arr.shape).take(indlist)
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
# if res is a number, then we have a smaller output array
if isscalar(res):
- outarr = zeros(outshape,asarray(res).dtype)
+ outarr = zeros(outshape, asarray(res).dtype)
outarr[tuple(ind)] = res
Ntot = product(outshape)
k = 1
@@ -91,7 +91,7 @@ def apply_along_axis(func1d,axis,arr,*args):
ind[n-1] += 1
ind[n] = 0
n -= 1
- i.put(indlist,ind)
+ i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(ind)] = res
k += 1
@@ -101,7 +101,7 @@ def apply_along_axis(func1d,axis,arr,*args):
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = len(res)
- outarr = zeros(outshape,asarray(res).dtype)
+ outarr = zeros(outshape, asarray(res).dtype)
outarr[tuple(i.tolist())] = res
k = 1
while k < Ntot:
@@ -182,7 +182,7 @@ def apply_over_axes(func, a, axes):
if res.ndim == val.ndim:
val = res
else:
- res = expand_dims(res,axis)
+ res = expand_dims(res, axis)
if res.ndim == val.ndim:
val = res
else:
@@ -288,11 +288,11 @@ def column_stack(tup):
"""
arrays = []
for v in tup:
- arr = array(v,copy=False,subok=True)
+ arr = array(v, copy=False, subok=True)
if arr.ndim < 2:
- arr = array(arr,copy=False,subok=True,ndmin=2).T
+ arr = array(arr, copy=False, subok=True, ndmin=2).T
arrays.append(arr)
- return _nx.concatenate(arrays,1)
+ return _nx.concatenate(arrays, 1)
def dstack(tup):
"""
@@ -348,7 +348,7 @@ def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if len(_nx.shape(sub_arys[i])) == 0:
sub_arys[i] = _nx.array([])
- elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
+ elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
sub_arys[i] = _nx.array([])
return sub_arys
@@ -383,17 +383,17 @@ def array_split(ary,indices_or_sections,axis = 0):
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
- Neach_section,extras = divmod(Ntotal,Nsections)
+ Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = [0] + \
extras * [Neach_section+1] + \
(Nsections-extras) * [Neach_section]
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
- sary = _nx.swapaxes(ary,axis,0)
+ sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]; end = div_points[i+1]
- sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))
+ sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
# there is a weird issue with array slicing that allows
# 0x10 arrays and other such things. The following kludge is needed
@@ -474,10 +474,10 @@ def split(ary,indices_or_sections,axis=0):
N = ary.shape[axis]
if N % sections:
raise ValueError('array split does not result in an equal division')
- res = array_split(ary,indices_or_sections,axis)
+ res = array_split(ary, indices_or_sections, axis)
return res
-def hsplit(ary,indices_or_sections):
+def hsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays horizontally (column-wise).
@@ -535,11 +535,11 @@ def hsplit(ary,indices_or_sections):
if len(_nx.shape(ary)) == 0:
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
if len(ary.shape) > 1:
- return split(ary,indices_or_sections,1)
+ return split(ary, indices_or_sections, 1)
else:
- return split(ary,indices_or_sections,0)
+ return split(ary, indices_or_sections, 0)
-def vsplit(ary,indices_or_sections):
+def vsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays vertically (row-wise).
@@ -588,9 +588,9 @@ def vsplit(ary,indices_or_sections):
"""
if len(_nx.shape(ary)) < 2:
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
- return split(ary,indices_or_sections,0)
+ return split(ary, indices_or_sections, 0)
-def dsplit(ary,indices_or_sections):
+def dsplit(ary, indices_or_sections):
"""
Split array into multiple sub-arrays along the 3rd axis (depth).
@@ -633,7 +633,7 @@ def dsplit(ary,indices_or_sections):
"""
if len(_nx.shape(ary)) < 3:
raise ValueError('vsplit only works on arrays of 3 or more dimensions')
- return split(ary,indices_or_sections,2)
+ return split(ary, indices_or_sections, 2)
def get_array_prepare(*args):
"""Find the wrapper for the array with the highest priority.
@@ -659,7 +659,7 @@ def get_array_wrap(*args):
return wrappers[-1][-1]
return None
-def kron(a,b):
+def kron(a, b):
"""
Kronecker product of two arrays.
@@ -728,10 +728,10 @@ def kron(a,b):
"""
b = asanyarray(b)
- a = array(a,copy=False,subok=True,ndmin=b.ndim)
+ a = array(a, copy=False, subok=True, ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
- return _nx.multiply(a,b)
+ return _nx.multiply(a, b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
@@ -745,7 +745,7 @@ def kron(a,b):
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
- result = outer(a,b).reshape(as_+bs)
+ result = outer(a, b).reshape(as_+bs)
axis = nd-1
for _ in range(nd):
result = concatenate(result, axis=axis)
@@ -819,14 +819,14 @@ def tile(A, reps):
except TypeError:
tup = (reps,)
d = len(tup)
- c = _nx.array(A,copy=False,subok=True,ndmin=d)
+ c = _nx.array(A, copy=False, subok=True, ndmin=d)
shape = list(c.shape)
- n = max(c.size,1)
+ n = max(c.size, 1)
if (d < c.ndim):
tup = (1,)*(c.ndim-d) + tup
for i, nrep in enumerate(tup):
if nrep!=1:
- c = c.reshape(-1,n).repeat(nrep,0)
+ c = c.reshape(-1, n).repeat(nrep, 0)
dim_in = shape[i]
dim_out = dim_in*nrep
shape[i] = dim_out