diff options
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/financial.py | 8 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 33 | ||||
-rw-r--r-- | numpy/lib/io.py | 6 | ||||
-rw-r--r-- | numpy/lib/polynomial.py | 4 | ||||
-rw-r--r-- | numpy/lib/scimath.py | 63 | ||||
-rw-r--r-- | numpy/lib/shape_base.py | 70 | ||||
-rw-r--r-- | numpy/lib/twodim_base.py | 8 |
7 files changed, 93 insertions, 99 deletions
diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py index a3552ebc0..9c5d2753a 100644 --- a/numpy/lib/financial.py +++ b/numpy/lib/financial.py @@ -69,7 +69,7 @@ What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume the interest rate is 5% (annually) compounded monthly? ->>> fv(0.05/12, 10*12, -100, -100) +>>> np.fv(0.05/12, 10*12, -100, -100) 15692.928894335748 By convention, the negative sign represents cash flow out (i.e. money not @@ -94,7 +94,7 @@ Examples What would the monthly payment need to be to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%? ->>> pmt(0.075/12, 12*15, 200000) +>>> np.pmt(0.075/12, 12*15, 200000) -1854.0247200054619 In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained @@ -122,7 +122,7 @@ Examples If you only had $150 to spend as payment, how long would it take to pay-off a loan of $8,000 at 7% annual interest? ->>> nper(0.07/12, -150, 8000) +>>> np.nper(0.07/12, -150, 8000) 64.073348770661852 So, over 64 months would be required to pay off the loan. @@ -130,7 +130,7 @@ So, over 64 months would be required to pay off the loan. The same analysis could be done with several different interest rates and/or payments and/or total amounts to produce an entire table. ->>> nper(*(ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000])) +>>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000])) array([[[ 32.58497782, 38.57048452], [ 71.51317802, 86.37179563]], diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index fe6e67903..e8df0b439 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -471,7 +471,7 @@ def average(a, axis=None, weights=None, returned=False): Examples -------- - >>> average(range(1,11), weights=range(10,0,-1)) + >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 Raises @@ -893,7 +893,7 @@ def trim_zeros(filt, trim='fb'): Examples -------- - >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0)) + >>> a = np.array((0, 0, 0, 1, 2, 3, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 2, 1]) @@ -1069,7 +1069,7 @@ class vectorize(object): ... else: ... return a+b - >>> vfunc = vectorize(myfunc) + >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) @@ -1486,29 +1486,28 @@ def median(a, axis=0, out=None, overwrite_input=False): Examples -------- - >>> from numpy import median >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) - >>> median(a) + >>> np.median(a) array([ 6.5, 4.5, 2.5]) - >>> median(a, axis=None) + >>> np.median(a, axis=None) 3.5 - >>> median(a, axis=1) + >>> np.median(a, axis=1) array([ 7., 2.]) - >>> m = median(a) + >>> m = np.median(a) >>> out = np.zeros_like(m) - >>> median(a, out=m) + >>> np.median(a, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() - >>> median(b, axis=1, overwrite_input=True) + >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() - >>> median(b, axis=None, overwrite_input=True) + >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ @@ -1632,11 +1631,11 @@ def delete(arr, obj, axis=None): ... [1,2,3], ... [6,7,8]] - >>> delete(arr, 1, 1) + >>> np.delete(arr, 1, 1) array([[3, 5], [1, 3], [6, 8]]) - >>> delete(arr, 1, 0) + >>> np.delete(arr, 1, 0) array([[3, 4, 5], [6, 7, 8]]) """ @@ -1732,11 +1731,11 @@ def insert(arr, obj, values, axis=None): Examples -------- - >>> a = array([[1,2,3], - ... [4,5,6], - ... [7,8,9]]) + >>> a = np.array([[1,2,3], + ... [4,5,6], + ... [7,8,9]]) - >>> insert(a, [1,2], [[4],[5]], axis=0) + >>> np.insert(a, [1,2], [[4],[5]], axis=0) array([[1, 2, 3], [4, 4, 4], [4, 5, 6], diff --git a/numpy/lib/io.py b/numpy/lib/io.py index db4e73358..36723f1d8 100644 --- a/numpy/lib/io.py +++ b/numpy/lib/io.py @@ -344,9 +344,9 @@ def savetxt(fname, X, fmt='%.18e',delimiter=' '): Examples -------- - >>> savetxt('test.out', x, delimiter=',') # X is an array - >>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays - >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation + >>> np.savetxt('test.out', x, delimiter=',') # X is an array + >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays + >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation Notes on fmt ------------ diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index 303cdb13c..8fb0337dc 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -52,8 +52,8 @@ def poly(seq_of_zeros): Example: - >>> b = roots([1,3,1,5,6]) - >>> poly(b) + >>> b = np.roots([1,3,1,5,6]) + >>> np.poly(b) array([ 1., 3., 1., 5., 6.]) """ diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py index d3965668d..2a951135a 100644 --- a/numpy/lib/scimath.py +++ b/numpy/lib/scimath.py @@ -50,8 +50,8 @@ def _tocomplex(arr): >>> a = np.array([1,2,3],np.short) - >>> ac = _tocomplex(a); ac - array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + >>> ac = np.lib.scimath._tocomplex(a); ac + array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=np.complex64) >>> ac.dtype dtype('complex64') @@ -61,7 +61,7 @@ def _tocomplex(arr): >>> b = np.array([1,2,3],np.double) - >>> bc = _tocomplex(b); bc + >>> bc = np.lib.scimath._tocomplex(b); bc array([ 1.+0.j, 2.+0.j, 3.+0.j]) >>> bc.dtype @@ -72,7 +72,7 @@ def _tocomplex(arr): >>> c = np.array([1,2,3],np.csingle) - >>> cc = _tocomplex(c); cc + >>> cc = np.lib.scimath._tocomplex(c); cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> c *= 2; c @@ -102,10 +102,10 @@ def _fix_real_lt_zero(x): Examples -------- - >>> _fix_real_lt_zero([1,2]) + >>> np.lib.scimath._fix_real_lt_zero([1,2]) array([1, 2]) - >>> _fix_real_lt_zero([-1,2]) + >>> np.lib.scimath._fix_real_lt_zero([-1,2]) array([-1.+0.j, 2.+0.j]) """ x = asarray(x) @@ -128,10 +128,10 @@ def _fix_int_lt_zero(x): Examples -------- - >>> _fix_int_lt_zero([1,2]) + >>> np.lib.scimath._fix_int_lt_zero([1,2]) array([1, 2]) - >>> _fix_int_lt_zero([-1,2]) + >>> np.lib.scimath._fix_int_lt_zero([-1,2]) array([-1., 2.]) """ x = asarray(x) @@ -154,10 +154,10 @@ def _fix_real_abs_gt_1(x): Examples -------- - >>> _fix_real_abs_gt_1([0,1]) + >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) array([0, 1]) - >>> _fix_real_abs_gt_1([0,2]) + >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) array([ 0.+0.j, 2.+0.j]) """ x = asarray(x) @@ -180,17 +180,17 @@ def sqrt(x): -------- For real, non-negative inputs this works just like numpy.sqrt(): - >>> sqrt(1) + >>> np.lib.scimath.sqrt(1) 1.0 - >>> sqrt([1,4]) + >>> np.lib.scimath.sqrt([1,4]) array([ 1., 2.]) But it automatically handles negative inputs: - >>> sqrt(-1) + >>> np.lib.scimath.sqrt(-1) (0.0+1.0j) - >>> sqrt([-1,4]) + >>> np.lib.scimath.sqrt([-1,4]) array([ 0.+1.j, 2.+0.j]) """ x = _fix_real_lt_zero(x) @@ -213,14 +213,13 @@ def log(x): Examples -------- >>> import math - - >>> log(math.exp(1)) + >>> np.lib.scimath.log(math.exp(1)) 1.0 Negative arguments are correctly handled (recall that for negative arguments, the identity exp(log(z))==z does not hold anymore): - >>> log(-math.exp(1)) == (1+1j*math.pi) + >>> np.lib.scimath.log(-math.exp(1)) == (1+1j*math.pi) True """ x = _fix_real_lt_zero(x) @@ -246,11 +245,11 @@ def log10(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> log10([10**1,10**2]) + >>> np.lib.scimath.log10([10**1,10**2]) array([ 1., 2.]) - >>> log10([-10**1,-10**2,10**2]) + >>> np.lib.scimath.log10([-10**1,-10**2,10**2]) array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -276,10 +275,10 @@ def logn(n, x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> logn(2,[4,8]) + >>> np.lib.scimath.logn(2,[4,8]) array([ 2., 3.]) - >>> logn(2,[-4,-8,8]) + >>> np.lib.scimath.logn(2,[-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -306,10 +305,10 @@ def log2(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> log2([4,8]) + >>> np.lib.scimath.log2([4,8]) array([ 2., 3.]) - >>> log2([-4,-8,8]) + >>> np.lib.scimath.log2([-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) @@ -336,13 +335,13 @@ def power(x, p): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> power([2,4],2) + >>> np.lib.scimath.power([2,4],2) array([ 4, 16]) - >>> power([2,4],-2) + >>> np.lib.scimath.power([2,4],-2) array([ 0.25 , 0.0625]) - >>> power([-2,4],2) + >>> np.lib.scimath.power([-2,4],2) array([ 4.+0.j, 16.+0.j]) """ x = _fix_real_lt_zero(x) @@ -368,10 +367,10 @@ def arccos(x): -------- >>> np.set_printoptions(precision=4) - >>> arccos(1) + >>> np.lib.scimath.arccos(1) 0.0 - >>> arccos([1,2]) + >>> np.lib.scimath.arccos([1,2]) array([ 0.-0.j , 0.+1.317j]) """ x = _fix_real_abs_gt_1(x) @@ -397,10 +396,10 @@ def arcsin(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> arcsin(0) + >>> np.lib.scimath.arcsin(0) 0.0 - >>> arcsin([0,1]) + >>> np.lib.scimath.arcsin([0,1]) array([ 0. , 1.5708]) """ x = _fix_real_abs_gt_1(x) @@ -426,10 +425,10 @@ def arctanh(x): (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) - >>> arctanh(0) + >>> np.lib.scimath.arctanh(0) 0.0 - >>> arctanh([0,2]) + >>> np.lib.scimath.arctanh([0,2]) array([ 0.0000+0.j , 0.5493-1.5708j]) """ x = _fix_real_abs_gt_1(x) diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index 77f158eb3..afdb879e4 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -192,13 +192,13 @@ def vstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) >>> np.vstack((a,b)) array([[1], [2], @@ -222,14 +222,13 @@ def hstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.hstack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.hstack((a,b)) array([1, 2, 3, 2, 3, 4]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) - >>> numpy.hstack((a,b)) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.hstack((a,b)) array([[1, 2], [2, 3], [3, 4]]) @@ -253,10 +252,9 @@ def column_stack(tup): tup -- sequence of 1D or 2D arrays. All arrays must have the same first dimension. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.column_stack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.column_stack((a,b)) array([[1, 2], [2, 3], [3, 4]]) @@ -283,16 +281,15 @@ def dstack(tup): tup -- sequence of arrays. All arrays must have the same shape. Examples: - >>> import numpy - >>> a = array((1,2,3)) - >>> b = array((2,3,4)) - >>> numpy.dstack((a,b)) + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) - >>> a = array([[1],[2],[3]]) - >>> b = array([[2],[3],[4]]) - >>> numpy.dstack((a,b)) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.dstack((a,b)) array([[[1, 2]], <BLANKLINE> [[2, 3]], @@ -432,12 +429,11 @@ def hsplit(ary,indices_or_sections): Related: hstack, split, array_split, vsplit, dsplit. Examples: - >>> import numpy - >>> a= array((1,2,3,4)) - >>> numpy.hsplit(a,2) + >>> a= np.array((1,2,3,4)) + >>> np.hsplit(a,2) [array([1, 2]), array([3, 4])] - >>> a = array([[1,2,3,4],[1,2,3,4]]) - >>> hsplit(a,2) + >>> a = np.array([[1,2,3,4],[1,2,3,4]]) + >>> np.hsplit(a,2) [array([[1, 2], [1, 2]]), array([[3, 4], [3, 4]])] @@ -482,9 +478,9 @@ def vsplit(ary,indices_or_sections): vstack, split, array_split, hsplit, dsplit. Examples: import numpy - >>> a = array([[1,2,3,4], - ... [1,2,3,4]]) - >>> numpy.vsplit(a,2) + >>> a = np.array([[1,2,3,4], + ... [1,2,3,4]]) + >>> np.vsplit(a,2) [array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])] """ @@ -519,8 +515,8 @@ def dsplit(ary,indices_or_sections): Related: dstack, split, array_split, hsplit, vsplit. Examples: - >>> a = array([[[1,2,3,4],[1,2,3,4]]]) - >>> dsplit(a,2) + >>> a = np.array([[[1,2,3,4],[1,2,3,4]]]) + >>> np.dsplit(a,2) [array([[[1, 2], [1, 2]]]), array([[[3, 4], [3, 4]]])] @@ -596,15 +592,15 @@ def tile(A, reps): Examples: - >>> a = array([0,1,2]) - >>> tile(a,2) + >>> a = np.array([0,1,2]) + >>> np.tile(a,2) array([0, 1, 2, 0, 1, 2]) - >>> tile(a,(1,2)) + >>> np.tile(a,(1,2)) array([[0, 1, 2, 0, 1, 2]]) - >>> tile(a,(2,2)) + >>> np.tile(a,(2,2)) array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) - >>> tile(a,(2,1,2)) + >>> np.tile(a,(2,1,2)) array([[[0, 1, 2, 0, 1, 2]], <BLANKLINE> [[0, 1, 2, 0, 1, 2]]]) diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 44082521c..ab1e5fcf0 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -88,13 +88,13 @@ def diagflat(v,k=0): Examples -------- - >>> diagflat([[1,2],[3,4]]]) + >>> np.diagflat([[1,2],[3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) - >>> diagflat([1,2], 1) + >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) @@ -180,8 +180,8 @@ def histogram2d(x,y, bins=10, range=None, normed=False, weights=None): - `xedges, yedges` : Arrays defining the bin edges. Example: - >>> x = random.randn(100,2) - >>> hist2d, xedges, yedges = histogram2d(x, bins = (6, 7)) + >>> x = np.random.randn(100,2) + >>> hist2d, xedges, yedges = np.lib.histogram2d(x, bins = (6, 7)) :SeeAlso: histogramdd """ |