summaryrefslogtreecommitdiff
path: root/numpy/lib/tests
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r--numpy/lib/tests/test_arraypad.py23
-rw-r--r--numpy/lib/tests/test_io.py11
-rw-r--r--numpy/lib/tests/test_recfunctions.py58
3 files changed, 91 insertions, 1 deletions
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index b7630cdcd..b6dd3b31c 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -469,6 +469,29 @@ class TestStatistic(object):
)
assert_array_equal(a, b)
+ @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning")
+ @pytest.mark.filterwarnings(
+ "ignore:invalid value encountered in (true_divide|double_scalars):"
+ "RuntimeWarning"
+ )
+ @pytest.mark.parametrize("mode", ["mean", "median"])
+ def test_zero_stat_length_valid(self, mode):
+ arr = np.pad([1., 2.], (1, 2), mode, stat_length=0)
+ expected = np.array([np.nan, 1., 2., np.nan, np.nan])
+ assert_equal(arr, expected)
+
+ @pytest.mark.parametrize("mode", ["minimum", "maximum"])
+ def test_zero_stat_length_invalid(self, mode):
+ match = "stat_length of 0 yields no value for padding"
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=(1, 0))
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=(1, 0))
+
class TestConstant(object):
def test_check_constant(self):
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index 78f9f85f3..6ee17c830 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -1565,6 +1565,13 @@ M 33 21.99
test = np.genfromtxt(TextIO(data), delimiter=";",
dtype=ndtype, converters=converters)
+ # nested but empty fields also aren't supported
+ ndtype = [('idx', int), ('code', object), ('nest', [])]
+ with assert_raises_regex(NotImplementedError,
+ 'Nested fields.* not supported.*'):
+ test = np.genfromtxt(TextIO(data), delimiter=";",
+ dtype=ndtype, converters=converters)
+
def test_userconverters_with_explicit_dtype(self):
# Test user_converters w/ explicit (standard) dtype
data = TextIO('skip,skip,2001-01-01,1.0,skip')
@@ -1681,6 +1688,10 @@ M 33 21.99
test = np.genfromtxt(data)
assert_equal(test, np.array([]))
+ # when skip_header > 0
+ test = np.genfromtxt(data, skip_header=1)
+ assert_equal(test, np.array([]))
+
def test_fancy_dtype_alt(self):
# Check that a nested dtype isn't MIA
data = TextIO('1,2,3.0\n4,5,6.0\n')
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index 0126ccaf8..0c839d486 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -115,6 +115,14 @@ class TestRecFunctions(object):
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ('ba', 'bb'))))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names(ndtype)
+ assert_equal(test, ('a', ('b', ())))
+
+ ndtype = np.dtype([])
+ test = get_names(ndtype)
+ assert_equal(test, ())
+
def test_get_names_flat(self):
# Test get_names_flat
ndtype = np.dtype([('A', '|S3'), ('B', float)])
@@ -125,6 +133,14 @@ class TestRecFunctions(object):
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b', 'ba', 'bb'))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ('a', 'b'))
+
+ ndtype = np.dtype([])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ())
+
def test_get_fieldstructure(self):
# Test get_fieldstructure
@@ -147,6 +163,11 @@ class TestRecFunctions(object):
'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
assert_equal(test, control)
+ # 0 fields
+ ndtype = np.dtype([])
+ test = get_fieldstructure(ndtype)
+ assert_equal(test, {})
+
def test_find_duplicates(self):
# Test find_duplicates
a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
@@ -248,7 +269,8 @@ class TestRecFunctions(object):
# including uniform fields with subarrays unpacked
d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]),
(8, [9, 10], [[11, 12], [13, 14]])],
- dtype=[('x0', 'i4'), ('x1', ('i4', 2)), ('x2', ('i4', (2, 2)))])
+ dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
+ ('x2', ('i4', (2, 2)))])
dd = structured_to_unstructured(d)
ddd = unstructured_to_structured(dd, d.dtype)
assert_(dd.base is d)
@@ -262,6 +284,40 @@ class TestRecFunctions(object):
assert_equal(res, np.zeros((10, 6), dtype=int))
+ # test nested combinations of subarrays and structured arrays, gh-13333
+ def subarray(dt, shape):
+ return np.dtype((dt, shape))
+
+ def structured(*dts):
+ return np.dtype([('x{}'.format(i), dt) for i, dt in enumerate(dts)])
+
+ def inspect(dt, dtype=None):
+ arr = np.zeros((), dt)
+ ret = structured_to_unstructured(arr, dtype=dtype)
+ backarr = unstructured_to_structured(ret, dt)
+ return ret.shape, ret.dtype, backarr.dtype
+
+ dt = structured(subarray(structured(np.int32, np.int32), 3))
+ assert_equal(inspect(dt), ((6,), np.int32, dt))
+
+ dt = structured(subarray(subarray(np.int32, 2), 2))
+ assert_equal(inspect(dt), ((4,), np.int32, dt))
+
+ dt = structured(np.int32)
+ assert_equal(inspect(dt), ((1,), np.int32, dt))
+
+ dt = structured(np.int32, subarray(subarray(np.int32, 2), 2))
+ assert_equal(inspect(dt), ((5,), np.int32, dt))
+
+ dt = structured()
+ assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt))
+
+ # these currently don't work, but we may make it work in the future
+ assert_raises(NotImplementedError, structured_to_unstructured,
+ np.zeros(3, dt), dtype=np.int32)
+ assert_raises(NotImplementedError, unstructured_to_structured,
+ np.zeros((3,0), dtype=np.int32))
+
def test_field_assignment_by_name(self):
a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
newdt = [('b', 'f4'), ('c', 'u1')]