summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_arraypad.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_arraypad.py')
-rw-r--r--numpy/lib/tests/test_arraypad.py530
1 files changed, 530 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
new file mode 100644
index 000000000..01cb5be4c
--- /dev/null
+++ b/numpy/lib/tests/test_arraypad.py
@@ -0,0 +1,530 @@
+'''
+Tests for the pad functions.
+'''
+
+from numpy.testing import TestCase, run_module_suite, assert_array_equal
+from numpy.testing import assert_raises, assert_array_almost_equal
+import numpy as np
+from numpy.lib import pad
+
+
+class TestStatistic(TestCase):
+ def test_check_mean_stat_length(self):
+ a = np.arange(100).astype('f')
+ a = pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
+ b = np.array([
+ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
+ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
+ 0.5, 0.5, 0.5, 0.5, 0.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.,
+ 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.])
+ assert_array_equal(a, b)
+
+ def test_check_maximum_1(self):
+ a = np.arange(100)
+ a = pad(a, (25, 20), 'maximum')
+ b = np.array([
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99])
+ assert_array_equal(a, b)
+
+ def test_check_maximum_2(self):
+ a = np.arange(100) + 1
+ a = pad(a, (25, 20), 'maximum')
+ b = np.array([
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100,
+
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
+ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
+ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
+ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
+ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
+
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100])
+ assert_array_equal(a, b)
+
+ def test_check_minimum_1(self):
+ a = np.arange(100)
+ a = pad(a, (25, 20), 'minimum')
+ b = np.array([
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
+ assert_array_equal(a, b)
+
+ def test_check_minimum_2(self):
+ a = np.arange(100) + 2
+ a = pad(a, (25, 20), 'minimum')
+ b = np.array([
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2,
+
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
+ 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
+ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
+ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
+ 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
+
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
+ assert_array_equal(a, b)
+
+ def test_check_median(self):
+ a = np.arange(100).astype('f')
+ a = pad(a, (25, 20), 'median')
+ b = np.array([
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5])
+ assert_array_equal(a, b)
+
+ def test_check_median_01(self):
+ a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
+ a = pad(a, 1, 'median')
+ b = np.array([
+ [4, 4, 5, 4, 4],
+
+ [3, 3, 1, 4, 3],
+ [5, 4, 5, 9, 5],
+ [8, 9, 8, 2, 8],
+
+ [4, 4, 5, 4, 4]])
+ assert_array_equal(a, b)
+
+ def test_check_median_02(self):
+ a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
+ a = pad(a.T, 1, 'median').T
+ b = np.array([
+ [5, 4, 5, 4, 5],
+
+ [3, 3, 1, 4, 3],
+ [5, 4, 5, 9, 5],
+ [8, 9, 8, 2, 8],
+
+ [5, 4, 5, 4, 5]])
+ assert_array_equal(a, b)
+
+ def test_check_mean_shape_one(self):
+ a = [[4, 5, 6]]
+ a = pad(a, (5, 7), 'mean', stat_length=2)
+ b = np.array([
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5],
+ [4, 4, 4, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5]])
+ assert_array_equal(a, b)
+
+ def test_check_mean_2(self):
+ a = np.arange(100).astype('f')
+ a = pad(a, (25, 20), 'mean')
+ b = np.array([
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5])
+ assert_array_equal(a, b)
+
+
+class TestConstant(TestCase):
+ def test_check_constant(self):
+ a = np.arange(100)
+ a = pad(a, (25, 20), 'constant', constant_values=(10, 20))
+ b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20])
+ assert_array_equal(a, b)
+
+
+class TestLinearRamp(TestCase):
+ def test_check_simple(self):
+ a = np.arange(100).astype('f')
+ a = pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
+ b = np.array([
+ 4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
+ 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
+ 0.80, 0.64, 0.48, 0.32, 0.16,
+
+ 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,
+ 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,
+ 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
+ 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,
+ 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0,
+ 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
+ 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,
+ 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0,
+ 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0,
+ 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0,
+
+ 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0,
+ 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.])
+ assert_array_almost_equal(a, b, decimal=5)
+
+
+class TestReflect(TestCase):
+ def test_check_simple(self):
+ a = np.arange(100)
+ a = pad(a, (25, 20), 'reflect')
+ b = np.array([
+ 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
+ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
+ 5, 4, 3, 2, 1,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 98, 97, 96, 95, 94, 93, 92, 91, 90, 89,
+ 88, 87, 86, 85, 84, 83, 82, 81, 80, 79])
+ assert_array_equal(a, b)
+
+ def test_check_large_pad(self):
+ a = [[4, 5, 6], [6, 7, 8]]
+ a = pad(a, (5, 7), 'reflect')
+ b = np.array([
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]])
+ assert_array_equal(a, b)
+
+ def test_check_shape(self):
+ a = [[4, 5, 6]]
+ a = pad(a, (5, 7), 'reflect')
+ b = np.array([
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]])
+ assert_array_equal(a, b)
+
+ def test_check_01(self):
+ a = pad([1, 2, 3], 2, 'reflect')
+ b = np.array([3, 2, 1, 2, 3, 2, 1])
+ assert_array_equal(a, b)
+
+ def test_check_02(self):
+ a = pad([1, 2, 3], 3, 'reflect')
+ b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2])
+ assert_array_equal(a, b)
+
+ def test_check_03(self):
+ a = pad([1, 2, 3], 4, 'reflect')
+ b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3])
+ assert_array_equal(a, b)
+
+
+class TestWrap(TestCase):
+ def test_check_simple(self):
+ a = np.arange(100)
+ a = pad(a, (25, 20), 'wrap')
+ b = np.array([
+ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
+ 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
+ 95, 96, 97, 98, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
+ assert_array_equal(a, b)
+
+ def test_check_large_pad(self):
+ a = np.arange(12)
+ a = np.reshape(a, (3, 4))
+ a = pad(a, (10, 12), 'wrap')
+ b = np.array([
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11]])
+ assert_array_equal(a, b)
+
+ def test_check_01(self):
+ a = pad([1, 2, 3], 3, 'wrap')
+ b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
+ assert_array_equal(a, b)
+
+ def test_check_02(self):
+ a = pad([1, 2, 3], 4, 'wrap')
+ b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
+ assert_array_equal(a, b)
+
+
+class TestStatLen(TestCase):
+ def test_check_simple(self):
+ a = np.arange(30)
+ a = np.reshape(a, (6, 5))
+ a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
+ b = np.array([[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+
+ [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
+ [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
+
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]])
+ assert_array_equal(a, b)
+
+
+class TestEdge(TestCase):
+ def test_check_simple(self):
+ a = np.arange(12)
+ a = np.reshape(a, (4, 3))
+ a = pad(a, ((2, 3), (3, 2)), 'edge' )
+ b = np.array([
+ [0, 0, 0, 0, 1, 2, 2, 2],
+ [0, 0, 0, 0, 1, 2, 2, 2],
+
+ [0, 0, 0, 0, 1, 2, 2, 2],
+ [3, 3, 3, 3, 4, 5, 5, 5],
+ [6, 6, 6, 6, 7, 8, 8, 8],
+ [9, 9, 9, 9, 10, 11, 11, 11],
+
+ [9, 9, 9, 9, 10, 11, 11, 11],
+ [9, 9, 9, 9, 10, 11, 11, 11],
+ [9, 9, 9, 9, 10, 11, 11, 11]])
+ assert_array_equal(a, b)
+
+
+class ValueError1(TestCase):
+ def test_check_simple(self):
+ arr = np.arange(30)
+ arr = np.reshape(arr, (6, 5))
+ kwargs = dict(mode='mean', stat_length=(3, ))
+ assert_raises(ValueError, pad, arr, ((2, 3), (3, 2), (4, 5)),
+ **kwargs)
+
+ def test_check_negative_stat_length(self):
+ arr = np.arange(30)
+ arr = np.reshape(arr, (6, 5))
+ kwargs = dict(mode='mean', stat_length=(-3, ))
+ assert_raises(ValueError, pad, arr, ((2, 3), (3, 2)),
+ **kwargs)
+
+ def test_check_negative_pad_width(self):
+ arr = np.arange(30)
+ arr = np.reshape(arr, (6, 5))
+ kwargs = dict(mode='mean', stat_length=(3, ))
+ assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
+ **kwargs)
+
+
+class ValueError2(TestCase):
+ def test_check_simple(self):
+ arr = np.arange(30)
+ arr = np.reshape(arr, (6, 5))
+ kwargs = dict(mode='mean', stat_length=(3, ))
+ assert_raises(ValueError, pad, arr, ((2, 3, 4), (3, 2)),
+ **kwargs)
+
+
+class ValueError3(TestCase):
+ def test_check_simple(self):
+ arr = np.arange(30)
+ arr = np.reshape(arr, (6, 5))
+ kwargs = dict(mode='mean', stat_length=(3, ))
+ assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
+ **kwargs)
+
+
+if __name__ == "__main__":
+ run_module_suite()