diff options
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r-- | numpy/lib/tests/test__iotools.py | 5 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 41 | ||||
-rw-r--r-- | numpy/lib/tests/test_index_tricks.py | 11 | ||||
-rw-r--r-- | numpy/lib/tests/test_shape_base.py | 92 | ||||
-rw-r--r-- | numpy/lib/tests/test_ufunclike.py | 4 |
5 files changed, 150 insertions, 3 deletions
diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py index 5f6c29a4d..b4888f1bd 100644 --- a/numpy/lib/tests/test__iotools.py +++ b/numpy/lib/tests/test__iotools.py @@ -53,6 +53,11 @@ class TestLineSplitter(object): test = LineSplitter(',')(strg) assert_equal(test, ['1', '2', '3', '4', '', '5']) + # gh-11028 bytes comment/delimiters should get encoded + strg = b" 1,2,3,4,,5 % test" + test = LineSplitter(delimiter=b',', comments=b'%')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + def test_constant_fixed_width(self): "Test LineSplitter w/ fixed-width fields" strg = " 1 2 3 4 5 # test" diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index 984a3b15e..dace5ade8 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -32,7 +32,46 @@ class TestSetOps(object): assert_array_equal(c, ed) assert_array_equal([], intersect1d([], [])) - + + def test_intersect1d_indices(self): + # unique inputs + a = np.array([1, 2, 3, 4]) + b = np.array([2, 1, 4, 6]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ee = np.array([1, 2, 4]) + assert_array_equal(c, ee) + assert_array_equal(a[i1], ee) + assert_array_equal(b[i2], ee) + + # non-unique inputs + a = np.array([1, 2, 2, 3, 4, 3, 2]) + b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ef = np.array([1, 2, 3, 4]) + assert_array_equal(c, ef) + assert_array_equal(a[i1], ef) + assert_array_equal(b[i2], ef) + + # non1d, unique inputs + a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) + b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 6, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + # non1d, not assumed to be uniqueinputs + a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) + b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + def test_setxor1d(self): a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py index 089a7589a..315251daa 100644 --- a/numpy/lib/tests/test_index_tricks.py +++ b/numpy/lib/tests/test_index_tricks.py @@ -6,7 +6,7 @@ from numpy.testing import ( assert_array_almost_equal, assert_raises, assert_raises_regex ) from numpy.lib.index_tricks import ( - mgrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from, + mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from, index_exp, ndindex, r_, s_, ix_ ) @@ -156,6 +156,15 @@ class TestGrid(object): assert_array_almost_equal(d[1, :, 1] - d[1, :, 0], 0.2*np.ones(20, 'd'), 11) + def test_sparse(self): + grid_full = mgrid[-1:1:10j, -2:2:10j] + grid_sparse = ogrid[-1:1:10j, -2:2:10j] + + # sparse grids can be made dense by broadcasting + grid_broadcast = np.broadcast_arrays(*grid_sparse) + for f, b in zip(grid_full, grid_broadcast): + assert_equal(f, b) + class TestConcatenator(object): def test_1d(self): diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py index a35d90b70..c95894f94 100644 --- a/numpy/lib/tests/test_shape_base.py +++ b/numpy/lib/tests/test_shape_base.py @@ -2,16 +2,106 @@ from __future__ import division, absolute_import, print_function import numpy as np import warnings +import functools from numpy.lib.shape_base import ( apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit, - vsplit, dstack, column_stack, kron, tile, expand_dims, + vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis, + put_along_axis ) from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, assert_warns ) +def _add_keepdims(func): + """ hack in keepdims behavior into a function taking an axis """ + @functools.wraps(func) + def wrapped(a, axis, **kwargs): + res = func(a, axis=axis, **kwargs) + if axis is None: + axis = 0 # res is now a scalar, so we can insert this anywhere + return np.expand_dims(res, axis=axis) + return wrapped + + +class TestTakeAlongAxis(object): + def test_argequivalent(self): + """ Test it translates from arg<func> to <func> """ + from numpy.random import rand + a = rand(3, 4, 5) + + funcs = [ + (np.sort, np.argsort, dict()), + (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), + (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), + (np.partition, np.argpartition, dict(kth=2)), + ] + + for func, argfunc, kwargs in funcs: + for axis in list(range(a.ndim)) + [None]: + a_func = func(a, axis=axis, **kwargs) + ai_func = argfunc(a, axis=axis, **kwargs) + assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) + + def test_invalid(self): + """ Test it errors when indices has too few dimensions """ + a = np.ones((10, 10)) + ai = np.ones((10, 2), dtype=np.intp) + + # sanity check + take_along_axis(a, ai, axis=1) + + # not enough indices + assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) + # bool arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) + # float arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) + # invalid axis + assert_raises(np.AxisError, take_along_axis, a, ai, axis=10) + + def test_empty(self): + """ Test everything is ok with empty results, even with inserted dims """ + a = np.ones((3, 4, 5)) + ai = np.ones((3, 0, 5), dtype=np.intp) + + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, ai.shape) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.ones((1, 2, 5), dtype=np.intp) + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, (3, 2, 5)) + + +class TestPutAlongAxis(object): + def test_replace_max(self): + a_base = np.array([[10, 30, 20], [60, 40, 50]]) + + for axis in list(range(a_base.ndim)) + [None]: + # we mutate this in the loop + a = a_base.copy() + + # replace the max with a small value + i_max = _add_keepdims(np.argmax)(a, axis=axis) + put_along_axis(a, i_max, -99, axis=axis) + + # find the new minimum, which should max + i_min = _add_keepdims(np.argmin)(a, axis=axis) + + assert_equal(i_min, i_max) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4 + put_along_axis(a, ai, 20, axis=1) + assert_equal(take_along_axis(a, ai, axis=1), 20) + + class TestApplyAlongAxis(object): def test_simple(self): a = np.ones((20, 10), 'd') diff --git a/numpy/lib/tests/test_ufunclike.py b/numpy/lib/tests/test_ufunclike.py index ad006fe17..5604b3744 100644 --- a/numpy/lib/tests/test_ufunclike.py +++ b/numpy/lib/tests/test_ufunclike.py @@ -55,6 +55,10 @@ class TestUfunclike(object): obj.metadata = self.metadata return obj + def __array_finalize__(self, obj): + self.metadata = getattr(obj, 'metadata', None) + return self + a = nx.array([1.1, -1.1]) m = MyArray(a, metadata='foo') f = ufl.fix(m) |