summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py266
1 files changed, 259 insertions, 7 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index af01a7167..c5af61434 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -5,21 +5,21 @@ import warnings
import numpy as np
from numpy.testing import (
run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
- assert_raises
+ assert_raises, assert_array_equal
)
# Test data
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
- [0.5351, 0.9403, np.nan, 0.2100, 0.4759, 0.2833],
- [np.nan, np.nan, np.nan, 0.1042, np.nan, 0.5954],
+ [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
+ [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
[0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
# Rows of _ndat with nans removed
_rdat = [np.array([ 0.6244, 0.2692, 0.0116, 0.1170]),
- np.array([ 0.5351, 0.9403, 0.2100, 0.4759, 0.2833]),
- np.array([ 0.1042, 0.5954]),
+ np.array([ 0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
+ np.array([ 0.1042, -0.5954]),
np.array([ 0.1610, 0.1859, 0.3146])]
@@ -114,6 +114,31 @@ class TestNanFunctions_MinMax(TestCase):
assert_(res.shape == (3, 1))
res = f(mat)
assert_(np.isscalar(res))
+ # check that rows of nan are dealt with for subclasses (#4628)
+ mat[1] = np.nan
+ for f in self.nanfuncs:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(not np.any(np.isnan(res)))
+ assert_(len(w) == 0)
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
+ and not np.isnan(res[2, 0]))
+ assert_(len(w) == 1, 'no warning raised')
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat)
+ assert_(np.isscalar(res))
+ assert_(res != np.nan)
+ assert_(len(w) == 0)
class TestNanFunctions_ArgminArgmax(TestCase):
@@ -130,8 +155,8 @@ class TestNanFunctions_ArgminArgmax(TestCase):
def test_result_values(self):
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
for row in _ndat:
- with warnings.catch_warnings():
- warnings.simplefilter('ignore')
+ with warnings.catch_warnings(record=True):
+ warnings.simplefilter('always')
ind = f(row)
val = row[ind]
# comparing with NaN is tricky as the result
@@ -502,5 +527,232 @@ class TestNanFunctions_MeanVarStd(TestCase):
assert_(np.isscalar(res))
+class TestNanFunctions_Median(TestCase):
+
+ def test_mutation(self):
+ # Check that passed array is not modified.
+ ndat = _ndat.copy()
+ np.nanmedian(ndat)
+ assert_equal(ndat, _ndat)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for axis in [None, 0, 1]:
+ tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
+ res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
+ assert_(res.ndim == tgt.ndim)
+
+ d = np.ones((3, 5, 7, 11))
+ # Randomly set some elements to NaN:
+ w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
+ w = w.astype(np.intp)
+ d[tuple(w)] = np.nan
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always', RuntimeWarning)
+ res = np.nanmedian(d, axis=None, keepdims=True)
+ assert_equal(res.shape, (1, 1, 1, 1))
+ res = np.nanmedian(d, axis=(0, 1), keepdims=True)
+ assert_equal(res.shape, (1, 1, 7, 11))
+ res = np.nanmedian(d, axis=(0, 3), keepdims=True)
+ assert_equal(res.shape, (1, 5, 7, 1))
+ res = np.nanmedian(d, axis=(1,), keepdims=True)
+ assert_equal(res.shape, (3, 1, 7, 11))
+ res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
+ assert_equal(res.shape, (1, 1, 1, 1))
+ res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
+ assert_equal(res.shape, (1, 1, 7, 1))
+
+ def test_out(self):
+ mat = np.random.rand(3, 3)
+ nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
+ resout = np.zeros(3)
+ tgt = np.median(mat, axis=1)
+ res = np.nanmedian(nan_mat, axis=1, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+ # 0-d output:
+ resout = np.zeros(())
+ tgt = np.median(mat, axis=None)
+ res = np.nanmedian(nan_mat, axis=None, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+ res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+
+ def test_small_large(self):
+ # test the small and large code paths, current cutoff 400 elements
+ for s in [5, 20, 51, 200, 1000]:
+ d = np.random.randn(4, s)
+ # Randomly set some elements to NaN:
+ w = np.random.randint(0, d.size, size=d.size // 5)
+ d.ravel()[w] = np.nan
+ d[:,0] = 1. # ensure at least one good value
+ # use normal median without nans to compare
+ tgt = []
+ for x in d:
+ nonan = np.compress(~np.isnan(x), x)
+ tgt.append(np.median(nonan, overwrite_input=True))
+
+ assert_array_equal(np.nanmedian(d, axis=-1), tgt)
+
+ def test_result_values(self):
+ tgt = [np.median(d) for d in _rdat]
+ res = np.nanmedian(_ndat, axis=1)
+ assert_almost_equal(res, tgt)
+
+ def test_allnans(self):
+ mat = np.array([np.nan]*9).reshape(3, 3)
+ for axis in [None, 0, 1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+ if axis is None:
+ assert_(len(w) == 1)
+ else:
+ assert_(len(w) == 3)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ # Check scalar
+ assert_(np.isnan(np.nanmedian(np.nan)))
+ if axis is None:
+ assert_(len(w) == 2)
+ else:
+ assert_(len(w) == 4)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ mat = np.zeros((0, 3))
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+ assert_(len(w) == 1)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
+ assert_(len(w) == 0)
+
+ def test_scalar(self):
+ assert_(np.nanmedian(0.) == 0.)
+
+ def test_extended_axis_invalid(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_raises(IndexError, np.nanmedian, d, axis=-5)
+ assert_raises(IndexError, np.nanmedian, d, axis=(0, -5))
+ assert_raises(IndexError, np.nanmedian, d, axis=4)
+ assert_raises(IndexError, np.nanmedian, d, axis=(0, 4))
+ assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
+
+
+class TestNanFunctions_Percentile(TestCase):
+
+ def test_mutation(self):
+ # Check that passed array is not modified.
+ ndat = _ndat.copy()
+ np.nanpercentile(ndat, 30)
+ assert_equal(ndat, _ndat)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for axis in [None, 0, 1]:
+ tgt = np.percentile(mat, 70, axis=axis, out=None,
+ overwrite_input=False)
+ res = np.nanpercentile(mat, 70, axis=axis, out=None,
+ overwrite_input=False)
+ assert_(res.ndim == tgt.ndim)
+
+ d = np.ones((3, 5, 7, 11))
+ # Randomly set some elements to NaN:
+ w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
+ w = w.astype(np.intp)
+ d[tuple(w)] = np.nan
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always', RuntimeWarning)
+ res = np.nanpercentile(d, 90, axis=None, keepdims=True)
+ assert_equal(res.shape, (1, 1, 1, 1))
+ res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
+ assert_equal(res.shape, (1, 1, 7, 11))
+ res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
+ assert_equal(res.shape, (1, 5, 7, 1))
+ res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
+ assert_equal(res.shape, (3, 1, 7, 11))
+ res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
+ assert_equal(res.shape, (1, 1, 1, 1))
+ res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
+ assert_equal(res.shape, (1, 1, 7, 1))
+
+ def test_out(self):
+ mat = np.random.rand(3, 3)
+ nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
+ resout = np.zeros(3)
+ tgt = np.percentile(mat, 42, axis=1)
+ res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+ # 0-d output:
+ resout = np.zeros(())
+ tgt = np.percentile(mat, 42, axis=None)
+ res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+ res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+
+ def test_result_values(self):
+ tgt = [np.percentile(d, 28) for d in _rdat]
+ res = np.nanpercentile(_ndat, 28, axis=1)
+ assert_almost_equal(res, tgt)
+ tgt = [np.percentile(d, (28, 98)) for d in _rdat]
+ res = np.nanpercentile(_ndat, (28, 98), axis=1)
+ assert_almost_equal(res, tgt)
+
+ def test_allnans(self):
+ mat = np.array([np.nan]*9).reshape(3, 3)
+ for axis in [None, 0, 1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
+ if axis is None:
+ assert_(len(w) == 1)
+ else:
+ assert_(len(w) == 3)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ # Check scalar
+ assert_(np.isnan(np.nanpercentile(np.nan, 60)))
+ if axis is None:
+ assert_(len(w) == 2)
+ else:
+ assert_(len(w) == 4)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ mat = np.zeros((0, 3))
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
+ assert_(len(w) == 1)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
+ assert_(len(w) == 0)
+
+ def test_scalar(self):
+ assert_(np.nanpercentile(0., 100) == 0.)
+
+ def test_extended_axis_invalid(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=-5)
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, -5))
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=4)
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
+ assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
+
+
if __name__ == "__main__":
run_module_suite()