summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/arraysetops.py16
-rw-r--r--numpy/lib/function_base.py18
-rw-r--r--numpy/lib/npyio.py3
-rw-r--r--numpy/lib/type_check.py12
4 files changed, 27 insertions, 22 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 91dd96f9c..20a0e7151 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -44,7 +44,7 @@ def ediff1d(ary, to_end=None, to_begin=None):
Returns
-------
- ed : ndarray
+ ediff1d : ndarray
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
See Also
@@ -212,7 +212,7 @@ def intersect1d(ar1, ar2, assume_unique=False):
Returns
-------
- out : ndarray
+ intersect1d : ndarray
Sorted 1D array of common and unique elements.
See Also
@@ -251,7 +251,7 @@ def setxor1d(ar1, ar2, assume_unique=False):
Returns
-------
- xor : ndarray
+ setxor1d : ndarray
Sorted 1D array of unique values that are in only one of the input
arrays.
@@ -287,7 +287,7 @@ def in1d(ar1, ar2, assume_unique=False):
Parameters
----------
- ar1 : array_like, shape (M,)
+ ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of `ar1`.
@@ -297,8 +297,8 @@ def in1d(ar1, ar2, assume_unique=False):
Returns
-------
- mask : ndarray of bools, shape(M,)
- The values `ar1[mask]` are in `ar2`.
+ in1d : (M,) ndarray, bool
+ The values `ar1[in1d]` are in `ar2`.
See Also
--------
@@ -365,7 +365,7 @@ def union1d(ar1, ar2):
Returns
-------
- union : ndarray
+ union1d : ndarray
Unique, sorted union of the input arrays.
See Also
@@ -399,7 +399,7 @@ def setdiff1d(ar1, ar2, assume_unique=False):
Returns
-------
- difference : ndarray
+ setdiff1d : ndarray
Sorted 1D array of values in `ar1` that are not in `ar2`.
See Also
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index f3df3b96b..a0781ebf9 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -843,7 +843,7 @@ def gradient(f, *varargs):
Returns
-------
- g : ndarray
+ gradient : ndarray
N arrays of the same shape as `f` giving the derivative of `f` with
respect to each dimension.
@@ -948,7 +948,7 @@ def diff(a, n=1, axis=-1):
Returns
-------
- out : ndarray
+ diff : ndarray
The `n` order differences. The shape of the output is the same as `a`
except along `axis` where the dimension is smaller by `n`.
@@ -1284,6 +1284,11 @@ def extract(condition, arr):
arr : array_like
Input array of the same size as `condition`.
+ Returns
+ -------
+ extract : ndarray
+ Rank 1 array of values from `arr` where `condition` is True.
+
See Also
--------
take, put, copyto, compress
@@ -1316,9 +1321,10 @@ def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
- Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place`
- uses the first N elements of `vals`, where N is the number of True values
- in `mask`, while `copyto` uses the elements where `mask` is True.
+ Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
+ `place` uses the first N elements of `vals`, where N is the number of
+ True values in `mask`, while `copyto` uses the elements where `mask`
+ is True.
Note that `extract` does the exact opposite of `place`.
@@ -2713,7 +2719,7 @@ def kaiser(M,beta):
A beta value of 14 is probably a good starting point. Note that as beta
gets large, the window narrows, and so the number of samples needs to be
- large enough to sample the increasingly narrow spike, otherwise nans will
+ large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.
Most references to the Kaiser window come from the signal processing
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index cb14e4963..b1e891f77 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -470,8 +470,7 @@ def savez(file, *args, **kwds):
--------
save : Save a single array to a binary file in NumPy format.
savetxt : Save an array to a file as plain text.
- numpy.savez_compressed : Save several arrays into a compressed .npz file
- format
+ savez_compressed : Save several arrays into a compressed .npz file format
Notes
-----
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
index c116c7e4a..e22d63156 100644
--- a/numpy/lib/type_check.py
+++ b/numpy/lib/type_check.py
@@ -233,11 +233,10 @@ def isreal(x):
def iscomplexobj(x):
"""
- Return True if x is a complex type or an array of complex numbers.
+ Check for a complex type or an array of complex numbers.
- The type of the input is checked, not the value. So even if the input
- has an imaginary part equal to zero, `iscomplexobj` evaluates to True
- if the data type is complex.
+ The type of the input is checked, not the value. Even if the input
+ has an imaginary part equal to zero, `iscomplexobj` evaluates to True.
Parameters
----------
@@ -246,8 +245,9 @@ def iscomplexobj(x):
Returns
-------
- y : bool
- The return value, True if `x` is of a complex type.
+ iscomplexobj : bool
+ The return value, True if `x` is of a complex type or has at least
+ one complex element.
See Also
--------