summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py50
1 files changed, 34 insertions, 16 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index e0f723a3c..1f1f5601b 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -588,6 +588,15 @@ class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):
assert_(len(w) == 0)
+_TIME_UNITS = (
+ "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"
+)
+
+# All `inexact` + `timdelta64` type codes
+_TYPE_CODES = list(np.typecodes["AllFloat"])
+_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS]
+
+
class TestNanFunctions_Median:
def test_mutation(self):
@@ -662,23 +671,32 @@ class TestNanFunctions_Median:
res = np.nanmedian(_ndat, axis=1)
assert_almost_equal(res, tgt)
- def test_allnans(self):
- mat = np.array([np.nan]*9).reshape(3, 3)
- for axis in [None, 0, 1]:
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
+ @pytest.mark.parametrize("axis", [None, 0, 1])
+ @pytest.mark.parametrize("dtype", _TYPE_CODES)
+ def test_allnans(self, dtype, axis):
+ mat = np.full((3, 3), np.nan).astype(dtype)
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
- assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
- if axis is None:
- assert_(len(sup.log) == 1)
- else:
- assert_(len(sup.log) == 3)
- # Check scalar
- assert_(np.isnan(np.nanmedian(np.nan)))
- if axis is None:
- assert_(len(sup.log) == 2)
- else:
- assert_(len(sup.log) == 4)
+ output = np.nanmedian(mat, axis=axis)
+ assert output.dtype == mat.dtype
+ assert np.isnan(output).all()
+
+ if axis is None:
+ assert_(len(sup.log) == 1)
+ else:
+ assert_(len(sup.log) == 3)
+
+ # Check scalar
+ scalar = np.array(np.nan).astype(dtype)[()]
+ output_scalar = np.nanmedian(scalar)
+ assert output_scalar.dtype == scalar.dtype
+ assert np.isnan(output_scalar)
+
+ if axis is None:
+ assert_(len(sup.log) == 2)
+ else:
+ assert_(len(sup.log) == 4)
def test_empty(self):
mat = np.zeros((0, 3))