summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/twodim_base.py3
-rw-r--r--numpy/lib/utils.py5
2 files changed, 5 insertions, 3 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index 512b6bf53..d79fd03c6 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -143,7 +143,7 @@ def vander(x, N=None):
X[:,i] = x**(N-i-1)
return X
-def histogram2d(x,y, bins=10, range=None, normed=False):
+def histogram2d(x,y, bins=10, range=None, normed=False):
"""histogram2d(x,y, bins=10, range=None, normed=False) -> H, xedges, yedges
Compute the 2D histogram from samples x,y.
@@ -159,7 +159,6 @@ def histogram2d(x,y, bins=10, range=None, normed=False):
The histogram array is a count of the number of samples in each
two dimensional bin.
Setting normed to True returns a density rather than a bin count.
- Data falling outside of the edges are not counted.
"""
import numpy as np
try:
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
index b6ee51b91..981ec6de5 100644
--- a/numpy/lib/utils.py
+++ b/numpy/lib/utils.py
@@ -238,7 +238,10 @@ def info(object=None,maxwidth=76,output=sys.stdout,toplevel='numpy'):
if object is None:
info(info)
- elif isinstance(object, types.StringType):
+ elif isinstance(object, ndarray):
+ import numpy.numarray as nn
+ nn.info(object, output=output, numpy=1)
+ elif isinstance(object, str):
if _namedict is None:
_namedict, _dictlist = _makenamedict(toplevel)
numfound = 0