summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/__init__.py35
-rw-r--r--numpy/lib/arraysetops.py329
-rw-r--r--numpy/lib/convdtype.py65
-rw-r--r--numpy/lib/function_base.py1492
-rw-r--r--numpy/lib/getlimits.py175
-rw-r--r--numpy/lib/index_tricks.py457
-rw-r--r--numpy/lib/info.py136
-rw-r--r--numpy/lib/machar.py285
-rw-r--r--numpy/lib/polynomial.py670
-rw-r--r--numpy/lib/scimath.py86
-rw-r--r--numpy/lib/setup.py21
-rw-r--r--numpy/lib/shape_base.py633
-rw-r--r--numpy/lib/src/_compiled_base.c590
-rw-r--r--numpy/lib/tests/test_arraysetops.py171
-rw-r--r--numpy/lib/tests/test_function_base.py454
-rw-r--r--numpy/lib/tests/test_getlimits.py55
-rw-r--r--numpy/lib/tests/test_index_tricks.py51
-rw-r--r--numpy/lib/tests/test_polynomial.py98
-rw-r--r--numpy/lib/tests/test_shape_base.py412
-rw-r--r--numpy/lib/tests/test_twodim_base.py200
-rw-r--r--numpy/lib/tests/test_type_check.py280
-rw-r--r--numpy/lib/tests/test_ufunclike.py66
-rw-r--r--numpy/lib/twodim_base.py184
-rw-r--r--numpy/lib/type_check.py233
-rw-r--r--numpy/lib/ufunclike.py60
-rw-r--r--numpy/lib/user_array.py217
-rw-r--r--numpy/lib/utils.py432
27 files changed, 0 insertions, 7887 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py
deleted file mode 100644
index e17a0a726..000000000
--- a/numpy/lib/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from info import __doc__
-from numpy.version import version as __version__
-
-from type_check import *
-from index_tricks import *
-from function_base import *
-from shape_base import *
-from twodim_base import *
-from ufunclike import *
-
-import scimath as emath
-from polynomial import *
-from machar import *
-from getlimits import *
-#import convertcode
-from utils import *
-from arraysetops import *
-import math
-
-__all__ = ['emath','math']
-__all__ += type_check.__all__
-__all__ += index_tricks.__all__
-__all__ += function_base.__all__
-__all__ += shape_base.__all__
-__all__ += twodim_base.__all__
-__all__ += ufunclike.__all__
-__all__ += polynomial.__all__
-__all__ += machar.__all__
-__all__ += getlimits.__all__
-__all__ += utils.__all__
-__all__ += arraysetops.__all__
-
-def test(level=1, verbosity=1):
- from numpy.testing import NumpyTest
- return NumpyTest().test(level, verbosity)
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
deleted file mode 100644
index 6693fa81c..000000000
--- a/numpy/lib/arraysetops.py
+++ /dev/null
@@ -1,329 +0,0 @@
-"""
-Set operations for 1D numeric arrays based on sorting.
-
-:Contains:
- ediff1d,
- unique1d,
- intersect1d,
- intersect1d_nu,
- setxor1d,
- setmember1d,
- union1d,
- setdiff1d
-
-:Notes:
-
-All functions work best with integer numerical arrays on input (e.g. indices).
-For floating point arrays, innacurate results may appear due to usual round-off
-and floating point comparison issues.
-
-Except unique1d, union1d and intersect1d_nu, all functions expect inputs with
-unique elements. Speed could be gained in some operations by an implementaion of
-sort(), that can provide directly the permutation vectors, avoiding thus calls
-to argsort().
-
-Run _test_unique1d_speed() to compare performance of numpy.unique1d() and
-numpy.unique() - it should be the same.
-
-To do: Optionally return indices analogously to unique1d for all functions.
-
-created: 01.11.2005
-last revision: 07.01.2007
-
-:Author: Robert Cimrman
-"""
-__all__ = ['ediff1d', 'unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d',
- 'setmember1d', 'union1d', 'setdiff1d']
-
-import time
-import numpy as nm
-
-def ediff1d(ary, to_end = None, to_begin = None):
- """The differences between consecutive elements of an array, possibly with
- prefixed and/or appended values.
-
- :Parameters:
- - `ary` : array
- This array will be flattened before the difference is taken.
- - `to_end` : number, optional
- If provided, this number will be tacked onto the end of the returned
- differences.
- - `to_begin` : number, optional
- If provided, this number will be taked onto the beginning of the
- returned differences.
-
- :Returns:
- - `ed` : array
- The differences. Loosely, this will be (ary[1:] - ary[:-1]).
- """
- ary = nm.asarray(ary).flat
- ed = ary[1:] - ary[:-1]
- arrays = [ed]
- if to_begin is not None:
- arrays.insert(0, to_begin)
- if to_end is not None:
- arrays.append(to_end)
-
- if len(arrays) != 1:
- # We'll save ourselves a copy of a potentially large array in the common
- # case where neither to_begin or to_end was given.
- ed = nm.hstack(arrays)
-
- return ed
-
-def unique1d(ar1, return_index=False):
- """Find the unique elements of 1D array.
-
- Most of the other array set operations operate on the unique arrays
- generated by this function.
-
- :Parameters:
- - `ar1` : array
- This array will be flattened if it is not already 1D.
- - `return_index` : bool, optional
- If True, also return the indices against ar1 that result in the unique
- array.
-
- :Returns:
- - `unique` : array
- The unique values.
- - `unique_indices` : int array, optional
- The indices of the unique values. Only provided if return_index is True.
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- ar = nm.asarray(ar1).flatten()
- if ar.size == 0:
- if return_index: return nm.empty(0, nm.bool), ar
- else: return ar
-
- if return_index:
- perm = ar.argsort()
- aux = ar[perm]
- flag = nm.concatenate( ([True], aux[1:] != aux[:-1]) )
- return perm[flag], aux[flag]
-
- else:
- ar.sort()
- flag = nm.concatenate( ([True], ar[1:] != ar[:-1]) )
- return ar[flag]
-
-def intersect1d( ar1, ar2 ):
- """Intersection of 1D arrays with unique elements.
-
- Use unique1d() to generate arrays with only unique elements to use as inputs
- to this function. Alternatively, use intersect1d_nu() which will find the
- unique values for you.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `intersection` : array
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- aux = nm.concatenate((ar1,ar2))
- aux.sort()
- return aux[aux[1:] == aux[:-1]]
-
-def intersect1d_nu( ar1, ar2 ):
- """Intersection of 1D arrays with any elements.
-
- The input arrays do not have unique elements like intersect1d() requires.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `intersection` : array
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
- aux = nm.concatenate((unique1d(ar1), unique1d(ar2)))
- aux.sort()
- return aux[aux[1:] == aux[:-1]]
-
-def setxor1d( ar1, ar2 ):
- """Set exclusive-or of 1D arrays with unique elements.
-
- Use unique1d() to generate arrays with only unique elements to use as inputs
- to this function.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `xor` : array
- The values that are only in one, but not both, of the input arrays.
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- aux = nm.concatenate((ar1, ar2))
- if aux.size == 0:
- return aux
-
- aux.sort()
-# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
- flag = nm.concatenate( ([True], aux[1:] != aux[:-1], [True] ) )
-# flag2 = ediff1d( flag ) == 0
- flag2 = flag[1:] == flag[:-1]
- return aux[flag2]
-
-def setmember1d( ar1, ar2 ):
- """Return a boolean array of shape of ar1 containing True where the elements
- of ar1 are in ar2 and False otherwise.
-
- Use unique1d() to generate arrays with only unique elements to use as inputs
- to this function.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `mask` : bool array
- The values ar1[mask] are in ar2.
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- zlike = nm.zeros_like
- ar = nm.concatenate( (ar1, ar2 ) )
- tt = nm.concatenate( (zlike( ar1 ), zlike( ar2 ) + 1) )
- # We need this to be a stable sort, so always use 'mergesort' here. The
- # values from the first array should always come before the values from the
- # second array.
- perm = ar.argsort(kind='mergesort')
- aux = ar[perm]
- aux2 = tt[perm]
-# flag = ediff1d( aux, 1 ) == 0
- flag = nm.concatenate( (aux[1:] == aux[:-1], [False] ) )
-
- ii = nm.where( flag * aux2 )[0]
- aux = perm[ii+1]
- perm[ii+1] = perm[ii]
- perm[ii] = aux
-
- indx = perm.argsort(kind='mergesort')[:len( ar1 )]
-
- return flag[indx]
-
-def union1d( ar1, ar2 ):
- """Union of 1D arrays with unique elements.
-
- Use unique1d() to generate arrays with only unique elements to use as inputs
- to this function.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `union` : array
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- return unique1d( nm.concatenate( (ar1, ar2) ) )
-
-def setdiff1d( ar1, ar2 ):
- """Set difference of 1D arrays with unique elements.
-
- Use unique1d() to generate arrays with only unique elements to use as inputs
- to this function.
-
- :Parameters:
- - `ar1` : array
- - `ar2` : array
-
- :Returns:
- - `difference` : array
- The values in ar1 that are not in ar2.
-
- :See also:
- numpy.lib.arraysetops has a number of other functions for performing set
- operations on arrays.
- """
- aux = setmember1d(ar1,ar2)
- if aux.size == 0:
- return aux
- else:
- return nm.asarray(ar1)[aux == 0]
-
-def _test_unique1d_speed( plot_results = False ):
-# exponents = nm.linspace( 2, 7, 9 )
- exponents = nm.linspace( 2, 7, 9 )
- ratios = []
- nItems = []
- dt1s = []
- dt2s = []
- for ii in exponents:
-
- nItem = 10 ** ii
- print 'using %d items:' % nItem
- a = nm.fix( nItem / 10 * nm.random.random( nItem ) )
-
- print 'unique:'
- tt = time.clock()
- b = nm.unique( a )
- dt1 = time.clock() - tt
- print dt1
-
- print 'unique1d:'
- tt = time.clock()
- c = unique1d( a )
- dt2 = time.clock() - tt
- print dt2
-
-
- if dt1 < 1e-8:
- ratio = 'ND'
- else:
- ratio = dt2 / dt1
- print 'ratio:', ratio
- print 'nUnique: %d == %d\n' % (len( b ), len( c ))
-
- nItems.append( nItem )
- ratios.append( ratio )
- dt1s.append( dt1 )
- dt2s.append( dt2 )
-
- assert nm.alltrue( b == c )
-
- print nItems
- print dt1s
- print dt2s
- print ratios
-
- if plot_results:
- import pylab
-
- def plotMe( fig, fun, nItems, dt1s, dt2s ):
- pylab.figure( fig )
- fun( nItems, dt1s, 'g-o', linewidth = 2, markersize = 8 )
- fun( nItems, dt2s, 'b-x', linewidth = 2, markersize = 8 )
- pylab.legend( ('unique', 'unique1d' ) )
- pylab.xlabel( 'nItem' )
- pylab.ylabel( 'time [s]' )
-
- plotMe( 1, pylab.loglog, nItems, dt1s, dt2s )
- plotMe( 2, pylab.plot, nItems, dt1s, dt2s )
- pylab.show()
-
-if (__name__ == '__main__'):
- _test_unique1d_speed( plot_results = True )
diff --git a/numpy/lib/convdtype.py b/numpy/lib/convdtype.py
deleted file mode 100644
index ebc1ba512..000000000
--- a/numpy/lib/convdtype.py
+++ /dev/null
@@ -1,65 +0,0 @@
-from tokenize import generate_tokens
-import token
-import sys
-def insert(s1, s2, posn):
- """insert s1 into s2 at positions posn
-
- >>> insert("XX", "abcdef", [2, 4])
- 'abXXcdXXef'
- """
- pieces = []
- start = 0
- for end in posn + [len(s2)]:
- pieces.append(s2[start:end])
- start = end
- return s1.join(pieces)
-
-def insert_dtype(readline, output=None):
- """
- >>> from StringIO import StringIO
- >>> src = "zeros((2,3), dtype=float); zeros((2,3));"
- >>> insert_dtype(StringIO(src).readline)
- zeros((2,3), dtype=float); zeros((2,3), dtype=int);
- """
- if output is None:
- output = sys.stdout
- tokens = generate_tokens(readline)
- flag = 0
- parens = 0
- argno = 0
- posn = []
- nodtype = True
- prevtok = None
- kwarg = 0
- for (tok_type, tok, (srow, scol), (erow, ecol), line) in tokens:
- if not flag and tok_type == token.NAME and tok in ('zeros', 'ones', 'empty'):
- flag = 1
- else:
- if tok == '(':
- parens += 1
- elif tok == ')':
- parens -= 1
- if parens == 0:
- if nodtype and argno < 1:
- posn.append(scol)
- argno = 0
- flag = 0
- nodtype = True
- argno = 0
- elif tok == '=':
- kwarg = 1
- if prevtok == 'dtype':
- nodtype = False
- elif tok == ',':
- argno += (parens == 1)
- if len(line) == ecol:
- output.write(insert(', dtype=int', line, posn))
- posn = []
- prevtok = tok
-
-def _test():
- import doctest
- doctest.testmod()
-
-if __name__ == "__main__":
- _test()
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
deleted file mode 100644
index 711c609e8..000000000
--- a/numpy/lib/function_base.py
+++ /dev/null
@@ -1,1492 +0,0 @@
-__docformat__ = "restructuredtext en"
-__all__ = ['logspace', 'linspace',
- 'select', 'piecewise', 'trim_zeros',
- 'copy', 'iterable',
- 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp',
- 'unique', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax',
- 'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average',
- 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov',
- 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning',
- 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc',
- 'add_docstring', 'meshgrid', 'delete', 'insert', 'append',
- 'interp'
- ]
-
-import types
-import numpy.core.numeric as _nx
-from numpy.core.numeric import ones, zeros, arange, concatenate, array, \
- asarray, asanyarray, empty, empty_like, asanyarray, ndarray, around
-from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \
- integer, isscalar
-from numpy.core.umath import pi, multiply, add, arctan2, \
- frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10
-from numpy.core.fromnumeric import ravel, nonzero, choose, sort
-from numpy.core.numerictypes import typecodes
-from numpy.lib.shape_base import atleast_1d, atleast_2d
-from numpy.lib.twodim_base import diag
-from _compiled_base import _insert, add_docstring
-from _compiled_base import digitize, bincount, interp
-from arraysetops import setdiff1d
-
-#end Fernando's utilities
-
-def linspace(start, stop, num=50, endpoint=True, retstep=False):
- """Return evenly spaced numbers.
-
- Return num evenly spaced samples from start to stop. If
- endpoint is True, the last sample is stop. If retstep is
- True then return (seq, step_value), where step_value used.
-
- :Parameters:
- start : {float}
- The value the sequence starts at.
- stop : {float}
- The value the sequence stops at. If ``endpoint`` is false, then
- this is not included in the sequence. Otherwise it is
- guaranteed to be the last value.
- num : {integer}
- Number of samples to generate. Default is 50.
- endpoint : {boolean}
- If true, ``stop`` is the last sample. Otherwise, it is not
- included. Default is true.
- retstep : {boolean}
- If true, return ``(samples, step)``, where ``step`` is the
- spacing used in generating the samples.
-
- :Returns:
- samples : {array}
- ``num`` equally spaced samples from the range [start, stop]
- or [start, stop).
- step : {float} (Only if ``retstep`` is true)
- Size of spacing between samples.
-
- :See Also:
- `arange` : Similiar to linspace, however, when used with
- a float endpoint, that endpoint may or may not be included.
- `logspace`
- """
- num = int(num)
- if num <= 0:
- return array([], float)
- if endpoint:
- if num == 1:
- return array([float(start)])
- step = (stop-start)/float((num-1))
- y = _nx.arange(0, num) * step + start
- y[-1] = stop
- else:
- step = (stop-start)/float(num)
- y = _nx.arange(0, num) * step + start
- if retstep:
- return y, step
- else:
- return y
-
-def logspace(start,stop,num=50,endpoint=True,base=10.0):
- """Evenly spaced numbers on a logarithmic scale.
-
- Computes int(num) evenly spaced exponents from base**start to
- base**stop. If endpoint=True, then last number is base**stop
- """
- y = linspace(start,stop,num=num,endpoint=endpoint)
- return _nx.power(base,y)
-
-def iterable(y):
- try: iter(y)
- except: return 0
- return 1
-
-def histogram(a, bins=10, range=None, normed=False):
- """Compute the histogram from a set of data.
-
- Parameters:
-
- a : array
- The data to histogram. n-D arrays will be flattened.
-
- bins : int or sequence of floats
- If an int, then the number of equal-width bins in the given range.
- Otherwise, a sequence of the lower bound of each bin.
-
- range : (float, float)
- The lower and upper range of the bins. If not provided, then
- (a.min(), a.max()) is used. Values outside of this range are
- allocated to the closest bin.
-
- normed : bool
- If False, the result array will contain the number of samples in
- each bin. If True, the result array is the value of the
- probability *density* function at the bin normalized such that the
- *integral* over the range is 1. Note that the sum of all of the
- histogram values will not usually be 1; it is not a probability
- *mass* function.
-
- Returns:
-
- hist : array
- The values of the histogram. See `normed` for a description of the
- possible semantics.
-
- lower_edges : float array
- The lower edges of each bin.
-
- SeeAlso:
-
- histogramdd
-
- """
- a = asarray(a).ravel()
-
- if (range is not None):
- mn, mx = range
- if (mn > mx):
- raise AttributeError, 'max must be larger than min in range parameter.'
-
- if not iterable(bins):
- if range is None:
- range = (a.min(), a.max())
- mn, mx = [mi+0.0 for mi in range]
- if mn == mx:
- mn -= 0.5
- mx += 0.5
- bins = linspace(mn, mx, bins, endpoint=False)
- else:
- if(any(bins[1:]-bins[:-1] < 0)):
- raise AttributeError, 'bins must increase monotonically.'
-
- # best block size probably depends on processor cache size
- block = 65536
- n = sort(a[:block]).searchsorted(bins)
- for i in xrange(block, a.size, block):
- n += sort(a[i:i+block]).searchsorted(bins)
- n = concatenate([n, [len(a)]])
- n = n[1:]-n[:-1]
-
- if normed:
- db = bins[1] - bins[0]
- return 1.0/(a.size*db) * n, bins
- else:
- return n, bins
-
-def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
- """histogramdd(sample, bins=10, range=None, normed=False, weights=None)
-
- Return the N-dimensional histogram of the sample.
-
- Parameters:
-
- sample : sequence or array
- A sequence containing N arrays or an NxM array. Input data.
-
- bins : sequence or scalar
- A sequence of edge arrays, a sequence of bin counts, or a scalar
- which is the bin count for all dimensions. Default is 10.
-
- range : sequence
- A sequence of lower and upper bin edges. Default is [min, max].
-
- normed : boolean
- If False, return the number of samples in each bin, if True,
- returns the density.
-
- weights : array
- Array of weights. The weights are normed only if normed is True.
- Should the sum of the weights not equal N, the total bin count will
- not be equal to the number of samples.
-
- Returns:
-
- hist : array
- Histogram array.
-
- edges : list
- List of arrays defining the lower bin edges.
-
- SeeAlso:
-
- histogram
-
- Example
-
- >>> x = random.randn(100,3)
- >>> hist3d, edges = histogramdd(x, bins = (5, 6, 7))
-
- """
-
- try:
- # Sample is an ND-array.
- N, D = sample.shape
- except (AttributeError, ValueError):
- # Sample is a sequence of 1D arrays.
- sample = atleast_2d(sample).T
- N, D = sample.shape
-
- nbin = empty(D, int)
- edges = D*[None]
- dedges = D*[None]
- if weights is not None:
- weights = asarray(weights)
-
- try:
- M = len(bins)
- if M != D:
- raise AttributeError, 'The dimension of bins must be a equal to the dimension of the sample x.'
- except TypeError:
- bins = D*[bins]
-
- # Select range for each dimension
- # Used only if number of bins is given.
- if range is None:
- smin = atleast_1d(array(sample.min(0), float))
- smax = atleast_1d(array(sample.max(0), float))
- else:
- smin = zeros(D)
- smax = zeros(D)
- for i in arange(D):
- smin[i], smax[i] = range[i]
-
- # Make sure the bins have a finite width.
- for i in arange(len(smin)):
- if smin[i] == smax[i]:
- smin[i] = smin[i] - .5
- smax[i] = smax[i] + .5
-
- # Create edge arrays
- for i in arange(D):
- if isscalar(bins[i]):
- nbin[i] = bins[i] + 2 # +2 for outlier bins
- edges[i] = linspace(smin[i], smax[i], nbin[i]-1)
- else:
- edges[i] = asarray(bins[i], float)
- nbin[i] = len(edges[i])+1 # +1 for outlier bins
- dedges[i] = diff(edges[i])
-
- nbin = asarray(nbin)
-
- # Compute the bin number each sample falls into.
- Ncount = {}
- for i in arange(D):
- Ncount[i] = digitize(sample[:,i], edges[i])
-
- # Using digitize, values that fall on an edge are put in the right bin.
- # For the rightmost bin, we want values equal to the right
- # edge to be counted in the last bin, and not as an outlier.
- outliers = zeros(N, int)
- for i in arange(D):
- # Rounding precision
- decimal = int(-log10(dedges[i].min())) +6
- # Find which points are on the rightmost edge.
- on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1], decimal))[0]
- # Shift these points one bin to the left.
- Ncount[i][on_edge] -= 1
-
- # Flattened histogram matrix (1D)
- hist = zeros(nbin.prod(), float)
-
- # Compute the sample indices in the flattened histogram matrix.
- ni = nbin.argsort()
- shape = []
- xy = zeros(N, int)
- for i in arange(0, D-1):
- xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod()
- xy += Ncount[ni[-1]]
-
- # Compute the number of repetitions in xy and assign it to the flattened histmat.
- if len(xy) == 0:
- return zeros(nbin-2, int), edges
-
- flatcount = bincount(xy, weights)
- a = arange(len(flatcount))
- hist[a] = flatcount
-
- # Shape into a proper matrix
- hist = hist.reshape(sort(nbin))
- for i in arange(nbin.size):
- j = ni[i]
- hist = hist.swapaxes(i,j)
- ni[i],ni[j] = ni[j],ni[i]
-
- # Remove outliers (indices 0 and -1 for each dimension).
- core = D*[slice(1,-1)]
- hist = hist[core]
-
- # Normalize if normed is True
- if normed:
- s = hist.sum()
- for i in arange(D):
- shape = ones(D, int)
- shape[i] = nbin[i]-2
- hist = hist / dedges[i].reshape(shape)
- hist /= s
-
- return hist, edges
-
-
-def average(a, axis=None, weights=None, returned=False):
- """Average the array over the given axis. If the axis is None,
- average over all dimensions of the array. Equivalent to
- a.mean(axis) and to
-
- a.sum(axis) / size(a, axis)
-
- If weights are given, result is:
- sum(a * weights,axis) / sum(weights,axis),
- where the weights must have a's shape or be 1D with length the
- size of a in the given axis. Integer weights are converted to
- Float. Not specifying weights is equivalent to specifying
- weights that are all 1.
-
- If 'returned' is True, return a tuple: the result and the sum of
- the weights or count of values. The shape of these two results
- will be the same.
-
- Raises ZeroDivisionError if appropriate. (The version in MA does
- not -- it returns masked values).
-
- """
- if axis is None:
- a = array(a).ravel()
- if weights is None:
- n = add.reduce(a)
- d = len(a) * 1.0
- else:
- w = array(weights).ravel() * 1.0
- n = add.reduce(multiply(a, w))
- d = add.reduce(w)
- else:
- a = array(a)
- ash = a.shape
- if ash == ():
- a.shape = (1,)
- if weights is None:
- n = add.reduce(a, axis)
- d = ash[axis] * 1.0
- if returned:
- d = ones(n.shape) * d
- else:
- w = array(weights, copy=False) * 1.0
- wsh = w.shape
- if wsh == ():
- wsh = (1,)
- if wsh == ash:
- n = add.reduce(a*w, axis)
- d = add.reduce(w, axis)
- elif wsh == (ash[axis],):
- ni = ash[axis]
- r = [newaxis]*ni
- r[axis] = slice(None, None, 1)
- w1 = eval("w["+repr(tuple(r))+"]*ones(ash, float)")
- n = add.reduce(a*w1, axis)
- d = add.reduce(w1, axis)
- else:
- raise ValueError, 'averaging weights have wrong shape'
-
- if not isinstance(d, ndarray):
- if d == 0.0:
- raise ZeroDivisionError, 'zero denominator in average()'
- if returned:
- return n/d, d
- else:
- return n/d
-
-def asarray_chkfinite(a):
- """Like asarray, but check that no NaNs or Infs are present.
- """
- a = asarray(a)
- if (a.dtype.char in typecodes['AllFloat']) \
- and (_nx.isnan(a).any() or _nx.isinf(a).any()):
- raise ValueError, "array must not contain infs or NaNs"
- return a
-
-def piecewise(x, condlist, funclist, *args, **kw):
- """Return a piecewise-defined function.
-
- x is the domain
-
- condlist is a list of boolean arrays or a single boolean array
- The length of the condition list must be n2 or n2-1 where n2
- is the length of the function list. If len(condlist)==n2-1, then
- an 'otherwise' condition is formed by |'ing all the conditions
- and inverting.
-
- funclist is a list of functions to call of length (n2).
- Each function should return an array output for an array input
- Each function can take (the same set) of extra arguments and
- keyword arguments which are passed in after the function list.
- A constant may be used in funclist for a function that returns a
- constant (e.g. val and lambda x: val are equivalent in a funclist).
-
- The output is the same shape and type as x and is found by
- calling the functions on the appropriate portions of x.
-
- Note: This is similar to choose or select, except
- the the functions are only evaluated on elements of x
- that satisfy the corresponding condition.
-
- The result is
- |--
- | f1(x) for condition1
- y = --| f2(x) for condition2
- | ...
- | fn(x) for conditionn
- |--
-
- """
- x = asanyarray(x)
- n2 = len(funclist)
- if not isinstance(condlist, type([])):
- condlist = [condlist]
- n = len(condlist)
- if n == n2-1: # compute the "otherwise" condition.
- totlist = condlist[0]
- for k in range(1, n):
- totlist |= condlist[k]
- condlist.append(~totlist)
- n += 1
- if (n != n2):
- raise ValueError, "function list and condition list must be the same"
- y = empty(x.shape, x.dtype)
- for k in range(n):
- item = funclist[k]
- if not callable(item):
- y[condlist[k]] = item
- else:
- y[condlist[k]] = item(x[condlist[k]], *args, **kw)
- return y
-
-def select(condlist, choicelist, default=0):
- """Return an array composed of different elements in choicelist,
- depending on the list of conditions.
-
- :Parameters:
- condlist : list of N boolean arrays of length M
- The conditions C_0 through C_(N-1) which determine
- from which vector the output elements are taken.
- choicelist : list of N arrays of length M
- Th vectors V_0 through V_(N-1), from which the output
- elements are chosen.
-
- :Returns:
- output : 1-dimensional array of length M
- The output at position m is the m-th element of the first
- vector V_n for which C_n[m] is non-zero. Note that the
- output depends on the order of conditions, since the
- first satisfied condition is used.
-
- Equivalent to:
-
- output = []
- for m in range(M):
- output += [V[m] for V,C in zip(values,cond) if C[m]]
- or [default]
-
- """
- n = len(condlist)
- n2 = len(choicelist)
- if n2 != n:
- raise ValueError, "list of cases must be same length as list of conditions"
- choicelist = [default] + choicelist
- S = 0
- pfac = 1
- for k in range(1, n+1):
- S += k * pfac * asarray(condlist[k-1])
- if k < n:
- pfac *= (1-asarray(condlist[k-1]))
- # handle special case of a 1-element condition but
- # a multi-element choice
- if type(S) in ScalarType or max(asarray(S).shape)==1:
- pfac = asarray(1)
- for k in range(n2+1):
- pfac = pfac + asarray(choicelist[k])
- if type(S) in ScalarType:
- S = S*ones(asarray(pfac).shape, type(S))
- else:
- S = S*ones(asarray(pfac).shape, S.dtype)
- return choose(S, tuple(choicelist))
-
-def _asarray1d(arr, copy=False):
- """Ensure 1D array for one array.
- """
- if copy:
- return asarray(arr).flatten()
- else:
- return asarray(arr).ravel()
-
-def copy(a):
- """Return an array copy of the given object.
- """
- return array(a, copy=True)
-
-# Basic operations
-
-def gradient(f, *varargs):
- """Calculate the gradient of an N-dimensional scalar function.
-
- Uses central differences on the interior and first differences on boundaries
- to give the same shape.
-
- Inputs:
-
- f -- An N-dimensional array giving samples of a scalar function
-
- varargs -- 0, 1, or N scalars giving the sample distances in each direction
-
- Outputs:
-
- N arrays of the same shape as f giving the derivative of f with respect
- to each dimension.
-
- """
- N = len(f.shape) # number of dimensions
- n = len(varargs)
- if n == 0:
- dx = [1.0]*N
- elif n == 1:
- dx = [varargs[0]]*N
- elif n == N:
- dx = list(varargs)
- else:
- raise SyntaxError, "invalid number of arguments"
-
- # use central differences on interior and first differences on endpoints
-
- outvals = []
-
- # create slice objects --- initially all are [:, :, ..., :]
- slice1 = [slice(None)]*N
- slice2 = [slice(None)]*N
- slice3 = [slice(None)]*N
-
- otype = f.dtype.char
- if otype not in ['f', 'd', 'F', 'D']:
- otype = 'd'
-
- for axis in range(N):
- # select out appropriate parts for this dimension
- out = zeros(f.shape, f.dtype.char)
- slice1[axis] = slice(1, -1)
- slice2[axis] = slice(2, None)
- slice3[axis] = slice(None, -2)
- # 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0
- out[slice1] = (f[slice2] - f[slice3])/2.0
- slice1[axis] = 0
- slice2[axis] = 1
- slice3[axis] = 0
- # 1D equivalent -- out[0] = (f[1] - f[0])
- out[slice1] = (f[slice2] - f[slice3])
- slice1[axis] = -1
- slice2[axis] = -1
- slice3[axis] = -2
- # 1D equivalent -- out[-1] = (f[-1] - f[-2])
- out[slice1] = (f[slice2] - f[slice3])
-
- # divide by step size
- outvals.append(out / dx[axis])
-
- # reset the slice object in this dimension to ":"
- slice1[axis] = slice(None)
- slice2[axis] = slice(None)
- slice3[axis] = slice(None)
-
- if N == 1:
- return outvals[0]
- else:
- return outvals
-
-
-def diff(a, n=1, axis=-1):
- """Calculate the nth order discrete difference along given axis.
- """
- if n == 0:
- return a
- if n < 0:
- raise ValueError, 'order must be non-negative but got ' + repr(n)
- a = asanyarray(a)
- nd = len(a.shape)
- slice1 = [slice(None)]*nd
- slice2 = [slice(None)]*nd
- slice1[axis] = slice(1, None)
- slice2[axis] = slice(None, -1)
- slice1 = tuple(slice1)
- slice2 = tuple(slice2)
- if n > 1:
- return diff(a[slice1]-a[slice2], n-1, axis=axis)
- else:
- return a[slice1]-a[slice2]
-
-try:
- add_docstring(digitize,
-r"""digitize(x,bins)
-
-Return the index of the bin to which each value of x belongs.
-
-Each index i returned is such that bins[i-1] <= x < bins[i] if
-bins is monotonically increasing, or bins [i-1] > x >= bins[i] if
-bins is monotonically decreasing.
-
-Beyond the bounds of the bins 0 or len(bins) is returned as appropriate.
-
-""")
-except RuntimeError:
- pass
-
-try:
- add_docstring(bincount,
-r"""bincount(x,weights=None)
-
-Return the number of occurrences of each value in x.
-
-x must be a list of non-negative integers. The output, b[i],
-represents the number of times that i is found in x. If weights
-is specified, every occurrence of i at a position p contributes
-weights[p] instead of 1.
-
-See also: histogram, digitize, unique.
-
-""")
-except RuntimeError:
- pass
-
-try:
- add_docstring(add_docstring,
-r"""docstring(obj, docstring)
-
-Add a docstring to a built-in obj if possible.
-If the obj already has a docstring raise a RuntimeError
-If this routine does not know how to add a docstring to the object
-raise a TypeError
-
-""")
-except RuntimeError:
- pass
-
-try:
- add_docstring(interp,
-r"""interp(x, xp, fp, left=None, right=None)
-
-Return the value of a piecewise-linear function at each value in x.
-
-The piecewise-linear function, f, is defined by the known data-points fp=f(xp).
-The xp points must be sorted in increasing order but this is not checked.
-
-For values of x < xp[0] return the value given by left. If left is None, then
-return fp[0].
-For values of x > xp[-1] return the value given by right. If right is None, then
-return fp[-1].
-"""
- )
-except RuntimeError:
- pass
-
-
-def angle(z, deg=0):
- """Return the angle of the complex argument z.
- """
- if deg:
- fact = 180/pi
- else:
- fact = 1.0
- z = asarray(z)
- if (issubclass(z.dtype.type, _nx.complexfloating)):
- zimag = z.imag
- zreal = z.real
- else:
- zimag = 0
- zreal = z
- return arctan2(zimag, zreal) * fact
-
-def unwrap(p, discont=pi, axis=-1):
- """Unwrap radian phase p by changing absolute jumps greater than
- 'discont' to their 2*pi complement along the given axis.
- """
- p = asarray(p)
- nd = len(p.shape)
- dd = diff(p, axis=axis)
- slice1 = [slice(None, None)]*nd # full slices
- slice1[axis] = slice(1, None)
- ddmod = mod(dd+pi, 2*pi)-pi
- _nx.putmask(ddmod, (ddmod==-pi) & (dd > 0), pi)
- ph_correct = ddmod - dd;
- _nx.putmask(ph_correct, abs(dd)<discont, 0)
- up = array(p, copy=True, dtype='d')
- up[slice1] = p[slice1] + ph_correct.cumsum(axis)
- return up
-
-def sort_complex(a):
- """ Sort 'a' as a complex array using the real part first and then
- the imaginary part if the real part is equal (the default sort order
- for complex arrays). This function is a wrapper ensuring a complex
- return type.
-
- """
- b = array(a,copy=True)
- b.sort()
- if not issubclass(b.dtype.type, _nx.complexfloating):
- if b.dtype.char in 'bhBH':
- return b.astype('F')
- elif b.dtype.char == 'g':
- return b.astype('G')
- else:
- return b.astype('D')
- else:
- return b
-
-def trim_zeros(filt, trim='fb'):
- """ Trim the leading and trailing zeros from a 1D array.
-
- Example:
- >>> import numpy
- >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0))
- >>> numpy.trim_zeros(a)
- array([1, 2, 3, 2, 1])
-
- """
- first = 0
- trim = trim.upper()
- if 'F' in trim:
- for i in filt:
- if i != 0.: break
- else: first = first + 1
- last = len(filt)
- if 'B' in trim:
- for i in filt[::-1]:
- if i != 0.: break
- else: last = last - 1
- return filt[first:last]
-
-import sys
-if sys.hexversion < 0x2040000:
- from sets import Set as set
-
-def unique(x):
- """Return sorted unique items from an array or sequence.
-
- Example:
- >>> unique([5,2,4,0,4,4,2,2,1])
- array([0, 1, 2, 4, 5])
-
- """
- try:
- tmp = x.flatten()
- if tmp.size == 0:
- return tmp
- tmp.sort()
- idx = concatenate(([True],tmp[1:]!=tmp[:-1]))
- return tmp[idx]
- except AttributeError:
- items = list(set(x))
- items.sort()
- return asarray(items)
-
-def extract(condition, arr):
- """Return the elements of ravel(arr) where ravel(condition) is True
- (in 1D).
-
- Equivalent to compress(ravel(condition), ravel(arr)).
- """
- return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
-
-def place(arr, mask, vals):
- """Similar to putmask arr[mask] = vals but the 1D array vals has the
- same number of elements as the non-zero values of mask. Inverse of
- extract.
-
- """
- return _insert(arr, mask, vals)
-
-def nansum(a, axis=None):
- """Sum the array over the given axis, treating NaNs as 0.
- """
- y = array(a,subok=True)
- if not issubclass(y.dtype.type, _nx.integer):
- y[isnan(a)] = 0
- return y.sum(axis)
-
-def nanmin(a, axis=None):
- """Find the minimium over the given axis, ignoring NaNs.
- """
- y = array(a,subok=True)
- if not issubclass(y.dtype.type, _nx.integer):
- y[isnan(a)] = _nx.inf
- return y.min(axis)
-
-def nanargmin(a, axis=None):
- """Find the indices of the minimium over the given axis ignoring NaNs.
- """
- y = array(a, subok=True)
- if not issubclass(y.dtype.type, _nx.integer):
- y[isnan(a)] = _nx.inf
- return y.argmin(axis)
-
-def nanmax(a, axis=None):
- """Find the maximum over the given axis ignoring NaNs.
- """
- y = array(a, subok=True)
- if not issubclass(y.dtype.type, _nx.integer):
- y[isnan(a)] = -_nx.inf
- return y.max(axis)
-
-def nanargmax(a, axis=None):
- """Find the maximum over the given axis ignoring NaNs.
- """
- y = array(a,subok=True)
- if not issubclass(y.dtype.type, _nx.integer):
- y[isnan(a)] = -_nx.inf
- return y.argmax(axis)
-
-def disp(mesg, device=None, linefeed=True):
- """Display a message to the given device (default is sys.stdout)
- with or without a linefeed.
- """
- if device is None:
- import sys
- device = sys.stdout
- if linefeed:
- device.write('%s\n' % mesg)
- else:
- device.write('%s' % mesg)
- device.flush()
- return
-
-# return number of input arguments and
-# number of default arguments
-import re
-def _get_nargs(obj):
- if not callable(obj):
- raise TypeError, "Object is not callable."
- if hasattr(obj,'func_code'):
- fcode = obj.func_code
- nargs = fcode.co_argcount
- if obj.func_defaults is not None:
- ndefaults = len(obj.func_defaults)
- else:
- ndefaults = 0
- if isinstance(obj, types.MethodType):
- nargs -= 1
- return nargs, ndefaults
- terr = re.compile(r'.*? takes exactly (?P<exargs>\d+) argument(s|) \((?P<gargs>\d+) given\)')
- try:
- obj()
- return 0, 0
- except TypeError, msg:
- m = terr.match(str(msg))
- if m:
- nargs = int(m.group('exargs'))
- ndefaults = int(m.group('gargs'))
- if isinstance(obj, types.MethodType):
- nargs -= 1
- return nargs, ndefaults
- raise ValueError, 'failed to determine the number of arguments for %s' % (obj)
-
-
-class vectorize(object):
- """
- vectorize(somefunction, otypes=None, doc=None)
- Generalized Function class.
-
- Description:
-
- Define a vectorized function which takes nested sequence
- of objects or numpy arrays as inputs and returns a
- numpy array as output, evaluating the function over successive
- tuples of the input arrays like the python map function except it uses
- the broadcasting rules of numpy.
-
- Data-type of output of vectorized is determined by calling the function
- with the first element of the input. This can be avoided by specifying
- the otypes argument as either a string of typecode characters or a list
- of data-types specifiers. There should be one data-type specifier for
- each output.
-
- Input:
-
- somefunction -- a Python function or method
-
- Example:
-
- >>> def myfunc(a, b):
- ... if a > b:
- ... return a-b
- ... else:
- ... return a+b
-
- >>> vfunc = vectorize(myfunc)
-
- >>> vfunc([1, 2, 3, 4], 2)
- array([3, 4, 1, 2])
-
- """
- def __init__(self, pyfunc, otypes='', doc=None):
- self.thefunc = pyfunc
- self.ufunc = None
- nin, ndefault = _get_nargs(pyfunc)
- if nin == 0 and ndefault == 0:
- self.nin = None
- self.nin_wo_defaults = None
- else:
- self.nin = nin
- self.nin_wo_defaults = nin - ndefault
- self.nout = None
- if doc is None:
- self.__doc__ = pyfunc.__doc__
- else:
- self.__doc__ = doc
- if isinstance(otypes, types.StringType):
- self.otypes = otypes
- for char in self.otypes:
- if char not in typecodes['All']:
- raise ValueError, "invalid otype specified"
- elif iterable(otypes):
- self.otypes = ''.join([_nx.dtype(x).char for x in otypes])
- else:
- raise ValueError, "output types must be a string of typecode characters or a list of data-types"
- self.lastcallargs = 0
-
- def __call__(self, *args):
- # get number of outputs and output types by calling
- # the function on the first entries of args
- nargs = len(args)
- if self.nin:
- if (nargs > self.nin) or (nargs < self.nin_wo_defaults):
- raise ValueError, "mismatch between python function inputs"\
- " and received arguments"
-
- # we need a new ufunc if this is being called with more arguments.
- if (self.lastcallargs != nargs):
- self.lastcallargs = nargs
- self.ufunc = None
- self.nout = None
-
- if self.nout is None or self.otypes == '':
- newargs = []
- for arg in args:
- newargs.append(asarray(arg).flat[0])
- theout = self.thefunc(*newargs)
- if isinstance(theout, types.TupleType):
- self.nout = len(theout)
- else:
- self.nout = 1
- theout = (theout,)
- if self.otypes == '':
- otypes = []
- for k in range(self.nout):
- otypes.append(asarray(theout[k]).dtype.char)
- self.otypes = ''.join(otypes)
-
- # Create ufunc if not already created
- if (self.ufunc is None):
- self.ufunc = frompyfunc(self.thefunc, nargs, self.nout)
-
- # Convert to object arrays first
- newargs = [array(arg,copy=False,subok=True,dtype=object) for arg in args]
- if self.nout == 1:
- _res = array(self.ufunc(*newargs),copy=False,
- subok=True,dtype=self.otypes[0])
- else:
- _res = tuple([array(x,copy=False,subok=True,dtype=c) \
- for x, c in zip(self.ufunc(*newargs), self.otypes)])
- return _res
-
-def cov(m, y=None, rowvar=1, bias=0):
- """Estimate the covariance matrix.
-
- If m is a vector, return the variance. For matrices return the
- covariance matrix.
-
- If y is given it is treated as an additional (set of)
- variable(s).
-
- Normalization is by (N-1) where N is the number of observations
- (unbiased estimate). If bias is 1 then normalization is by N.
-
- If rowvar is non-zero (default), then each row is a variable with
- observations in the columns, otherwise each column
- is a variable and the observations are in the rows.
- """
-
- X = array(m, ndmin=2, dtype=float)
- if X.shape[0] == 1:
- rowvar = 1
- if rowvar:
- axis = 0
- tup = (slice(None),newaxis)
- else:
- axis = 1
- tup = (newaxis, slice(None))
-
-
- if y is not None:
- y = array(y, copy=False, ndmin=2, dtype=float)
- X = concatenate((X,y),axis)
-
- X -= X.mean(axis=1-axis)[tup]
- if rowvar:
- N = X.shape[1]
- else:
- N = X.shape[0]
-
- if bias:
- fact = N*1.0
- else:
- fact = N-1.0
-
- if not rowvar:
- return (dot(X.T, X.conj()) / fact).squeeze()
- else:
- return (dot(X, X.T.conj()) / fact).squeeze()
-
-def corrcoef(x, y=None, rowvar=1, bias=0):
- """The correlation coefficients
- """
- c = cov(x, y, rowvar, bias)
- try:
- d = diag(c)
- except ValueError: # scalar covariance
- return 1
- return c/sqrt(multiply.outer(d,d))
-
-def blackman(M):
- """blackman(M) returns the M-point Blackman window.
- """
- if M < 1:
- return array([])
- if M == 1:
- return ones(1, float)
- n = arange(0,M)
- return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
-
-def bartlett(M):
- """bartlett(M) returns the M-point Bartlett window.
- """
- if M < 1:
- return array([])
- if M == 1:
- return ones(1, float)
- n = arange(0,M)
- return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))
-
-def hanning(M):
- """hanning(M) returns the M-point Hanning window.
- """
- if M < 1:
- return array([])
- if M == 1:
- return ones(1, float)
- n = arange(0,M)
- return 0.5-0.5*cos(2.0*pi*n/(M-1))
-
-def hamming(M):
- """hamming(M) returns the M-point Hamming window.
- """
- if M < 1:
- return array([])
- if M == 1:
- return ones(1,float)
- n = arange(0,M)
- return 0.54-0.46*cos(2.0*pi*n/(M-1))
-
-## Code from cephes for i0
-
-_i0A = [
--4.41534164647933937950E-18,
- 3.33079451882223809783E-17,
--2.43127984654795469359E-16,
- 1.71539128555513303061E-15,
--1.16853328779934516808E-14,
- 7.67618549860493561688E-14,
--4.85644678311192946090E-13,
- 2.95505266312963983461E-12,
--1.72682629144155570723E-11,
- 9.67580903537323691224E-11,
--5.18979560163526290666E-10,
- 2.65982372468238665035E-9,
--1.30002500998624804212E-8,
- 6.04699502254191894932E-8,
--2.67079385394061173391E-7,
- 1.11738753912010371815E-6,
--4.41673835845875056359E-6,
- 1.64484480707288970893E-5,
--5.75419501008210370398E-5,
- 1.88502885095841655729E-4,
--5.76375574538582365885E-4,
- 1.63947561694133579842E-3,
--4.32430999505057594430E-3,
- 1.05464603945949983183E-2,
--2.37374148058994688156E-2,
- 4.93052842396707084878E-2,
--9.49010970480476444210E-2,
- 1.71620901522208775349E-1,
--3.04682672343198398683E-1,
- 6.76795274409476084995E-1]
-
-_i0B = [
--7.23318048787475395456E-18,
--4.83050448594418207126E-18,
- 4.46562142029675999901E-17,
- 3.46122286769746109310E-17,
--2.82762398051658348494E-16,
--3.42548561967721913462E-16,
- 1.77256013305652638360E-15,
- 3.81168066935262242075E-15,
--9.55484669882830764870E-15,
--4.15056934728722208663E-14,
- 1.54008621752140982691E-14,
- 3.85277838274214270114E-13,
- 7.18012445138366623367E-13,
--1.79417853150680611778E-12,
--1.32158118404477131188E-11,
--3.14991652796324136454E-11,
- 1.18891471078464383424E-11,
- 4.94060238822496958910E-10,
- 3.39623202570838634515E-9,
- 2.26666899049817806459E-8,
- 2.04891858946906374183E-7,
- 2.89137052083475648297E-6,
- 6.88975834691682398426E-5,
- 3.36911647825569408990E-3,
- 8.04490411014108831608E-1]
-
-def _chbevl(x, vals):
- b0 = vals[0]
- b1 = 0.0
-
- for i in xrange(1,len(vals)):
- b2 = b1
- b1 = b0
- b0 = x*b1 - b2 + vals[i]
-
- return 0.5*(b0 - b2)
-
-def _i0_1(x):
- return exp(x) * _chbevl(x/2.0-2, _i0A)
-
-def _i0_2(x):
- return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x)
-
-def i0(x):
- x = atleast_1d(x).copy()
- y = empty_like(x)
- ind = (x<0)
- x[ind] = -x[ind]
- ind = (x<=8.0)
- y[ind] = _i0_1(x[ind])
- ind2 = ~ind
- y[ind2] = _i0_2(x[ind2])
- return y.squeeze()
-
-## End of cephes code for i0
-
-def kaiser(M,beta):
- """kaiser(M, beta) returns a Kaiser window of length M with shape parameter
- beta.
- """
- from numpy.dual import i0
- n = arange(0,M)
- alpha = (M-1)/2.0
- return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(beta)
-
-def sinc(x):
- """sinc(x) returns sin(pi*x)/(pi*x) at all points of array x.
- """
- y = pi* where(x == 0, 1.0e-20, x)
- return sin(y)/y
-
-def msort(a):
- b = array(a,subok=True,copy=True)
- b.sort(0)
- return b
-
-def median(m):
- """median(m) returns a median of m along the first dimension of m.
- """
- sorted = msort(m)
- index = int(sorted.shape[0]/2)
- if sorted.shape[0] % 2 == 1:
- return sorted[index]
- else:
- return (sorted[index-1]+sorted[index])/2.0
-
-def trapz(y, x=None, dx=1.0, axis=-1):
- """Integrate y(x) using samples along the given axis and the composite
- trapezoidal rule. If x is None, spacing given by dx is assumed.
- """
- y = asarray(y)
- if x is None:
- d = dx
- else:
- d = diff(x,axis=axis)
- nd = len(y.shape)
- slice1 = [slice(None)]*nd
- slice2 = [slice(None)]*nd
- slice1[axis] = slice(1,None)
- slice2[axis] = slice(None,-1)
- return add.reduce(d * (y[slice1]+y[slice2])/2.0,axis)
-
-#always succeed
-def add_newdoc(place, obj, doc):
- """Adds documentation to obj which is in module place.
-
- If doc is a string add it to obj as a docstring
-
- If doc is a tuple, then the first element is interpreted as
- an attribute of obj and the second as the docstring
- (method, docstring)
-
- If doc is a list, then each element of the list should be a
- sequence of length two --> [(method1, docstring1),
- (method2, docstring2), ...]
-
- This routine never raises an error.
- """
- try:
- new = {}
- exec 'from %s import %s' % (place, obj) in new
- if isinstance(doc, str):
- add_docstring(new[obj], doc.strip())
- elif isinstance(doc, tuple):
- add_docstring(getattr(new[obj], doc[0]), doc[1].strip())
- elif isinstance(doc, list):
- for val in doc:
- add_docstring(getattr(new[obj], val[0]), val[1].strip())
- except:
- pass
-
-
-# From matplotlib
-def meshgrid(x,y):
- """
- For vectors x, y with lengths Nx=len(x) and Ny=len(y), return X, Y
- where X and Y are (Ny, Nx) shaped arrays with the elements of x
- and y repeated to fill the matrix
-
- EG,
-
- [X, Y] = meshgrid([1,2,3], [4,5,6,7])
-
- X =
- 1 2 3
- 1 2 3
- 1 2 3
- 1 2 3
-
-
- Y =
- 4 4 4
- 5 5 5
- 6 6 6
- 7 7 7
- """
- x = asarray(x)
- y = asarray(y)
- numRows, numCols = len(y), len(x) # yes, reversed
- x = x.reshape(1,numCols)
- X = x.repeat(numRows, axis=0)
-
- y = y.reshape(numRows,1)
- Y = y.repeat(numCols, axis=1)
- return X, Y
-
-def delete(arr, obj, axis=None):
- """Return a new array with sub-arrays along an axis deleted.
-
- Return a new array with the sub-arrays (i.e. rows or columns)
- deleted along the given axis as specified by obj
-
- obj may be a slice_object (s_[3:5:2]) or an integer
- or an array of integers indicated which sub-arrays to
- remove.
-
- If axis is None, then ravel the array first.
-
- Example:
- >>> arr = [[3,4,5],
- ... [1,2,3],
- ... [6,7,8]]
-
- >>> delete(arr, 1, 1)
- array([[3, 5],
- [1, 3],
- [6, 8]])
- >>> delete(arr, 1, 0)
- array([[3, 4, 5],
- [6, 7, 8]])
- """
- wrap = None
- if type(arr) is not ndarray:
- try:
- wrap = arr.__array_wrap__
- except AttributeError:
- pass
-
-
- arr = asarray(arr)
- ndim = arr.ndim
- if axis is None:
- if ndim != 1:
- arr = arr.ravel()
- ndim = arr.ndim;
- axis = ndim-1;
- if ndim == 0:
- if wrap:
- return wrap(arr)
- else:
- return arr.copy()
- slobj = [slice(None)]*ndim
- N = arr.shape[axis]
- newshape = list(arr.shape)
- if isinstance(obj, (int, long, integer)):
- if (obj < 0): obj += N
- if (obj < 0 or obj >=N):
- raise ValueError, "invalid entry"
- newshape[axis]-=1;
- new = empty(newshape, arr.dtype, arr.flags.fnc)
- slobj[axis] = slice(None, obj)
- new[slobj] = arr[slobj]
- slobj[axis] = slice(obj,None)
- slobj2 = [slice(None)]*ndim
- slobj2[axis] = slice(obj+1,None)
- new[slobj] = arr[slobj2]
- elif isinstance(obj, slice):
- start, stop, step = obj.indices(N)
- numtodel = len(xrange(start, stop, step))
- if numtodel <= 0:
- if wrap:
- return wrap(new)
- else:
- return arr.copy()
- newshape[axis] -= numtodel
- new = empty(newshape, arr.dtype, arr.flags.fnc)
- # copy initial chunk
- if start == 0:
- pass
- else:
- slobj[axis] = slice(None, start)
- new[slobj] = arr[slobj]
- # copy end chunck
- if stop == N:
- pass
- else:
- slobj[axis] = slice(stop-numtodel,None)
- slobj2 = [slice(None)]*ndim
- slobj2[axis] = slice(stop, None)
- new[slobj] = arr[slobj2]
- # copy middle pieces
- if step == 1:
- pass
- else: # use array indexing.
- obj = arange(start, stop, step, dtype=intp)
- all = arange(start, stop, dtype=intp)
- obj = setdiff1d(all, obj)
- slobj[axis] = slice(start, stop-numtodel)
- slobj2 = [slice(None)]*ndim
- slobj2[axis] = obj
- new[slobj] = arr[slobj2]
- else: # default behavior
- obj = array(obj, dtype=intp, copy=0, ndmin=1)
- all = arange(N, dtype=intp)
- obj = setdiff1d(all, obj)
- slobj[axis] = obj
- new = arr[slobj]
- if wrap:
- return wrap(new)
- else:
- return new
-
-def insert(arr, obj, values, axis=None):
- """Return a new array with values inserted along the given axis
- before the given indices
-
- If axis is None, then ravel the array first.
-
- The obj argument can be an integer, a slice, or a sequence of
- integers.
-
- Example:
- >>> a = array([[1,2,3],
- ... [4,5,6],
- ... [7,8,9]])
-
- >>> insert(a, [1,2], [[4],[5]], axis=0)
- array([[1, 2, 3],
- [4, 4, 4],
- [4, 5, 6],
- [5, 5, 5],
- [7, 8, 9]])
- """
- wrap = None
- if type(arr) is not ndarray:
- try:
- wrap = arr.__array_wrap__
- except AttributeError:
- pass
-
- arr = asarray(arr)
- ndim = arr.ndim
- if axis is None:
- if ndim != 1:
- arr = arr.ravel()
- ndim = arr.ndim
- axis = ndim-1
- if (ndim == 0):
- arr = arr.copy()
- arr[...] = values
- if wrap:
- return wrap(arr)
- else:
- return arr
- slobj = [slice(None)]*ndim
- N = arr.shape[axis]
- newshape = list(arr.shape)
- if isinstance(obj, (int, long, integer)):
- if (obj < 0): obj += N
- if obj < 0 or obj > N:
- raise ValueError, "index (%d) out of range (0<=index<=%d) "\
- "in dimension %d" % (obj, N, axis)
- newshape[axis] += 1;
- new = empty(newshape, arr.dtype, arr.flags.fnc)
- slobj[axis] = slice(None, obj)
- new[slobj] = arr[slobj]
- slobj[axis] = obj
- new[slobj] = values
- slobj[axis] = slice(obj+1,None)
- slobj2 = [slice(None)]*ndim
- slobj2[axis] = slice(obj,None)
- new[slobj] = arr[slobj2]
- if wrap:
- return wrap(new)
- return new
-
- elif isinstance(obj, slice):
- # turn it into a range object
- obj = arange(*obj.indices(N),**{'dtype':intp})
-
- # get two sets of indices
- # one is the indices which will hold the new stuff
- # two is the indices where arr will be copied over
-
- obj = asarray(obj, dtype=intp)
- numnew = len(obj)
- index1 = obj + arange(numnew)
- index2 = setdiff1d(arange(numnew+N),index1)
- newshape[axis] += numnew
- new = empty(newshape, arr.dtype, arr.flags.fnc)
- slobj2 = [slice(None)]*ndim
- slobj[axis] = index1
- slobj2[axis] = index2
- new[slobj] = values
- new[slobj2] = arr
-
- if wrap:
- return wrap(new)
- return new
-
-def append(arr, values, axis=None):
- """Append to the end of an array along axis (ravel first if None)
- """
- arr = asanyarray(arr)
- if axis is None:
- if arr.ndim != 1:
- arr = arr.ravel()
- values = ravel(values)
- axis = arr.ndim-1
- return concatenate((arr, values), axis=axis)
diff --git a/numpy/lib/getlimits.py b/numpy/lib/getlimits.py
deleted file mode 100644
index 00c3ea846..000000000
--- a/numpy/lib/getlimits.py
+++ /dev/null
@@ -1,175 +0,0 @@
-""" Machine limits for Float32 and Float64 and (long double) if available...
-"""
-
-__all__ = ['finfo','iinfo']
-
-from machar import MachAr
-import numpy.core.numeric as numeric
-import numpy.core.numerictypes as ntypes
-from numpy.core.numeric import array
-import numpy as N
-
-def _frz(a):
- """fix rank-0 --> rank-1"""
- if a.ndim == 0: a.shape = (1,)
- return a
-
-_convert_to_float = {
- ntypes.csingle: ntypes.single,
- ntypes.complex_: ntypes.float_,
- ntypes.clongfloat: ntypes.longfloat
- }
-
-class finfo(object):
- """Machine limits for floating point types.
-
- :Parameters:
- dtype : floating point type or instance
-
- :SeeAlso:
- - numpy.lib.machar.MachAr
-
- """
-
- _finfo_cache = {}
-
- def __new__(cls, dtype):
- obj = cls._finfo_cache.get(dtype,None)
- if obj is not None:
- return obj
- dtypes = [dtype]
- newdtype = numeric.obj2sctype(dtype)
- if newdtype is not dtype:
- dtypes.append(newdtype)
- dtype = newdtype
- if not issubclass(dtype, numeric.inexact):
- raise ValueError, "data type %r not inexact" % (dtype)
- obj = cls._finfo_cache.get(dtype,None)
- if obj is not None:
- return obj
- if not issubclass(dtype, numeric.floating):
- newdtype = _convert_to_float[dtype]
- if newdtype is not dtype:
- dtypes.append(newdtype)
- dtype = newdtype
- obj = cls._finfo_cache.get(dtype,None)
- if obj is not None:
- return obj
- obj = object.__new__(cls)._init(dtype)
- for dt in dtypes:
- cls._finfo_cache[dt] = obj
- return obj
-
- def _init(self, dtype):
- self.dtype = dtype
- if dtype is ntypes.double:
- itype = ntypes.int64
- fmt = '%24.16e'
- precname = 'double'
- elif dtype is ntypes.single:
- itype = ntypes.int32
- fmt = '%15.7e'
- precname = 'single'
- elif dtype is ntypes.longdouble:
- itype = ntypes.longlong
- fmt = '%s'
- precname = 'long double'
- else:
- raise ValueError, repr(dtype)
-
- machar = MachAr(lambda v:array([v], dtype),
- lambda v:_frz(v.astype(itype))[0],
- lambda v:array(_frz(v)[0], dtype),
- lambda v: fmt % array(_frz(v)[0], dtype),
- 'numpy %s precision floating point number' % precname)
-
- for word in ['precision', 'iexp',
- 'maxexp','minexp','negep',
- 'machep']:
- setattr(self,word,getattr(machar, word))
- for word in ['tiny','resolution','epsneg']:
- setattr(self,word,getattr(machar, word).squeeze())
- self.max = machar.huge.flat[0]
- self.min = -self.max
- self.eps = machar.eps.flat[0]
- self.nexp = machar.iexp
- self.nmant = machar.it
- self.machar = machar
- self._str_tiny = machar._str_xmin
- self._str_max = machar._str_xmax
- self._str_epsneg = machar._str_epsneg
- self._str_eps = machar._str_eps
- self._str_resolution = machar._str_resolution
- return self
-
- def __str__(self):
- return '''\
-Machine parameters for %(dtype)s
----------------------------------------------------------------------
-precision=%(precision)3s resolution=%(_str_resolution)s
-machep=%(machep)6s eps= %(_str_eps)s
-negep =%(negep)6s epsneg= %(_str_epsneg)s
-minexp=%(minexp)6s tiny= %(_str_tiny)s
-maxexp=%(maxexp)6s max= %(_str_max)s
-nexp =%(nexp)6s min= -max
----------------------------------------------------------------------
-''' % self.__dict__
-
-
-class iinfo:
- """Limits for integer types.
-
- :Parameters:
- type : integer type or instance
-
- """
-
- _min_vals = {}
- _max_vals = {}
-
- def __init__(self, type):
- self.dtype = N.dtype(type)
- self.kind = self.dtype.kind
- self.bits = self.dtype.itemsize * 8
- self.key = "%s%d" % (self.kind, self.bits)
- if not self.kind in 'iu':
- raise ValueError("Invalid integer data type.")
-
- def min(self):
- """Minimum value of given dtype."""
- if self.kind == 'u':
- return 0
- else:
- try:
- val = iinfo._min_vals[self.key]
- except KeyError:
- val = int(-(1L << (self.bits-1)))
- iinfo._min_vals[self.key] = val
- return val
-
- min = property(min)
-
- def max(self):
- """Maximum value of given dtype."""
- try:
- val = iinfo._max_vals[self.key]
- except KeyError:
- if self.kind == 'u':
- val = int((1L << self.bits) - 1)
- else:
- val = int((1L << (self.bits-1)) - 1)
- iinfo._max_vals[self.key] = val
- return val
-
- max = property(max)
-
-if __name__ == '__main__':
- f = finfo(ntypes.single)
- print 'single epsilon:',f.eps
- print 'single tiny:',f.tiny
- f = finfo(ntypes.float)
- print 'float epsilon:',f.eps
- print 'float tiny:',f.tiny
- f = finfo(ntypes.longfloat)
- print 'longfloat epsilon:',f.eps
- print 'longfloat tiny:',f.tiny
diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py
deleted file mode 100644
index 26a44976c..000000000
--- a/numpy/lib/index_tricks.py
+++ /dev/null
@@ -1,457 +0,0 @@
-## Automatically adapted for numpy Sep 19, 2005 by convertcode.py
-
-__all__ = ['unravel_index',
- 'mgrid',
- 'ogrid',
- 'r_', 'c_', 's_',
- 'index_exp', 'ix_',
- 'ndenumerate','ndindex']
-
-import sys
-import numpy.core.numeric as _nx
-from numpy.core.numeric import asarray, ScalarType, array
-import math
-
-import function_base
-import numpy.core.defmatrix as matrix
-makemat = matrix.matrix
-
-# contributed by Stefan van der Walt
-def unravel_index(x,dims):
- """Convert a flat index into an index tuple for an array of given shape.
-
- e.g. for a 2x2 array, unravel_index(2,(2,2)) returns (1,0).
-
- Example usage:
- p = x.argmax()
- idx = unravel_index(p,x.shape)
- x[idx] == x.max()
-
- Note: x.flat[p] == x.max()
-
- Thus, it may be easier to use flattened indexing than to re-map
- the index to a tuple.
- """
- if x > _nx.prod(dims)-1 or x < 0:
- raise ValueError("Invalid index, must be 0 <= x <= number of elements.")
-
- idx = _nx.empty_like(dims)
-
- # Take dimensions
- # [a,b,c,d]
- # Reverse and drop first element
- # [d,c,b]
- # Prepend [1]
- # [1,d,c,b]
- # Calculate cumulative product
- # [1,d,dc,dcb]
- # Reverse
- # [dcb,dc,d,1]
- dim_prod = _nx.cumprod([1] + list(dims)[:0:-1])[::-1]
- # Indeces become [x/dcb % a, x/dc % b, x/d % c, x/1 % d]
- return tuple(x/dim_prod % dims)
-
-def ix_(*args):
- """ Construct an open mesh from multiple sequences.
-
- This function takes n 1-d sequences and returns n outputs with n
- dimensions each such that the shape is 1 in all but one dimension and
- the dimension with the non-unit shape value cycles through all n
- dimensions.
-
- Using ix_() one can quickly construct index arrays that will index
- the cross product.
-
- a[ix_([1,3,7],[2,5,8])] returns the array
-
- a[1,2] a[1,5] a[1,8]
- a[3,2] a[3,5] a[3,8]
- a[7,2] a[7,5] a[7,8]
- """
- out = []
- nd = len(args)
- baseshape = [1]*nd
- for k in range(nd):
- new = _nx.asarray(args[k])
- if (new.ndim != 1):
- raise ValueError, "Cross index must be 1 dimensional"
- if issubclass(new.dtype.type, _nx.bool_):
- new = new.nonzero()[0]
- baseshape[k] = len(new)
- new = new.reshape(tuple(baseshape))
- out.append(new)
- baseshape[k] = 1
- return tuple(out)
-
-class nd_grid(object):
- """ Construct a "meshgrid" in N-dimensions.
-
- grid = nd_grid() creates an instance which will return a mesh-grid
- when indexed. The dimension and number of the output arrays are equal
- to the number of indexing dimensions. If the step length is not a
- complex number, then the stop is not inclusive.
-
- However, if the step length is a COMPLEX NUMBER (e.g. 5j), then the
- integer part of it's magnitude is interpreted as specifying the
- number of points to create between the start and stop values, where
- the stop value IS INCLUSIVE.
-
- If instantiated with an argument of sparse=True, the mesh-grid is
- open (or not fleshed out) so that only one-dimension of each returned
- argument is greater than 1
-
- Example:
-
- >>> mgrid = nd_grid()
- >>> mgrid[0:5,0:5]
- array([[[0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2],
- [3, 3, 3, 3, 3],
- [4, 4, 4, 4, 4]],
- <BLANKLINE>
- [[0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4],
- [0, 1, 2, 3, 4]]])
- >>> mgrid[-1:1:5j]
- array([-1. , -0.5, 0. , 0.5, 1. ])
-
- >>> ogrid = nd_grid(sparse=True)
- >>> ogrid[0:5,0:5]
- [array([[0],
- [1],
- [2],
- [3],
- [4]]), array([[0, 1, 2, 3, 4]])]
-
- """
- def __init__(self, sparse=False):
- self.sparse = sparse
- def __getitem__(self,key):
- try:
- size = []
- typ = int
- for k in range(len(key)):
- step = key[k].step
- start = key[k].start
- if start is None: start=0
- if step is None: step=1
- if isinstance(step, complex):
- size.append(int(abs(step)))
- typ = float
- else:
- size.append(math.ceil((key[k].stop - start)/(step*1.0)))
- if isinstance(step, float) or \
- isinstance(start, float) or \
- isinstance(key[k].stop, float):
- typ = float
- if self.sparse:
- nn = map(lambda x,t: _nx.arange(x, dtype=t), size, \
- (typ,)*len(size))
- else:
- nn = _nx.indices(size, typ)
- for k in range(len(size)):
- step = key[k].step
- start = key[k].start
- if start is None: start=0
- if step is None: step=1
- if isinstance(step, complex):
- step = int(abs(step))
- if step != 1:
- step = (key[k].stop - start)/float(step-1)
- nn[k] = (nn[k]*step+start)
- if self.sparse:
- slobj = [_nx.newaxis]*len(size)
- for k in range(len(size)):
- slobj[k] = slice(None,None)
- nn[k] = nn[k][slobj]
- slobj[k] = _nx.newaxis
- return nn
- except (IndexError, TypeError):
- step = key.step
- stop = key.stop
- start = key.start
- if start is None: start = 0
- if isinstance(step, complex):
- step = abs(step)
- length = int(step)
- if step != 1:
- step = (key.stop-start)/float(step-1)
- stop = key.stop+step
- return _nx.arange(0, length,1, float)*step + start
- else:
- return _nx.arange(start, stop, step)
-
- def __getslice__(self,i,j):
- return _nx.arange(i,j)
-
- def __len__(self):
- return 0
-
-mgrid = nd_grid(sparse=False)
-ogrid = nd_grid(sparse=True)
-
-class concatenator(object):
- """Translates slice objects to concatenation along an axis.
- """
- def _retval(self, res):
- if self.matrix:
- oldndim = res.ndim
- res = makemat(res)
- if oldndim == 1 and self.col:
- res = res.T
- self.axis = self._axis
- self.matrix = self._matrix
- self.col = 0
- return res
-
- def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
- self._axis = axis
- self._matrix = matrix
- self.axis = axis
- self.matrix = matrix
- self.col = 0
- self.trans1d = trans1d
- self.ndmin = ndmin
-
- def __getitem__(self,key):
- trans1d = self.trans1d
- ndmin = self.ndmin
- if isinstance(key, str):
- frame = sys._getframe().f_back
- mymat = matrix.bmat(key,frame.f_globals,frame.f_locals)
- return mymat
- if type(key) is not tuple:
- key = (key,)
- objs = []
- scalars = []
- final_dtypedescr = None
- for k in range(len(key)):
- scalar = False
- if type(key[k]) is slice:
- step = key[k].step
- start = key[k].start
- stop = key[k].stop
- if start is None: start = 0
- if step is None:
- step = 1
- if isinstance(step, complex):
- size = int(abs(step))
- newobj = function_base.linspace(start, stop, num=size)
- else:
- newobj = _nx.arange(start, stop, step)
- if ndmin > 1:
- newobj = array(newobj,copy=False,ndmin=ndmin)
- if trans1d != -1:
- newobj = newobj.swapaxes(-1,trans1d)
- elif isinstance(key[k],str):
- if k != 0:
- raise ValueError, "special directives must be the"\
- "first entry."
- key0 = key[0]
- if key0 in 'rc':
- self.matrix = True
- self.col = (key0 == 'c')
- continue
- if ',' in key0:
- vec = key0.split(',')
- try:
- self.axis, ndmin = \
- [int(x) for x in vec[:2]]
- if len(vec) == 3:
- trans1d = int(vec[2])
- continue
- except:
- raise ValueError, "unknown special directive"
- try:
- self.axis = int(key[k])
- continue
- except (ValueError, TypeError):
- raise ValueError, "unknown special directive"
- elif type(key[k]) in ScalarType:
- newobj = array(key[k],ndmin=ndmin)
- scalars.append(k)
- scalar = True
- else:
- newobj = key[k]
- if ndmin > 1:
- tempobj = array(newobj, copy=False, subok=True)
- newobj = array(newobj, copy=False, subok=True,
- ndmin=ndmin)
- if trans1d != -1 and tempobj.ndim < ndmin:
- k2 = ndmin-tempobj.ndim
- if (trans1d < 0):
- trans1d += k2 + 1
- defaxes = range(ndmin)
- k1 = trans1d
- axes = defaxes[:k1] + defaxes[k2:] + \
- defaxes[k1:k2]
- newobj = newobj.transpose(axes)
- del tempobj
- objs.append(newobj)
- if isinstance(newobj, _nx.ndarray) and not scalar:
- if final_dtypedescr is None:
- final_dtypedescr = newobj.dtype
- elif newobj.dtype > final_dtypedescr:
- final_dtypedescr = newobj.dtype
- if final_dtypedescr is not None:
- for k in scalars:
- objs[k] = objs[k].astype(final_dtypedescr)
- res = _nx.concatenate(tuple(objs),axis=self.axis)
- return self._retval(res)
-
- def __getslice__(self,i,j):
- res = _nx.arange(i,j)
- return self._retval(res)
-
- def __len__(self):
- return 0
-
-# separate classes are used here instead of just making r_ = concatentor(0),
-# etc. because otherwise we couldn't get the doc string to come out right
-# in help(r_)
-
-class r_class(concatenator):
- """Translates slice objects to concatenation along the first axis.
-
- For example:
- >>> r_[array([1,2,3]), 0, 0, array([4,5,6])]
- array([1, 2, 3, 0, 0, 4, 5, 6])
-
- """
- def __init__(self):
- concatenator.__init__(self, 0)
-
-r_ = r_class()
-
-class c_class(concatenator):
- """Translates slice objects to concatenation along the second axis.
- """
- def __init__(self):
- concatenator.__init__(self, -1, ndmin=2, trans1d=0)
-
-c_ = c_class()
-
-class ndenumerate(object):
- """
- A simple nd index iterator over an array.
-
- Example:
- >>> a = array([[1,2],[3,4]])
- >>> for index, x in ndenumerate(a):
- ... print index, x
- (0, 0) 1
- (0, 1) 2
- (1, 0) 3
- (1, 1) 4
- """
- def __init__(self, arr):
- self.iter = asarray(arr).flat
-
- def next(self):
- return self.iter.coords, self.iter.next()
-
- def __iter__(self):
- return self
-
-
-class ndindex(object):
- """Pass in a sequence of integers corresponding
- to the number of dimensions in the counter. This iterator
- will then return an N-dimensional counter.
-
- Example:
- >>> for index in ndindex(3,2,1):
- ... print index
- (0, 0, 0)
- (0, 1, 0)
- (1, 0, 0)
- (1, 1, 0)
- (2, 0, 0)
- (2, 1, 0)
-
- """
-
- def __init__(self, *args):
- if len(args) == 1 and isinstance(args[0], tuple):
- args = args[0]
- self.nd = len(args)
- self.ind = [0]*self.nd
- self.index = 0
- self.maxvals = args
- tot = 1
- for k in range(self.nd):
- tot *= args[k]
- self.total = tot
-
- def _incrementone(self, axis):
- if (axis < 0): # base case
- return
- if (self.ind[axis] < self.maxvals[axis]-1):
- self.ind[axis] += 1
- else:
- self.ind[axis] = 0
- self._incrementone(axis-1)
-
- def ndincr(self):
- self._incrementone(self.nd-1)
-
- def next(self):
- if (self.index >= self.total):
- raise StopIteration
- val = tuple(self.ind)
- self.index += 1
- self.ndincr()
- return val
-
- def __iter__(self):
- return self
-
-
-
-
-# You can do all this with slice() plus a few special objects,
-# but there's a lot to remember. This version is simpler because
-# it uses the standard array indexing syntax.
-#
-# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
-# last revision: 1999-7-23
-#
-# Cosmetic changes by T. Oliphant 2001
-#
-#
-
-class _index_expression_class(object):
- """
- A nicer way to build up index tuples for arrays.
-
- For any index combination, including slicing and axis insertion,
- 'a[indices]' is the same as 'a[index_exp[indices]]' for any
- array 'a'. However, 'index_exp[indices]' can be used anywhere
- in Python code and returns a tuple of slice objects that can be
- used in the construction of complex index expressions.
- """
- maxint = sys.maxint
- def __init__(self, maketuple):
- self.maketuple = maketuple
-
- def __getitem__(self, item):
- if self.maketuple and type(item) != type(()):
- return (item,)
- else:
- return item
-
- def __len__(self):
- return self.maxint
-
- def __getslice__(self, start, stop):
- if stop == self.maxint:
- stop = None
- return self[start:stop:None]
-
-index_exp = _index_expression_class(1)
-s_ = _index_expression_class(0)
-
-# End contribution from Konrad.
diff --git a/numpy/lib/info.py b/numpy/lib/info.py
deleted file mode 100644
index 0944fa9b5..000000000
--- a/numpy/lib/info.py
+++ /dev/null
@@ -1,136 +0,0 @@
-__doc_title__ = """Basic functions used by several sub-packages and
-useful to have in the main name-space."""
-__doc__ = __doc_title__ + """
-
-Type handling
-==============
-iscomplexobj -- Test for complex object, scalar result
-isrealobj -- Test for real object, scalar result
-iscomplex -- Test for complex elements, array result
-isreal -- Test for real elements, array result
-imag -- Imaginary part
-real -- Real part
-real_if_close -- Turns complex number with tiny imaginary part to real
-isneginf -- Tests for negative infinity ---|
-isposinf -- Tests for positive infinity |
-isnan -- Tests for nans |---- array results
-isinf -- Tests for infinity |
-isfinite -- Tests for finite numbers ---|
-isscalar -- True if argument is a scalar
-nan_to_num -- Replaces NaN's with 0 and infinities with large numbers
-cast -- Dictionary of functions to force cast to each type
-common_type -- Determine the 'minimum common type code' for a group
- of arrays
-mintypecode -- Return minimal allowed common typecode.
-
-Index tricks
-==================
-mgrid -- Method which allows easy construction of N-d 'mesh-grids'
-r_ -- Append and construct arrays: turns slice objects into
- ranges and concatenates them, for 2d arrays appends
- rows.
-index_exp -- Konrad Hinsen's index_expression class instance which
- can be useful for building complicated slicing syntax.
-
-Useful functions
-==================
-select -- Extension of where to multiple conditions and choices
-extract -- Extract 1d array from flattened array according to mask
-insert -- Insert 1d array of values into Nd array according to mask
-linspace -- Evenly spaced samples in linear space
-logspace -- Evenly spaced samples in logarithmic space
-fix -- Round x to nearest integer towards zero
-mod -- Modulo mod(x,y) = x % y except keeps sign of y
-amax -- Array maximum along axis
-amin -- Array minimum along axis
-ptp -- Array max-min along axis
-cumsum -- Cumulative sum along axis
-prod -- Product of elements along axis
-cumprod -- Cumluative product along axis
-diff -- Discrete differences along axis
-angle -- Returns angle of complex argument
-unwrap -- Unwrap phase along given axis (1-d algorithm)
-sort_complex -- Sort a complex-array (based on real, then imaginary)
-trim_zeros -- trim the leading and trailing zeros from 1D array.
-
-vectorize -- a class that wraps a Python function taking scalar
- arguments into a generalized function which
- can handle arrays of arguments using the broadcast
- rules of numerix Python.
-
-Shape manipulation
-===================
-squeeze -- Return a with length-one dimensions removed.
-atleast_1d -- Force arrays to be > 1D
-atleast_2d -- Force arrays to be > 2D
-atleast_3d -- Force arrays to be > 3D
-vstack -- Stack arrays vertically (row on row)
-hstack -- Stack arrays horizontally (column on column)
-column_stack -- Stack 1D arrays as columns into 2D array
-dstack -- Stack arrays depthwise (along third dimension)
-split -- Divide array into a list of sub-arrays
-hsplit -- Split into columns
-vsplit -- Split into rows
-dsplit -- Split along third dimension
-
-Matrix (2d array) manipluations
-===============================
-fliplr -- 2D array with columns flipped
-flipud -- 2D array with rows flipped
-rot90 -- Rotate a 2D array a multiple of 90 degrees
-eye -- Return a 2D array with ones down a given diagonal
-diag -- Construct a 2D array from a vector, or return a given
- diagonal from a 2D array.
-mat -- Construct a Matrix
-bmat -- Build a Matrix from blocks
-
-Polynomials
-============
-poly1d -- A one-dimensional polynomial class
-
-poly -- Return polynomial coefficients from roots
-roots -- Find roots of polynomial given coefficients
-polyint -- Integrate polynomial
-polyder -- Differentiate polynomial
-polyadd -- Add polynomials
-polysub -- Substract polynomials
-polymul -- Multiply polynomials
-polydiv -- Divide polynomials
-polyval -- Evaluate polynomial at given argument
-
-Import tricks
-=============
-ppimport -- Postpone module import until trying to use it
-ppimport_attr -- Postpone module import until trying to use its
- attribute
-ppresolve -- Import postponed module and return it.
-
-Machine arithmetics
-===================
-machar_single -- MachAr instance storing the parameters of system
- single precision floating point arithmetics
-machar_double -- MachAr instance storing the parameters of system
- double precision floating point arithmetics
-
-Threading tricks
-================
-ParallelExec -- Execute commands in parallel thread.
-
-1D array set operations
-=======================
-Set operations for 1D numeric arrays based on sort() function.
-
-ediff1d -- Array difference (auxiliary function).
-unique1d -- Unique elements of 1D array.
-intersect1d -- Intersection of 1D arrays with unique elements.
-intersect1d_nu -- Intersection of 1D arrays with any elements.
-setxor1d -- Set exclusive-or of 1D arrays with unique elements.
-setmember1d -- Return an array of shape of ar1 containing 1 where
- the elements of ar1 are in ar2 and 0 otherwise.
-union1d -- Union of 1D arrays with unique elements.
-setdiff1d -- Set difference of 1D arrays with unique elements.
-
-"""
-
-depends = ['core','testing']
-global_symbols = ['*']
diff --git a/numpy/lib/machar.py b/numpy/lib/machar.py
deleted file mode 100644
index 9d0e08e45..000000000
--- a/numpy/lib/machar.py
+++ /dev/null
@@ -1,285 +0,0 @@
-"""
-Machine arithmetics - determine the parameters of the
-floating-point arithmetic system
-"""
-# Author: Pearu Peterson, September 2003
-
-
-__all__ = ['MachAr']
-
-from numpy.core.fromnumeric import any
-
-# Need to speed this up...especially for longfloat
-
-class MachAr(object):
- """Diagnosing machine parameters.
-
- The following attributes are available:
-
- ibeta - radix in which numbers are represented
- it - number of base-ibeta digits in the floating point mantissa M
- machep - exponent of the smallest (most negative) power of ibeta that,
- added to 1.0,
- gives something different from 1.0
- eps - floating-point number beta**machep (floating point precision)
- negep - exponent of the smallest power of ibeta that, substracted
- from 1.0, gives something different from 1.0
- epsneg - floating-point number beta**negep
- iexp - number of bits in the exponent (including its sign and bias)
- minexp - smallest (most negative) power of ibeta consistent with there
- being no leading zeros in the mantissa
- xmin - floating point number beta**minexp (the smallest (in
- magnitude) usable floating value)
- maxexp - smallest (positive) power of ibeta that causes overflow
- xmax - (1-epsneg)* beta**maxexp (the largest (in magnitude)
- usable floating value)
- irnd - in range(6), information on what kind of rounding is done
- in addition, and on how underflow is handled
- ngrd - number of 'guard digits' used when truncating the product
- of two mantissas to fit the representation
-
- epsilon - same as eps
- tiny - same as xmin
- huge - same as xmax
- precision - int(-log10(eps))
- resolution - 10**(-precision)
-
- Reference:
- Numerical Recipies.
- """
- def __init__(self, float_conv=float,int_conv=int,
- float_to_float=float,
- float_to_str = lambda v:'%24.16e' % v,
- title = 'Python floating point number'):
- """
- float_conv - convert integer to float (array)
- int_conv - convert float (array) to integer
- float_to_float - convert float array to float
- float_to_str - convert array float to str
- title - description of used floating point numbers
- """
- max_iterN = 10000
- msg = "Did not converge after %d tries with %s"
- one = float_conv(1)
- two = one + one
- zero = one - one
-
- # Do we really need to do this? Aren't they 2 and 2.0?
- # Determine ibeta and beta
- a = one
- for _ in xrange(max_iterN):
- a = a + a
- temp = a + one
- temp1 = temp - a
- if any(temp1 - one != zero):
- break
- else:
- raise RuntimeError, msg % (_, one.dtype)
- b = one
- for _ in xrange(max_iterN):
- b = b + b
- temp = a + b
- itemp = int_conv(temp-a)
- if any(itemp != 0):
- break
- else:
- raise RuntimeError, msg % (_, one.dtype)
- ibeta = itemp
- beta = float_conv(ibeta)
-
- # Determine it and irnd
- it = -1
- b = one
- for _ in xrange(max_iterN):
- it = it + 1
- b = b * beta
- temp = b + one
- temp1 = temp - b
- if any(temp1 - one != zero):
- break
- else:
- raise RuntimeError, msg % (_, one.dtype)
-
- betah = beta / two
- a = one
- for _ in xrange(max_iterN):
- a = a + a
- temp = a + one
- temp1 = temp - a
- if any(temp1 - one != zero):
- break
- else:
- raise RuntimeError, msg % (_, one.dtype)
- temp = a + betah
- irnd = 0
- if any(temp-a != zero):
- irnd = 1
- tempa = a + beta
- temp = tempa + betah
- if irnd==0 and any(temp-tempa != zero):
- irnd = 2
-
- # Determine negep and epsneg
- negep = it + 3
- betain = one / beta
- a = one
- for i in range(negep):
- a = a * betain
- b = a
- for _ in xrange(max_iterN):
- temp = one - a
- if any(temp-one != zero):
- break
- a = a * beta
- negep = negep - 1
- # Prevent infinite loop on PPC with gcc 4.0:
- if negep < 0:
- raise RuntimeError, "could not determine machine tolerance " \
- "for 'negep', locals() -> %s" % (locals())
- else:
- raise RuntimeError, msg % (_, one.dtype)
- negep = -negep
- epsneg = a
-
- # Determine machep and eps
- machep = - it - 3
- a = b
-
- for _ in xrange(max_iterN):
- temp = one + a
- if any(temp-one != zero):
- break
- a = a * beta
- machep = machep + 1
- else:
- raise RuntimeError, msg % (_, one.dtype)
- eps = a
-
- # Determine ngrd
- ngrd = 0
- temp = one + eps
- if irnd==0 and any(temp*one - one != zero):
- ngrd = 1
-
- # Determine iexp
- i = 0
- k = 1
- z = betain
- t = one + eps
- nxres = 0
- for _ in xrange(max_iterN):
- y = z
- z = y*y
- a = z*one # Check here for underflow
- temp = z*t
- if any(a+a == zero) or any(abs(z)>=y):
- break
- temp1 = temp * betain
- if any(temp1*beta == z):
- break
- i = i + 1
- k = k + k
- else:
- raise RuntimeError, msg % (_, one.dtype)
- if ibeta != 10:
- iexp = i + 1
- mx = k + k
- else:
- iexp = 2
- iz = ibeta
- while k >= iz:
- iz = iz * ibeta
- iexp = iexp + 1
- mx = iz + iz - 1
-
- # Determine minexp and xmin
- for _ in xrange(max_iterN):
- xmin = y
- y = y * betain
- a = y * one
- temp = y * t
- if any(a+a != zero) and any(abs(y) < xmin):
- k = k + 1
- temp1 = temp * betain
- if any(temp1*beta == y) and any(temp != y):
- nxres = 3
- xmin = y
- break
- else:
- break
- else:
- raise RuntimeError, msg % (_, one.dtype)
- minexp = -k
-
- # Determine maxexp, xmax
- if mx <= k + k - 3 and ibeta != 10:
- mx = mx + mx
- iexp = iexp + 1
- maxexp = mx + minexp
- irnd = irnd + nxres
- if irnd >= 2:
- maxexp = maxexp - 2
- i = maxexp + minexp
- if ibeta == 2 and not i:
- maxexp = maxexp - 1
- if i > 20:
- maxexp = maxexp - 1
- if any(a != y):
- maxexp = maxexp - 2
- xmax = one - epsneg
- if any(xmax*one != xmax):
- xmax = one - beta*epsneg
- xmax = xmax / (xmin*beta*beta*beta)
- i = maxexp + minexp + 3
- for j in range(i):
- if ibeta==2:
- xmax = xmax + xmax
- else:
- xmax = xmax * beta
-
- self.ibeta = ibeta
- self.it = it
- self.negep = negep
- self.epsneg = float_to_float(epsneg)
- self._str_epsneg = float_to_str(epsneg)
- self.machep = machep
- self.eps = float_to_float(eps)
- self._str_eps = float_to_str(eps)
- self.ngrd = ngrd
- self.iexp = iexp
- self.minexp = minexp
- self.xmin = float_to_float(xmin)
- self._str_xmin = float_to_str(xmin)
- self.maxexp = maxexp
- self.xmax = float_to_float(xmax)
- self._str_xmax = float_to_str(xmax)
- self.irnd = irnd
-
- self.title = title
- # Commonly used parameters
- self.epsilon = self.eps
- self.tiny = self.xmin
- self.huge = self.xmax
-
- import math
- self.precision = int(-math.log10(float_to_float(self.eps)))
- ten = two + two + two + two + two
- resolution = ten ** (-self.precision)
- self.resolution = float_to_float(resolution)
- self._str_resolution = float_to_str(resolution)
-
- def __str__(self):
- return '''\
-Machine parameters for %(title)s
----------------------------------------------------------------------
-ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s
-machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)
-negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)
-minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)
-maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)
----------------------------------------------------------------------
-''' % self.__dict__
-
-
-if __name__ == '__main__':
- print MachAr()
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
deleted file mode 100644
index da1908d93..000000000
--- a/numpy/lib/polynomial.py
+++ /dev/null
@@ -1,670 +0,0 @@
-"""
-Functions to operate on polynomials.
-"""
-
-__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
- 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
- 'polyfit', 'RankWarning']
-
-import re
-import warnings
-import numpy.core.numeric as NX
-
-from numpy.core import isscalar, abs
-from numpy.lib.getlimits import finfo
-from numpy.lib.twodim_base import diag, vander
-from numpy.lib.shape_base import hstack, atleast_1d
-from numpy.lib.function_base import trim_zeros, sort_complex
-eigvals = None
-lstsq = None
-_single_eps = finfo(NX.single).eps
-_double_eps = finfo(NX.double).eps
-
-class RankWarning(UserWarning):
- """Issued by polyfit when Vandermonde matrix is rank deficient.
- """
- pass
-
-def get_linalg_funcs():
- "Look for linear algebra functions in numpy"
- global eigvals, lstsq
- from numpy.dual import eigvals, lstsq
- return
-
-def _eigvals(arg):
- "Return the eigenvalues of the argument"
- try:
- return eigvals(arg)
- except TypeError:
- get_linalg_funcs()
- return eigvals(arg)
-
-def _lstsq(X, y, rcond):
- "Do least squares on the arguments"
- try:
- return lstsq(X, y, rcond)
- except TypeError:
- get_linalg_funcs()
- return lstsq(X, y, rcond)
-
-def poly(seq_of_zeros):
- """ Return a sequence representing a polynomial given a sequence of roots.
-
- If the input is a matrix, return the characteristic polynomial.
-
- Example:
-
- >>> b = roots([1,3,1,5,6])
- >>> poly(b)
- array([ 1., 3., 1., 5., 6.])
-
- """
- seq_of_zeros = atleast_1d(seq_of_zeros)
- sh = seq_of_zeros.shape
- if len(sh) == 2 and sh[0] == sh[1]:
- seq_of_zeros = _eigvals(seq_of_zeros)
- elif len(sh) ==1:
- pass
- else:
- raise ValueError, "input must be 1d or square 2d array."
-
- if len(seq_of_zeros) == 0:
- return 1.0
-
- a = [1]
- for k in range(len(seq_of_zeros)):
- a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full')
-
- if issubclass(a.dtype.type, NX.complexfloating):
- # if complex roots are all complex conjugates, the roots are real.
- roots = NX.asarray(seq_of_zeros, complex)
- pos_roots = sort_complex(NX.compress(roots.imag > 0, roots))
- neg_roots = NX.conjugate(sort_complex(
- NX.compress(roots.imag < 0,roots)))
- if (len(pos_roots) == len(neg_roots) and
- NX.alltrue(neg_roots == pos_roots)):
- a = a.real.copy()
-
- return a
-
-def roots(p):
- """ Return the roots of the polynomial coefficients in p.
-
- The values in the rank-1 array p are coefficients of a polynomial.
- If the length of p is n+1 then the polynomial is
- p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
- """
- # If input is scalar, this makes it an array
- p = atleast_1d(p)
- if len(p.shape) != 1:
- raise ValueError,"Input must be a rank-1 array."
-
- # find non-zero array entries
- non_zero = NX.nonzero(NX.ravel(p))[0]
-
- # Return an empty array if polynomial is all zeros
- if len(non_zero) == 0:
- return NX.array([])
-
- # find the number of trailing zeros -- this is the number of roots at 0.
- trailing_zeros = len(p) - non_zero[-1] - 1
-
- # strip leading and trailing zeros
- p = p[int(non_zero[0]):int(non_zero[-1])+1]
-
- # casting: if incoming array isn't floating point, make it floating point.
- if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
- p = p.astype(float)
-
- N = len(p)
- if N > 1:
- # build companion matrix and find its eigenvalues (the roots)
- A = diag(NX.ones((N-2,), p.dtype), -1)
- A[0, :] = -p[1:] / p[0]
- roots = _eigvals(A)
- else:
- roots = NX.array([])
-
- # tack any zeros onto the back of the array
- roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
- return roots
-
-def polyint(p, m=1, k=None):
- """Return the mth analytical integral of the polynomial p.
-
- If k is None, then zero-valued constants of integration are used.
- otherwise, k should be a list of length m (or a scalar if m=1) to
- represent the constants of integration to use for each integration
- (starting with k[0])
- """
- m = int(m)
- if m < 0:
- raise ValueError, "Order of integral must be positive (see polyder)"
- if k is None:
- k = NX.zeros(m, float)
- k = atleast_1d(k)
- if len(k) == 1 and m > 1:
- k = k[0]*NX.ones(m, float)
- if len(k) < m:
- raise ValueError, \
- "k must be a scalar or a rank-1 array of length 1 or >m."
- if m == 0:
- return p
- else:
- truepoly = isinstance(p, poly1d)
- p = NX.asarray(p)
- y = NX.zeros(len(p)+1, float)
- y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
- y[-1] = k[0]
- val = polyint(y, m-1, k=k[1:])
- if truepoly:
- val = poly1d(val)
- return val
-
-def polyder(p, m=1):
- """Return the mth derivative of the polynomial p.
- """
- m = int(m)
- truepoly = isinstance(p, poly1d)
- p = NX.asarray(p)
- n = len(p)-1
- y = p[:-1] * NX.arange(n, 0, -1)
- if m < 0:
- raise ValueError, "Order of derivative must be positive (see polyint)"
- if m == 0:
- return p
- else:
- val = polyder(y, m-1)
- if truepoly:
- val = poly1d(val)
- return val
-
-def polyfit(x, y, deg, rcond=None, full=False):
- """Least squares polynomial fit.
-
- Required arguments
-
- x -- vector of sample points
- y -- vector or 2D array of values to fit
- deg -- degree of the fitting polynomial
-
- Keyword arguments
-
- rcond -- relative condition number of the fit (default len(x)*eps)
- full -- return full diagnostic output (default False)
-
- Returns
-
- full == False -- coefficients
- full == True -- coefficients, residuals, rank, singular values, rcond.
-
- Warns
-
- RankWarning -- if rank is reduced and not full output
-
- Do a best fit polynomial of degree 'deg' of 'x' to 'y'. Return value is a
- vector of polynomial coefficients [pk ... p1 p0]. Eg, for n=2
-
- p2*x0^2 + p1*x0 + p0 = y1
- p2*x1^2 + p1*x1 + p0 = y1
- p2*x2^2 + p1*x2 + p0 = y2
- .....
- p2*xk^2 + p1*xk + p0 = yk
-
-
- Method: if X is a the Vandermonde Matrix computed from x (see
- http://mathworld.wolfram.com/VandermondeMatrix.html), then the
- polynomial least squares solution is given by the 'p' in
-
- X*p = y
-
- where X is a len(x) x N+1 matrix, p is a N+1 length vector, and y
- is a len(x) x 1 vector
-
- This equation can be solved as
-
- p = (XT*X)^-1 * XT * y
-
- where XT is the transpose of X and -1 denotes the inverse. However, this
- method is susceptible to rounding errors and generally the singular value
- decomposition is preferred and that is the method used here. The singular
- value method takes a paramenter, 'rcond', which sets a limit on the
- relative size of the smallest singular value to be used in solving the
- equation. This may result in lowering the rank of the Vandermonde matrix,
- in which case a RankWarning is issued. If polyfit issues a RankWarning, try
- a fit of lower degree or replace x by x - x.mean(), both of which will
- generally improve the condition number. The routine already normalizes the
- vector x by its maximum absolute value to help in this regard. The rcond
- parameter may also be set to a value smaller than its default, but this may
- result in bad fits. The current default value of rcond is len(x)*eps, where
- eps is the relative precision of the floating type being used, generally
- around 1e-7 and 2e-16 for IEEE single and double precision respectively.
- This value of rcond is fairly conservative but works pretty well when x -
- x.mean() is used in place of x.
-
- The warnings can be turned off by:
-
- >>> import numpy
- >>> import warnings
- >>> warnings.simplefilter('ignore',numpy.RankWarning)
-
- DISCLAIMER: Power series fits are full of pitfalls for the unwary once the
- degree of the fit becomes large or the interval of sample points is badly
- centered. The basic problem is that the powers x**n are generally a poor
- basis for the functions on the sample interval with the result that the
- Vandermonde matrix is ill conditioned and computation of the polynomial
- values is sensitive to coefficient error. The quality of the resulting fit
- should be checked against the data whenever the condition number is large,
- as the quality of polynomial fits *can not* be taken for granted. If all
- you want to do is draw a smooth curve through the y values and polyfit is
- not doing the job, try centering the sample range or look into
- scipy.interpolate, which includes some nice spline fitting functions that
- may be of use.
-
- For more info, see
- http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html,
- but note that the k's and n's in the superscripts and subscripts
- on that page. The linear algebra is correct, however.
-
- See also polyval
-
- """
- order = int(deg) + 1
- x = NX.asarray(x) + 0.0
- y = NX.asarray(y) + 0.0
-
- # check arguments.
- if deg < 0 :
- raise ValueError, "expected deg >= 0"
- if x.ndim != 1 or x.size == 0:
- raise TypeError, "expected non-empty vector for x"
- if y.ndim < 1 or y.ndim > 2 :
- raise TypeError, "expected 1D or 2D array for y"
- if x.shape[0] != y.shape[0] :
- raise TypeError, "expected x and y to have same length"
-
- # set rcond
- if rcond is None :
- xtype = x.dtype
- if xtype == NX.single or xtype == NX.csingle :
- rcond = len(x)*_single_eps
- else :
- rcond = len(x)*_double_eps
-
- # scale x to improve condition number
- scale = abs(x).max()
- if scale != 0 :
- x /= scale
-
- # solve least squares equation for powers of x
- v = vander(x, order)
- c, resids, rank, s = _lstsq(v, y, rcond)
-
- # warn on rank reduction, which indicates an ill conditioned matrix
- if rank != order and not full:
- msg = "Polyfit may be poorly conditioned"
- warnings.warn(msg, RankWarning)
-
- # scale returned coefficients
- if scale != 0 :
- c /= vander([scale], order)[0]
-
- if full :
- return c, resids, rank, s, rcond
- else :
- return c
-
-
-
-def polyval(p, x):
- """Evaluate the polynomial p at x. If x is a polynomial then composition.
-
- Description:
-
- If p is of length N, this function returns the value:
- p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]
-
- x can be a sequence and p(x) will be returned for all elements of x.
- or x can be another polynomial and the composite polynomial p(x) will be
- returned.
-
- Notice: This can produce inaccurate results for polynomials with
- significant variability. Use carefully.
- """
- p = NX.asarray(p)
- if isinstance(x, poly1d):
- y = 0
- else:
- x = NX.asarray(x)
- y = NX.zeros_like(x)
- for i in range(len(p)):
- y = x * y + p[i]
- return y
-
-def polyadd(a1, a2):
- """Adds two polynomials represented as sequences
- """
- truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
- a1 = atleast_1d(a1)
- a2 = atleast_1d(a2)
- diff = len(a2) - len(a1)
- if diff == 0:
- val = a1 + a2
- elif diff > 0:
- zr = NX.zeros(diff, a1.dtype)
- val = NX.concatenate((zr, a1)) + a2
- else:
- zr = NX.zeros(abs(diff), a2.dtype)
- val = a1 + NX.concatenate((zr, a2))
- if truepoly:
- val = poly1d(val)
- return val
-
-def polysub(a1, a2):
- """Subtracts two polynomials represented as sequences
- """
- truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
- a1 = atleast_1d(a1)
- a2 = atleast_1d(a2)
- diff = len(a2) - len(a1)
- if diff == 0:
- val = a1 - a2
- elif diff > 0:
- zr = NX.zeros(diff, a1.dtype)
- val = NX.concatenate((zr, a1)) - a2
- else:
- zr = NX.zeros(abs(diff), a2.dtype)
- val = a1 - NX.concatenate((zr, a2))
- if truepoly:
- val = poly1d(val)
- return val
-
-
-def polymul(a1, a2):
- """Multiplies two polynomials represented as sequences.
- """
- truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
- a1,a2 = poly1d(a1),poly1d(a2)
- val = NX.convolve(a1, a2)
- if truepoly:
- val = poly1d(val)
- return val
-
-def polydiv(u, v):
- """Computes q and r polynomials so that u(s) = q(s)*v(s) + r(s)
- and deg r < deg v.
- """
- truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d))
- u = atleast_1d(u)
- v = atleast_1d(v)
- m = len(u) - 1
- n = len(v) - 1
- scale = 1. / v[0]
- q = NX.zeros((max(m-n+1,1),), float)
- r = u.copy()
- for k in range(0, m-n+1):
- d = scale * r[k]
- q[k] = d
- r[k:k+n+1] -= d*v
- while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
- r = r[1:]
- if truepoly:
- q = poly1d(q)
- r = poly1d(r)
- return q, r
-
-_poly_mat = re.compile(r"[*][*]([0-9]*)")
-def _raise_power(astr, wrap=70):
- n = 0
- line1 = ''
- line2 = ''
- output = ' '
- while 1:
- mat = _poly_mat.search(astr, n)
- if mat is None:
- break
- span = mat.span()
- power = mat.groups()[0]
- partstr = astr[n:span[0]]
- n = span[1]
- toadd2 = partstr + ' '*(len(power)-1)
- toadd1 = ' '*(len(partstr)-1) + power
- if ((len(line2)+len(toadd2) > wrap) or \
- (len(line1)+len(toadd1) > wrap)):
- output += line1 + "\n" + line2 + "\n "
- line1 = toadd1
- line2 = toadd2
- else:
- line2 += partstr + ' '*(len(power)-1)
- line1 += ' '*(len(partstr)-1) + power
- output += line1 + "\n" + line2
- return output + astr[n:]
-
-
-class poly1d(object):
- """A one-dimensional polynomial class.
-
- p = poly1d([1,2,3]) constructs the polynomial x**2 + 2 x + 3
-
- p(0.5) evaluates the polynomial at the location
- p.r is a list of roots
- p.c is the coefficient array [1,2,3]
- p.order is the polynomial order (after leading zeros in p.c are removed)
- p[k] is the coefficient on the kth power of x (backwards from
- sequencing the coefficient array.
-
- polynomials can be added, substracted, multplied and divided (returns
- quotient and remainder).
- asarray(p) will also give the coefficient array, so polynomials can
- be used in all functions that accept arrays.
-
- p = poly1d([1,2,3], variable='lambda') will use lambda in the
- string representation of p.
- """
- coeffs = None
- order = None
- variable = None
- def __init__(self, c_or_r, r=0, variable=None):
- if isinstance(c_or_r, poly1d):
- for key in c_or_r.__dict__.keys():
- self.__dict__[key] = c_or_r.__dict__[key]
- if variable is not None:
- self.__dict__['variable'] = variable
- return
- if r:
- c_or_r = poly(c_or_r)
- c_or_r = atleast_1d(c_or_r)
- if len(c_or_r.shape) > 1:
- raise ValueError, "Polynomial must be 1d only."
- c_or_r = trim_zeros(c_or_r, trim='f')
- if len(c_or_r) == 0:
- c_or_r = NX.array([0.])
- self.__dict__['coeffs'] = c_or_r
- self.__dict__['order'] = len(c_or_r) - 1
- if variable is None:
- variable = 'x'
- self.__dict__['variable'] = variable
-
- def __array__(self, t=None):
- if t:
- return NX.asarray(self.coeffs, t)
- else:
- return NX.asarray(self.coeffs)
-
- def __repr__(self):
- vals = repr(self.coeffs)
- vals = vals[6:-1]
- return "poly1d(%s)" % vals
-
- def __len__(self):
- return self.order
-
- def __str__(self):
- thestr = "0"
- var = self.variable
-
- # Remove leading zeros
- coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)]
- N = len(coeffs)-1
-
- for k in range(len(coeffs)):
- coefstr ='%.4g' % abs(coeffs[k])
- if coefstr[-4:] == '0000':
- coefstr = coefstr[:-5]
- power = (N-k)
- if power == 0:
- if coefstr != '0':
- newstr = '%s' % (coefstr,)
- else:
- if k == 0:
- newstr = '0'
- else:
- newstr = ''
- elif power == 1:
- if coefstr == '0':
- newstr = ''
- elif coefstr == 'b':
- newstr = var
- else:
- newstr = '%s %s' % (coefstr, var)
- else:
- if coefstr == '0':
- newstr = ''
- elif coefstr == 'b':
- newstr = '%s**%d' % (var, power,)
- else:
- newstr = '%s %s**%d' % (coefstr, var, power)
-
- if k > 0:
- if newstr != '':
- if coeffs[k] < 0:
- thestr = "%s - %s" % (thestr, newstr)
- else:
- thestr = "%s + %s" % (thestr, newstr)
- elif (k == 0) and (newstr != '') and (coeffs[k] < 0):
- thestr = "-%s" % (newstr,)
- else:
- thestr = newstr
- return _raise_power(thestr)
-
-
- def __call__(self, val):
- return polyval(self.coeffs, val)
-
- def __neg__(self):
- return poly1d(-self.coeffs)
-
- def __pos__(self):
- return self
-
- def __mul__(self, other):
- if isscalar(other):
- return poly1d(self.coeffs * other)
- else:
- other = poly1d(other)
- return poly1d(polymul(self.coeffs, other.coeffs))
-
- def __rmul__(self, other):
- if isscalar(other):
- return poly1d(other * self.coeffs)
- else:
- other = poly1d(other)
- return poly1d(polymul(self.coeffs, other.coeffs))
-
- def __add__(self, other):
- other = poly1d(other)
- return poly1d(polyadd(self.coeffs, other.coeffs))
-
- def __radd__(self, other):
- other = poly1d(other)
- return poly1d(polyadd(self.coeffs, other.coeffs))
-
- def __pow__(self, val):
- if not isscalar(val) or int(val) != val or val < 0:
- raise ValueError, "Power to non-negative integers only."
- res = [1]
- for _ in range(val):
- res = polymul(self.coeffs, res)
- return poly1d(res)
-
- def __sub__(self, other):
- other = poly1d(other)
- return poly1d(polysub(self.coeffs, other.coeffs))
-
- def __rsub__(self, other):
- other = poly1d(other)
- return poly1d(polysub(other.coeffs, self.coeffs))
-
- def __div__(self, other):
- if isscalar(other):
- return poly1d(self.coeffs/other)
- else:
- other = poly1d(other)
- return polydiv(self, other)
-
- def __rdiv__(self, other):
- if isscalar(other):
- return poly1d(other/self.coeffs)
- else:
- other = poly1d(other)
- return polydiv(other, self)
-
- def __eq__(self, other):
- return NX.alltrue(self.coeffs == other.coeffs)
-
- def __ne__(self, other):
- return NX.any(self.coeffs != other.coeffs)
-
- def __setattr__(self, key, val):
- raise ValueError, "Attributes cannot be changed this way."
-
- def __getattr__(self, key):
- if key in ['r', 'roots']:
- return roots(self.coeffs)
- elif key in ['c','coef','coefficients']:
- return self.coeffs
- elif key in ['o']:
- return self.order
- else:
- try:
- return self.__dict__[key]
- except KeyError:
- raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key))
-
- def __getitem__(self, val):
- ind = self.order - val
- if val > self.order:
- return 0
- if val < 0:
- return 0
- return self.coeffs[ind]
-
- def __setitem__(self, key, val):
- ind = self.order - key
- if key < 0:
- raise ValueError, "Does not support negative powers."
- if key > self.order:
- zr = NX.zeros(key-self.order, self.coeffs.dtype)
- self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
- self.__dict__['order'] = key
- ind = 0
- self.__dict__['coeffs'][ind] = val
- return
-
- def __iter__(self):
- return iter(self.coeffs)
-
- def integ(self, m=1, k=0):
- """Return the mth analytical integral of this polynomial.
- See the documentation for polyint.
- """
- return poly1d(polyint(self.coeffs, m=m, k=k))
-
- def deriv(self, m=1):
- """Return the mth derivative of this polynomial.
- """
- return poly1d(polyder(self.coeffs, m=m))
-
-# Stuff to do on module import
-
-warnings.simplefilter('always',RankWarning)
diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py
deleted file mode 100644
index c15f254a3..000000000
--- a/numpy/lib/scimath.py
+++ /dev/null
@@ -1,86 +0,0 @@
-"""
-Wrapper functions to more user-friendly calling of certain math functions
-whose output data-type is different than the input data-type in certain
-domains of the input.
-"""
-
-__all__ = ['sqrt', 'log', 'log2', 'logn','log10', 'power', 'arccos',
- 'arcsin', 'arctanh']
-
-import numpy.core.numeric as nx
-import numpy.core.numerictypes as nt
-from numpy.core.numeric import asarray, any
-from numpy.lib.type_check import isreal
-
-
-#__all__.extend([key for key in dir(nx.umath)
-# if key[0] != '_' and key not in __all__])
-
-_ln2 = nx.log(2.0)
-
-def _tocomplex(arr):
- if isinstance(arr.dtype, (nt.single, nt.byte, nt.short, nt.ubyte,
- nt.ushort)):
- return arr.astype(nt.csingle)
- else:
- return arr.astype(nt.cdouble)
-
-def _fix_real_lt_zero(x):
- x = asarray(x)
- if any(isreal(x) & (x<0)):
- x = _tocomplex(x)
- return x
-
-def _fix_int_lt_zero(x):
- x = asarray(x)
- if any(isreal(x) & (x < 0)):
- x = x * 1.0
- return x
-
-def _fix_real_abs_gt_1(x):
- x = asarray(x)
- if any(isreal(x) & (abs(x)>1)):
- x = _tocomplex(x)
- return x
-
-def sqrt(x):
- x = _fix_real_lt_zero(x)
- return nx.sqrt(x)
-
-def log(x):
- x = _fix_real_lt_zero(x)
- return nx.log(x)
-
-def log10(x):
- x = _fix_real_lt_zero(x)
- return nx.log10(x)
-
-def logn(n, x):
- """ Take log base n of x.
- """
- x = _fix_real_lt_zero(x)
- n = _fix_real_lt_zero(n)
- return nx.log(x)/nx.log(n)
-
-def log2(x):
- """ Take log base 2 of x.
- """
- x = _fix_real_lt_zero(x)
- return nx.log(x)/_ln2
-
-def power(x, p):
- x = _fix_real_lt_zero(x)
- p = _fix_int_lt_zero(p)
- return nx.power(x, p)
-
-def arccos(x):
- x = _fix_real_abs_gt_1(x)
- return nx.arccos(x)
-
-def arcsin(x):
- x = _fix_real_abs_gt_1(x)
- return nx.arcsin(x)
-
-def arctanh(x):
- x = _fix_real_abs_gt_1(x)
- return nx.arctanh(x)
diff --git a/numpy/lib/setup.py b/numpy/lib/setup.py
deleted file mode 100644
index f43843ddc..000000000
--- a/numpy/lib/setup.py
+++ /dev/null
@@ -1,21 +0,0 @@
-from os.path import join
-
-def configuration(parent_package='',top_path=None):
- from numpy.distutils.misc_util import Configuration
-
- config = Configuration('lib',parent_package,top_path)
-
- config.add_include_dirs(join('..','core','include'))
-
-
- config.add_extension('_compiled_base',
- sources=[join('src','_compiled_base.c')]
- )
-
- config.add_data_dir('tests')
-
- return config
-
-if __name__=='__main__':
- from numpy.distutils.core import setup
- setup(configuration=configuration)
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
deleted file mode 100644
index 9ac77666f..000000000
--- a/numpy/lib/shape_base.py
+++ /dev/null
@@ -1,633 +0,0 @@
-__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack',
- 'column_stack','row_stack', 'dstack','array_split','split','hsplit',
- 'vsplit','dsplit','apply_over_axes','expand_dims',
- 'apply_along_axis', 'kron', 'tile', 'get_array_wrap']
-
-import numpy.core.numeric as _nx
-from numpy.core.numeric import asarray, zeros, newaxis, outer, \
- concatenate, isscalar, array, asanyarray
-from numpy.core.fromnumeric import product, reshape
-
-def apply_along_axis(func1d,axis,arr,*args):
- """ Execute func1d(arr[i],*args) where func1d takes 1-D arrays
- and arr is an N-d array. i varies so as to apply the function
- along the given axis for each 1-d subarray in arr.
- """
- arr = asarray(arr)
- nd = arr.ndim
- if axis < 0:
- axis += nd
- if (axis >= nd):
- raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
- % (axis,nd))
- ind = [0]*(nd-1)
- i = zeros(nd,'O')
- indlist = range(nd)
- indlist.remove(axis)
- i[axis] = slice(None,None)
- outshape = asarray(arr.shape).take(indlist)
- i.put(indlist, ind)
- res = func1d(arr[tuple(i.tolist())],*args)
- # if res is a number, then we have a smaller output array
- if isscalar(res):
- outarr = zeros(outshape,asarray(res).dtype)
- outarr[tuple(ind)] = res
- Ntot = product(outshape)
- k = 1
- while k < Ntot:
- # increment the index
- ind[-1] += 1
- n = -1
- while (ind[n] >= outshape[n]) and (n > (1-nd)):
- ind[n-1] += 1
- ind[n] = 0
- n -= 1
- i.put(indlist,ind)
- res = func1d(arr[tuple(i.tolist())],*args)
- outarr[tuple(ind)] = res
- k += 1
- return outarr
- else:
- Ntot = product(outshape)
- holdshape = outshape
- outshape = list(arr.shape)
- outshape[axis] = len(res)
- outarr = zeros(outshape,asarray(res).dtype)
- outarr[tuple(i.tolist())] = res
- k = 1
- while k < Ntot:
- # increment the index
- ind[-1] += 1
- n = -1
- while (ind[n] >= holdshape[n]) and (n > (1-nd)):
- ind[n-1] += 1
- ind[n] = 0
- n -= 1
- i.put(indlist, ind)
- res = func1d(arr[tuple(i.tolist())],*args)
- outarr[tuple(i.tolist())] = res
- k += 1
- return outarr
-
-
-def apply_over_axes(func, a, axes):
- """Apply a function repeatedly over multiple axes, keeping the same shape
- for the resulting array.
-
- func is called as res = func(a, axis). The result is assumed
- to be either the same shape as a or have one less dimension.
- This call is repeated for each axis in the axes sequence.
- """
- val = asarray(a)
- N = a.ndim
- if array(axes).ndim == 0:
- axes = (axes,)
- for axis in axes:
- if axis < 0: axis = N + axis
- args = (val, axis)
- res = func(*args)
- if res.ndim == val.ndim:
- val = res
- else:
- res = expand_dims(res,axis)
- if res.ndim == val.ndim:
- val = res
- else:
- raise ValueError, "function is not returning"\
- " an array of correct shape"
- return val
-
-def expand_dims(a, axis):
- """Expand the shape of a by including newaxis before given axis.
- """
- a = asarray(a)
- shape = a.shape
- if axis < 0:
- axis = axis + len(shape) + 1
- return a.reshape(shape[:axis] + (1,) + shape[axis:])
-
-
-def atleast_1d(*arys):
- """ Force a sequence of arrays to each be at least 1D.
-
- Description:
- Force an array to be at least 1D. If an array is 0D, the
- array is converted to a single row of values. Otherwise,
- the array is unaltered.
- Arguments:
- *arys -- arrays to be converted to 1 or more dimensional array.
- Returns:
- input array converted to at least 1D array.
- """
- res = []
- for ary in arys:
- res.append(array(ary,copy=False,subok=True,ndmin=1))
- if len(res) == 1:
- return res[0]
- else:
- return res
-
-def atleast_2d(*arys):
- """ Force a sequence of arrays to each be at least 2D.
-
- Description:
- Force an array to each be at least 2D. If the array
- is 0D or 1D, the array is converted to a single
- row of values. Otherwise, the array is unaltered.
- Arguments:
- arys -- arrays to be converted to 2 or more dimensional array.
- Returns:
- input array converted to at least 2D array.
- """
- res = []
- for ary in arys:
- res.append(array(ary,copy=False,subok=True,ndmin=2))
- if len(res) == 1:
- return res[0]
- else:
- return res
-
-def atleast_3d(*arys):
- """ Force a sequence of arrays to each be at least 3D.
-
- Description:
- Force an array each be at least 3D. If the array is 0D or 1D,
- the array is converted to a single 1xNx1 array of values where
- N is the orginal length of the array. If the array is 2D, the
- array is converted to a single MxNx1 array of values where MxN
- is the orginal shape of the array. Otherwise, the array is
- unaltered.
- Arguments:
- arys -- arrays to be converted to 3 or more dimensional array.
- Returns:
- input array converted to at least 3D array.
- """
- res = []
- for ary in arys:
- ary = asarray(ary)
- if len(ary.shape) == 0:
- result = ary.reshape(1,1,1)
- elif len(ary.shape) == 1:
- result = ary[newaxis,:,newaxis]
- elif len(ary.shape) == 2:
- result = ary[:,:,newaxis]
- else:
- result = ary
- res.append(result)
- if len(res) == 1:
- return res[0]
- else:
- return res
-
-
-def vstack(tup):
- """ Stack arrays in sequence vertically (row wise)
-
- Description:
- Take a sequence of arrays and stack them vertically
- to make a single array. All arrays in the sequence
- must have the same shape along all but the first axis.
- vstack will rebuild arrays divided by vsplit.
- Arguments:
- tup -- sequence of arrays. All arrays must have the same
- shape.
- Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.vstack((a,b))
- array([[1, 2, 3],
- [2, 3, 4]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.vstack((a,b))
- array([[1],
- [2],
- [3],
- [2],
- [3],
- [4]])
-
- """
- return _nx.concatenate(map(atleast_2d,tup),0)
-
-def hstack(tup):
- """ Stack arrays in sequence horizontally (column wise)
-
- Description:
- Take a sequence of arrays and stack them horizontally
- to make a single array. All arrays in the sequence
- must have the same shape along all but the second axis.
- hstack will rebuild arrays divided by hsplit.
- Arguments:
- tup -- sequence of arrays. All arrays must have the same
- shape.
- Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.hstack((a,b))
- array([1, 2, 3, 2, 3, 4])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.hstack((a,b))
- array([[1, 2],
- [2, 3],
- [3, 4]])
-
- """
- return _nx.concatenate(map(atleast_1d,tup),1)
-
-row_stack = vstack
-
-def column_stack(tup):
- """ Stack 1D arrays as columns into a 2D array
-
- Description:
- Take a sequence of 1D arrays and stack them as columns
- to make a single 2D array. All arrays in the sequence
- must have the same first dimension. 2D arrays are
- stacked as-is, just like with hstack. 1D arrays are turned
- into 2D columns first.
-
- Arguments:
- tup -- sequence of 1D or 2D arrays. All arrays must have the same
- first dimension.
- Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.column_stack((a,b))
- array([[1, 2],
- [2, 3],
- [3, 4]])
-
- """
- arrays = []
- for v in tup:
- arr = array(v,copy=False,subok=True)
- if arr.ndim < 2:
- arr = array(arr,copy=False,subok=True,ndmin=2).T
- arrays.append(arr)
- return _nx.concatenate(arrays,1)
-
-def dstack(tup):
- """ Stack arrays in sequence depth wise (along third dimension)
-
- Description:
- Take a sequence of arrays and stack them along the third axis.
- All arrays in the sequence must have the same shape along all
- but the third axis. This is a simple way to stack 2D arrays
- (images) into a single 3D array for processing.
- dstack will rebuild arrays divided by dsplit.
- Arguments:
- tup -- sequence of arrays. All arrays must have the same
- shape.
- Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.dstack((a,b))
- array([[[1, 2],
- [2, 3],
- [3, 4]]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.dstack((a,b))
- array([[[1, 2]],
- <BLANKLINE>
- [[2, 3]],
- <BLANKLINE>
- [[3, 4]]])
-
- """
- return _nx.concatenate(map(atleast_3d,tup),2)
-
-def _replace_zero_by_x_arrays(sub_arys):
- for i in range(len(sub_arys)):
- if len(_nx.shape(sub_arys[i])) == 0:
- sub_arys[i] = _nx.array([])
- elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
- sub_arys[i] = _nx.array([])
- return sub_arys
-
-def array_split(ary,indices_or_sections,axis = 0):
- """ Divide an array into a list of sub-arrays.
-
- Description:
- Divide ary into a list of sub-arrays along the
- specified axis. If indices_or_sections is an integer,
- ary is divided into that many equally sized arrays.
- If it is impossible to make an equal split, each of the
- leading arrays in the list have one additional member. If
- indices_or_sections is a list of sorted integers, its
- entries define the indexes where ary is split.
-
- Arguments:
- ary -- N-D array.
- Array to be divided into sub-arrays.
- indices_or_sections -- integer or 1D array.
- If integer, defines the number of (close to) equal sized
- sub-arrays. If it is a 1D array of sorted indices, it
- defines the indexes at which ary is divided. Any empty
- list results in a single sub-array equal to the original
- array.
- axis -- integer. default=0.
- Specifies the axis along which to split ary.
- Caveats:
- Currently, the default for axis is 0. This
- means a 2D array is divided into multiple groups
- of rows. This seems like the appropriate default,
- """
- try:
- Ntotal = ary.shape[axis]
- except AttributeError:
- Ntotal = len(ary)
- try: # handle scalar case.
- Nsections = len(indices_or_sections) + 1
- div_points = [0] + list(indices_or_sections) + [Ntotal]
- except TypeError: #indices_or_sections is a scalar, not an array.
- Nsections = int(indices_or_sections)
- if Nsections <= 0:
- raise ValueError, 'number sections must be larger than 0.'
- Neach_section,extras = divmod(Ntotal,Nsections)
- section_sizes = [0] + \
- extras * [Neach_section+1] + \
- (Nsections-extras) * [Neach_section]
- div_points = _nx.array(section_sizes).cumsum()
-
- sub_arys = []
- sary = _nx.swapaxes(ary,axis,0)
- for i in range(Nsections):
- st = div_points[i]; end = div_points[i+1]
- sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))
-
- # there is a wierd issue with array slicing that allows
- # 0x10 arrays and other such things. The following cluge is needed
- # to get around this issue.
- sub_arys = _replace_zero_by_x_arrays(sub_arys)
- # end cluge.
-
- return sub_arys
-
-def split(ary,indices_or_sections,axis=0):
- """ Divide an array into a list of sub-arrays.
-
- Description:
- Divide ary into a list of sub-arrays along the
- specified axis. If indices_or_sections is an integer,
- ary is divided into that many equally sized arrays.
- If it is impossible to make an equal split, an error is
- raised. This is the only way this function differs from
- the array_split() function. If indices_or_sections is a
- list of sorted integers, its entries define the indexes
- where ary is split.
-
- Arguments:
- ary -- N-D array.
- Array to be divided into sub-arrays.
- indices_or_sections -- integer or 1D array.
- If integer, defines the number of (close to) equal sized
- sub-arrays. If it is a 1D array of sorted indices, it
- defines the indexes at which ary is divided. Any empty
- list results in a single sub-array equal to the original
- array.
- axis -- integer. default=0.
- Specifies the axis along which to split ary.
- Caveats:
- Currently, the default for axis is 0. This
- means a 2D array is divided into multiple groups
- of rows. This seems like the appropriate default
- """
- try: len(indices_or_sections)
- except TypeError:
- sections = indices_or_sections
- N = ary.shape[axis]
- if N % sections:
- raise ValueError, 'array split does not result in an equal division'
- res = array_split(ary,indices_or_sections,axis)
- return res
-
-def hsplit(ary,indices_or_sections):
- """ Split ary into multiple columns of sub-arrays
-
- Description:
- Split a single array into multiple sub arrays. The array is
- divided into groups of columns. If indices_or_sections is
- an integer, ary is divided into that many equally sized sub arrays.
- If it is impossible to make the sub-arrays equally sized, the
- operation throws a ValueError exception. See array_split and
- split for other options on indices_or_sections.
- Arguments:
- ary -- N-D array.
- Array to be divided into sub-arrays.
- indices_or_sections -- integer or 1D array.
- If integer, defines the number of (close to) equal sized
- sub-arrays. If it is a 1D array of sorted indices, it
- defines the indexes at which ary is divided. Any empty
- list results in a single sub-array equal to the original
- array.
- Returns:
- sequence of sub-arrays. The returned arrays have the same
- number of dimensions as the input array.
- Related:
- hstack, split, array_split, vsplit, dsplit.
- Examples:
- >>> import numpy
- >>> a= array((1,2,3,4))
- >>> numpy.hsplit(a,2)
- [array([1, 2]), array([3, 4])]
- >>> a = array([[1,2,3,4],[1,2,3,4]])
- >>> hsplit(a,2)
- [array([[1, 2],
- [1, 2]]), array([[3, 4],
- [3, 4]])]
-
- """
- if len(_nx.shape(ary)) == 0:
- raise ValueError, 'hsplit only works on arrays of 1 or more dimensions'
- if len(ary.shape) > 1:
- return split(ary,indices_or_sections,1)
- else:
- return split(ary,indices_or_sections,0)
-
-def vsplit(ary,indices_or_sections):
- """ Split ary into multiple rows of sub-arrays
-
- Description:
- Split a single array into multiple sub arrays. The array is
- divided into groups of rows. If indices_or_sections is
- an integer, ary is divided into that many equally sized sub arrays.
- If it is impossible to make the sub-arrays equally sized, the
- operation throws a ValueError exception. See array_split and
- split for other options on indices_or_sections.
- Arguments:
- ary -- N-D array.
- Array to be divided into sub-arrays.
- indices_or_sections -- integer or 1D array.
- If integer, defines the number of (close to) equal sized
- sub-arrays. If it is a 1D array of sorted indices, it
- defines the indexes at which ary is divided. Any empty
- list results in a single sub-array equal to the original
- array.
- Returns:
- sequence of sub-arrays. The returned arrays have the same
- number of dimensions as the input array.
- Caveats:
- How should we handle 1D arrays here? I am currently raising
- an error when I encounter them. Any better approach?
-
- Should we reduce the returned array to their minium dimensions
- by getting rid of any dimensions that are 1?
- Related:
- vstack, split, array_split, hsplit, dsplit.
- Examples:
- import numpy
- >>> a = array([[1,2,3,4],
- ... [1,2,3,4]])
- >>> numpy.vsplit(a,2)
- [array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
-
- """
- if len(_nx.shape(ary)) < 2:
- raise ValueError, 'vsplit only works on arrays of 2 or more dimensions'
- return split(ary,indices_or_sections,0)
-
-def dsplit(ary,indices_or_sections):
- """ Split ary into multiple sub-arrays along the 3rd axis (depth)
-
- Description:
- Split a single array into multiple sub arrays. The array is
- divided into groups along the 3rd axis. If indices_or_sections is
- an integer, ary is divided into that many equally sized sub arrays.
- If it is impossible to make the sub-arrays equally sized, the
- operation throws a ValueError exception. See array_split and
- split for other options on indices_or_sections.
- Arguments:
- ary -- N-D array.
- Array to be divided into sub-arrays.
- indices_or_sections -- integer or 1D array.
- If integer, defines the number of (close to) equal sized
- sub-arrays. If it is a 1D array of sorted indices, it
- defines the indexes at which ary is divided. Any empty
- list results in a single sub-array equal to the original
- array.
- Returns:
- sequence of sub-arrays. The returned arrays have the same
- number of dimensions as the input array.
- Caveats:
- See vsplit caveats.
- Related:
- dstack, split, array_split, hsplit, vsplit.
- Examples:
- >>> a = array([[[1,2,3,4],[1,2,3,4]]])
- >>> dsplit(a,2)
- [array([[[1, 2],
- [1, 2]]]), array([[[3, 4],
- [3, 4]]])]
-
- """
- if len(_nx.shape(ary)) < 3:
- raise ValueError, 'vsplit only works on arrays of 3 or more dimensions'
- return split(ary,indices_or_sections,2)
-
-def get_array_wrap(*args):
- """Find the wrapper for the array with the highest priority.
-
- In case of ties, leftmost wins. If no wrapper is found, return None
- """
- wrappers = [(getattr(x, '__array_priority__', 0), -i,
- x.__array_wrap__) for i, x in enumerate(args)
- if hasattr(x, '__array_wrap__')]
- wrappers.sort()
- if wrappers:
- return wrappers[-1][-1]
- return None
-
-def kron(a,b):
- """kronecker product of a and b
-
- Kronecker product of two arrays is block array
- [[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b ],
- [ ... ... ],
- [ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b ]]
- """
- wrapper = get_array_wrap(a, b)
- b = asanyarray(b)
- a = array(a,copy=False,subok=True,ndmin=b.ndim)
- ndb, nda = b.ndim, a.ndim
- if (nda == 0 or ndb == 0):
- return _nx.multiply(a,b)
- as_ = a.shape
- bs = b.shape
- if not a.flags.contiguous:
- a = reshape(a, as_)
- if not b.flags.contiguous:
- b = reshape(b, bs)
- nd = ndb
- if (ndb != nda):
- if (ndb > nda):
- as_ = (1,)*(ndb-nda) + as_
- else:
- bs = (1,)*(nda-ndb) + bs
- nd = nda
- result = outer(a,b).reshape(as_+bs)
- axis = nd-1
- for _ in xrange(nd):
- result = concatenate(result, axis=axis)
- if wrapper is not None:
- result = wrapper(result)
- return result
-
-
-def tile(A, reps):
- """Repeat an array the number of times given in the integer tuple, reps.
-
- If reps has length d, the result will have dimension of max(d, A.ndim).
- If reps is scalar it is treated as a 1-tuple.
-
- If A.ndim < d, A is promoted to be d-dimensional by prepending new axes.
- So a shape (3,) array is promoted to (1,3) for 2-D replication,
- or shape (1,1,3) for 3-D replication.
- If this is not the desired behavior, promote A to d-dimensions manually
- before calling this function.
-
- If d < A.ndim, tup is promoted to A.ndim by pre-pending 1's to it. Thus
- for an A.shape of (2,3,4,5), a tup of (2,2) is treated as (1,1,2,2)
-
-
- Examples:
- >>> a = array([0,1,2])
- >>> tile(a,2)
- array([0, 1, 2, 0, 1, 2])
- >>> tile(a,(1,2))
- array([[0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,2))
- array([[0, 1, 2, 0, 1, 2],
- [0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,1,2))
- array([[[0, 1, 2, 0, 1, 2]],
- <BLANKLINE>
- [[0, 1, 2, 0, 1, 2]]])
-
- See Also:
- repeat
- """
- try:
- tup = tuple(reps)
- except TypeError:
- tup = (reps,)
- d = len(tup)
- c = _nx.array(A,copy=False,subok=True,ndmin=d)
- shape = list(c.shape)
- n = max(c.size,1)
- if (d < c.ndim):
- tup = (1,)*(c.ndim-d) + tup
- for i, nrep in enumerate(tup):
- if nrep!=1:
- c = c.reshape(-1,n).repeat(nrep,0)
- dim_in = shape[i]
- dim_out = dim_in*nrep
- shape[i] = dim_out
- n /= max(dim_in,1)
- return c.reshape(shape)
diff --git a/numpy/lib/src/_compiled_base.c b/numpy/lib/src/_compiled_base.c
deleted file mode 100644
index 42c0183e8..000000000
--- a/numpy/lib/src/_compiled_base.c
+++ /dev/null
@@ -1,590 +0,0 @@
-#include "Python.h"
-#include "structmember.h"
-#include "numpy/noprefix.h"
-
-static PyObject *ErrorObject;
-#define Py_Try(BOOLEAN) {if (!(BOOLEAN)) goto fail;}
-#define Py_Assert(BOOLEAN,MESS) {if (!(BOOLEAN)) { \
- PyErr_SetString(ErrorObject, (MESS)); \
- goto fail;} \
- }
-
-static intp
-incr_slot_ (double x, double *bins, intp lbins)
-{
- intp i ;
- for ( i = 0 ; i < lbins ; i ++ )
- if ( x < bins [i] )
- return i ;
- return lbins ;
-}
-
-static intp
-decr_slot_ (double x, double * bins, intp lbins)
-{
- intp i ;
- for ( i = lbins - 1 ; i >= 0; i -- )
- if (x < bins [i])
- return i + 1 ;
- return 0 ;
-}
-
-static int
-monotonic_ (double * a, int lena)
-{
- int i;
- if (a [0] <= a [1]) /* possibly monotonic increasing */
- {
- for (i = 1 ; i < lena - 1; i ++)
- if (a [i] > a [i + 1]) return 0 ;
- return 1 ;
- }
- else /* possibly monotonic decreasing */
- {
- for (i = 1 ; i < lena - 1; i ++)
- if (a [i] < a [i + 1]) return 0 ;
- return -1 ;
- }
-}
-
-
-
-static intp
-mxx (intp *i , intp len)
-{
- /* find the index of the maximum element of an integer array */
- intp mx = 0, max = i[0] ;
- intp j ;
- for ( j = 1 ; j < len; j ++ )
- if ( i [j] > max )
- {max = i [j] ;
- mx = j ;}
- return mx;
-}
-
-static intp
-mnx (intp *i , intp len)
-{
- /* find the index of the minimum element of an integer array */
- intp mn = 0, min = i [0] ;
- intp j ;
- for ( j = 1 ; j < len; j ++ )
- if ( i [j] < min )
- {min = i [j] ;
- mn = j ;}
- return mn;
-}
-
-
-static PyObject *
-arr_bincount(PyObject *self, PyObject *args, PyObject *kwds)
-{
- /* histogram accepts one or two arguments. The first is an array
- * of non-negative integers and the second, if present, is an
- * array of weights, which must be promotable to double.
- * Call these arguments list and weight. Both must be one-
- * dimensional. len (weight) == len(list)
- * If weight is not present:
- * histogram (list) [i] is the number of occurrences of i in list.
- * If weight is present:
- * histogram (list, weight) [i] is the sum of all weight [j]
- * where list [j] == i. */
- /* self is not used */
- PyArray_Descr *type;
- PyObject *list = NULL, *weight=Py_None ;
- PyObject *lst=NULL, *ans=NULL, *wts=NULL;
- intp *numbers, *ians, len , mxi, mni, ans_size;
- int i;
- double *weights , *dans;
- static char *kwlist[] = {"list", "weights", NULL};
-
-
- Py_Try(PyArg_ParseTupleAndKeywords(args, kwds, "O|O", kwlist,
- &list, &weight));
- Py_Try(lst = PyArray_ContiguousFromAny(list, PyArray_INTP, 1, 1));
- len = PyArray_SIZE(lst);
- numbers = (intp *) PyArray_DATA(lst);
- mxi = mxx (numbers, len) ;
- mni = mnx (numbers, len) ;
- Py_Assert(numbers[mni] >= 0,
- "irst argument of bincount must be non-negative");
- ans_size = numbers [mxi] + 1 ;
- type = PyArray_DescrFromType(PyArray_INTP);
- if (weight == Py_None) {
- Py_Try(ans = PyArray_Zeros(1, &ans_size, type, 0));
- ians = (intp *)(PyArray_DATA(ans));
- for (i = 0 ; i < len ; i++)
- ians [numbers [i]] += 1 ;
- Py_DECREF(lst);
- }
- else {
- Py_Try(wts = PyArray_ContiguousFromAny(weight,
- PyArray_DOUBLE, 1, 1));
- weights = (double *)PyArray_DATA (wts);
- Py_Assert(PyArray_SIZE(wts) == len, "bincount: length of weights " \
- "does not match that of list");
- type = PyArray_DescrFromType(PyArray_DOUBLE);
- Py_Try(ans = PyArray_Zeros(1, &ans_size, type, 0));
- dans = (double *)PyArray_DATA (ans);
- for (i = 0 ; i < len ; i++) {
- dans[numbers[i]] += weights[i];
- }
- Py_DECREF(lst);
- Py_DECREF(wts);
- }
- return ans;
-
- fail:
- Py_XDECREF(lst);
- Py_XDECREF(wts);
- Py_XDECREF(ans);
- return NULL;
-}
-
-
-static PyObject *
-arr_digitize(PyObject *self, PyObject *args, PyObject *kwds)
-{
- /* digitize (x, bins) returns an array of python integers the same
- length of x. The values i returned are such that
- bins [i - 1] <= x < bins [i] if bins is monotonically increasing,
- or bins [i - 1] > x >= bins [i] if bins is monotonically decreasing.
- Beyond the bounds of bins, returns either i = 0 or i = len (bins)
- as appropriate. */
- /* self is not used */
- PyObject *ox, *obins ;
- PyObject *ax=NULL, *abins=NULL, *aret=NULL;
- double *dx, *dbins ;
- intp lbins, lx ; /* lengths */
- intp *iret;
- int m, i ;
- static char *kwlist[] = {"x", "bins", NULL};
- PyArray_Descr *type;
-
- Py_Try(PyArg_ParseTupleAndKeywords(args, kwds, "OO", kwlist,
- &ox, &obins));
-
- type = PyArray_DescrFromType(PyArray_DOUBLE);
- Py_Try(ax=PyArray_FromAny(ox, type, 1, 1, CARRAY, NULL));
- Py_INCREF(type);
- Py_Try(abins = PyArray_FromAny(obins, type, 1, 1, CARRAY, NULL));
-
- lx = PyArray_SIZE(ax);
- dx = (double *)PyArray_DATA(ax);
- lbins = PyArray_SIZE(abins);
- dbins = (double *)PyArray_DATA(abins);
- Py_Try(aret = PyArray_SimpleNew(1, &lx, PyArray_INTP));
- iret = (intp *)PyArray_DATA(aret);
-
- Py_Assert(lx > 0 && lbins > 0,
- "x and bins both must have non-zero length");
-
- if (lbins == 1) {
- for (i=0 ; i<lx ; i++)
- if (dx [i] >= dbins[0])
- iret[i] = 1;
- else
- iret[i] = 0;
- }
- else {
- m = monotonic_ (dbins, lbins) ;
- if ( m == -1 ) {
- for ( i = 0 ; i < lx ; i ++ )
- iret [i] = decr_slot_ ((double)dx [i], dbins, lbins) ;
- }
- else if ( m == 1 ) {
- for ( i = 0 ; i < lx ; i ++ )
- iret [i] = incr_slot_ ((double)dx [i], dbins, lbins) ;
- }
- else Py_Assert(0, "bins must be montonically increasing or decreasing");
- }
-
- Py_DECREF(ax);
- Py_DECREF(abins);
- return aret;
-
- fail:
- Py_XDECREF(ax);
- Py_XDECREF(abins);
- Py_XDECREF(aret);
- return NULL;
-}
-
-
-
-static char arr_insert__doc__[] = "Insert vals sequentially into equivalent 1-d positions indicated by mask.";
-
-static PyObject *
-arr_insert(PyObject *self, PyObject *args, PyObject *kwdict)
-{
- /* Returns input array with values inserted sequentially into places
- indicated by the mask
- */
- PyObject *mask=NULL, *vals=NULL;
- PyArrayObject *ainput=NULL, *amask=NULL, *avals=NULL,
- *tmp=NULL;
- int numvals, totmask, sameshape;
- char *input_data, *mptr, *vptr, *zero=NULL;
- int melsize, delsize, copied, nd;
- intp *instrides, *inshape;
- int mindx, rem_indx, indx, i, k, objarray;
-
- static char *kwlist[] = {"input","mask","vals",NULL};
-
- if (!PyArg_ParseTupleAndKeywords(args, kwdict, "O&OO", kwlist,
- PyArray_Converter, &ainput,
- &mask, &vals))
- goto fail;
-
- amask = (PyArrayObject *) PyArray_FROM_OF(mask, CARRAY);
- if (amask == NULL) goto fail;
- /* Cast an object array */
- if (amask->descr->type_num == PyArray_OBJECT) {
- tmp = (PyArrayObject *)PyArray_Cast(amask, PyArray_INTP);
- if (tmp == NULL) goto fail;
- Py_DECREF(amask);
- amask = tmp;
- }
-
- sameshape = 1;
- if (amask->nd == ainput->nd) {
- for (k=0; k < amask->nd; k++)
- if (amask->dimensions[k] != ainput->dimensions[k])
- sameshape = 0;
- }
- else { /* Test to see if amask is 1d */
- if (amask->nd != 1) sameshape = 0;
- else if ((PyArray_SIZE(ainput)) != PyArray_SIZE(amask)) sameshape = 0;
- }
- if (!sameshape) {
- PyErr_SetString(PyExc_TypeError,
- "mask array must be 1-d or same shape as input array");
- goto fail;
- }
-
- avals = (PyArrayObject *)PyArray_FromObject(vals, ainput->descr->type_num, 0, 1);
- if (avals == NULL) goto fail;
-
- numvals = PyArray_SIZE(avals);
- nd = ainput->nd;
- input_data = ainput->data;
- mptr = amask->data;
- melsize = amask->descr->elsize;
- vptr = avals->data;
- delsize = avals->descr->elsize;
- zero = PyArray_Zero(amask);
- if (zero == NULL)
- goto fail;
- objarray = (ainput->descr->type_num == PyArray_OBJECT);
-
- /* Handle zero-dimensional case separately */
- if (nd == 0) {
- if (memcmp(mptr,zero,melsize) != 0) {
- /* Copy value element over to input array */
- memcpy(input_data,vptr,delsize);
- if (objarray) Py_INCREF(*((PyObject **)vptr));
- }
- Py_DECREF(amask);
- Py_DECREF(avals);
- PyDataMem_FREE(zero);
- Py_DECREF(ainput);
- Py_INCREF(Py_None);
- return Py_None;
- }
-
- /* Walk through mask array, when non-zero is encountered
- copy next value in the vals array to the input array.
- If we get through the value array, repeat it as necessary.
- */
- totmask = (int) PyArray_SIZE(amask);
- copied = 0;
- instrides = ainput->strides;
- inshape = ainput->dimensions;
- for (mindx = 0; mindx < totmask; mindx++) {
- if (memcmp(mptr,zero,melsize) != 0) {
- /* compute indx into input array
- */
- rem_indx = mindx;
- indx = 0;
- for(i=nd-1; i > 0; --i) {
- indx += (rem_indx % inshape[i]) * instrides[i];
- rem_indx /= inshape[i];
- }
- indx += rem_indx * instrides[0];
- /* fprintf(stderr, "mindx = %d, indx=%d\n", mindx, indx); */
- /* Copy value element over to input array */
- memcpy(input_data+indx,vptr,delsize);
- if (objarray) Py_INCREF(*((PyObject **)vptr));
- vptr += delsize;
- copied += 1;
- /* If we move past value data. Reset */
- if (copied >= numvals) vptr = avals->data;
- }
- mptr += melsize;
- }
-
- Py_DECREF(amask);
- Py_DECREF(avals);
- PyDataMem_FREE(zero);
- Py_DECREF(ainput);
- Py_INCREF(Py_None);
- return Py_None;
-
- fail:
- PyDataMem_FREE(zero);
- Py_XDECREF(ainput);
- Py_XDECREF(amask);
- Py_XDECREF(avals);
- return NULL;
-}
-
-static npy_intp
-binary_search(double dval, double dlist [], npy_intp len)
-{
- /* binary_search accepts three arguments: a numeric value and
- * a numeric array and its length. It assumes that the array is sorted in
- * increasing order. It returns the index of the array's
- * largest element which is <= the value. It will return -1 if
- * the value is less than the least element of the array. */
- /* self is not used */
- npy_intp bottom , top , middle, result;
-
- if (dval < dlist [0])
- result = -1 ;
- else {
- bottom = 0;
- top = len - 1;
- while (bottom < top) {
- middle = (top + bottom) / 2 ;
- if (dlist [middle] < dval)
- bottom = middle + 1 ;
- else if (dlist [middle] > dval)
- top = middle - 1 ;
- else
- return middle ;
- }
- if (dlist [bottom] > dval)
- result = bottom - 1 ;
- else
- result = bottom ;
- }
-
- return result ;
-}
-
-static PyObject *
-arr_interp(PyObject *self, PyObject *args, PyObject *kwdict)
-{
-
- PyObject *fp, *xp, *x;
- PyObject *left=NULL, *right=NULL;
- PyArrayObject *afp=NULL, *axp=NULL, *ax=NULL, *af=NULL;
- npy_intp i, lenx, lenxp, indx;
- double lval, rval;
- double *dy, *dx, *dz, *dres, *slopes;
-
- static char *kwlist[] = {"x", "xp", "fp", "left", "right", NULL};
-
- if (!PyArg_ParseTupleAndKeywords(args, kwdict, "OOO|OO", kwlist,
- &x, &xp, &fp, &left, &right))
- return NULL;
-
-
- afp = (NPY_AO*)PyArray_ContiguousFromAny(fp, NPY_DOUBLE, 1, 1);
- if (afp == NULL) return NULL;
- axp = (NPY_AO*)PyArray_ContiguousFromAny(xp, NPY_DOUBLE, 1, 1);
- if (axp == NULL) goto fail;
- ax = (NPY_AO*)PyArray_ContiguousFromAny(x, NPY_DOUBLE, 1, 0);
- if (ax == NULL) goto fail;
-
- lenxp = axp->dimensions[0];
- if (afp->dimensions[0] != lenxp) {
- PyErr_SetString(PyExc_ValueError, "interp: fp and xp are not the same length.");
- goto fail;
- }
-
- af = (NPY_AO*)PyArray_SimpleNew(ax->nd, ax->dimensions, NPY_DOUBLE);
- if (af == NULL) goto fail;
-
- lenx = PyArray_SIZE(ax);
-
- dy = (double *)PyArray_DATA(afp);
- dx = (double *)PyArray_DATA(axp);
- dz = (double *)PyArray_DATA(ax);
- dres = (double *)PyArray_DATA(af);
-
- /* Get left and right fill values. */
- if ((left == NULL) || (left == Py_None)) {
- lval = dy[0];
- }
- else {
- lval = PyFloat_AsDouble(left);
- if ((lval==-1) && PyErr_Occurred())
- goto fail;
- }
- if ((right == NULL) || (right == Py_None)) {
- rval = dy[lenxp-1];
- }
- else {
- rval = PyFloat_AsDouble(right);
- if ((rval==-1) && PyErr_Occurred())
- goto fail;
- }
-
- slopes = (double *) PyDataMem_NEW((lenxp-1)*sizeof(double));
- for (i=0; i < lenxp-1; i++) {
- slopes[i] = (dy[i+1] - dy[i])/(dx[i+1]-dx[i]);
- }
- for (i=0; i<lenx; i++) {
- indx = binary_search(dz[i], dx, lenxp);
- if (indx < 0)
- dres[i] = lval;
- else if (indx >= lenxp - 1)
- dres[i] = rval;
- else
- dres[i] = slopes[indx]*(dz[i]-dx[indx]) + dy[indx];
- }
-
- PyDataMem_FREE(slopes);
- Py_DECREF(afp);
- Py_DECREF(axp);
- Py_DECREF(ax);
- return (PyObject *)af;
-
- fail:
- Py_XDECREF(afp);
- Py_XDECREF(axp);
- Py_XDECREF(ax);
- Py_XDECREF(af);
- return NULL;
-}
-
-
-
-static PyTypeObject *PyMemberDescr_TypePtr=NULL;
-static PyTypeObject *PyGetSetDescr_TypePtr=NULL;
-static PyTypeObject *PyMethodDescr_TypePtr=NULL;
-
-/* Can only be called if doc is currently NULL
- */
-static PyObject *
-arr_add_docstring(PyObject *dummy, PyObject *args)
-{
- PyObject *obj;
- PyObject *str;
- char *docstr;
- static char *msg = "already has a docstring";
-
- /* Don't add docstrings */
- if (Py_OptimizeFlag > 1) {
- Py_INCREF(Py_None);
- return Py_None;
- }
-
- if (!PyArg_ParseTuple(args, "OO!", &obj, &PyString_Type, &str))
- return NULL;
-
- docstr = PyString_AS_STRING(str);
-
-#define _TESTDOC1(typebase) (obj->ob_type == &Py##typebase##_Type)
-#define _TESTDOC2(typebase) (obj->ob_type == Py##typebase##_TypePtr)
-#define _ADDDOC(typebase, doc, name) { \
- Py##typebase##Object *new = (Py##typebase##Object *)obj; \
- if (!(doc)) { \
- doc = docstr; \
- } \
- else { \
- PyErr_Format(PyExc_RuntimeError, \
- "%s method %s",name, msg); \
- return NULL; \
- } \
- }
-
- if _TESTDOC1(CFunction)
- _ADDDOC(CFunction, new->m_ml->ml_doc, new->m_ml->ml_name)
- else if _TESTDOC1(Type)
- _ADDDOC(Type, new->tp_doc, new->tp_name)
- else if _TESTDOC2(MemberDescr)
- _ADDDOC(MemberDescr, new->d_member->doc, new->d_member->name)
- else if _TESTDOC2(GetSetDescr)
- _ADDDOC(GetSetDescr, new->d_getset->doc, new->d_getset->name)
- else if _TESTDOC2(MethodDescr)
- _ADDDOC(MethodDescr, new->d_method->ml_doc,
- new->d_method->ml_name)
- else {
- PyErr_SetString(PyExc_TypeError,
- "Cannot set a docstring for that object");
- return NULL;
- }
-
-#undef _TESTDOC1
-#undef _TESTDOC2
-#undef _ADDDOC
-
- Py_INCREF(str);
- Py_INCREF(Py_None);
- return Py_None;
-}
-
-static struct PyMethodDef methods[] = {
- {"_insert", (PyCFunction)arr_insert, METH_VARARGS | METH_KEYWORDS,
- arr_insert__doc__},
- {"bincount", (PyCFunction)arr_bincount,
- METH_VARARGS | METH_KEYWORDS, NULL},
- {"digitize", (PyCFunction)arr_digitize, METH_VARARGS | METH_KEYWORDS,
- NULL},
- {"interp", (PyCFunction)arr_interp, METH_VARARGS | METH_KEYWORDS,
- NULL},
- {"add_docstring", (PyCFunction)arr_add_docstring, METH_VARARGS,
- NULL},
- {NULL, NULL} /* sentinel */
-};
-
-static void
-define_types(void)
-{
- PyObject *tp_dict;
- PyObject *myobj;
-
- tp_dict = PyArrayDescr_Type.tp_dict;
- /* Get "subdescr" */
- myobj = PyDict_GetItemString(tp_dict, "fields");
- if (myobj == NULL) return;
- PyGetSetDescr_TypePtr = myobj->ob_type;
- myobj = PyDict_GetItemString(tp_dict, "alignment");
- if (myobj == NULL) return;
- PyMemberDescr_TypePtr = myobj->ob_type;
- myobj = PyDict_GetItemString(tp_dict, "newbyteorder");
- if (myobj == NULL) return;
- PyMethodDescr_TypePtr = myobj->ob_type;
- return;
-}
-
-/* Initialization function for the module (*must* be called init<name>) */
-
-PyMODINIT_FUNC init_compiled_base(void) {
- PyObject *m, *d, *s;
-
- /* Create the module and add the functions */
- m = Py_InitModule("_compiled_base", methods);
-
- /* Import the array objects */
- import_array();
-
- /* Add some symbolic constants to the module */
- d = PyModule_GetDict(m);
-
- s = PyString_FromString("0.5");
- PyDict_SetItemString(d, "__version__", s);
- Py_DECREF(s);
-
- ErrorObject = PyString_FromString("numpy.lib._compiled_base.error");
- PyDict_SetItemString(d, "error", ErrorObject);
- Py_DECREF(ErrorObject);
-
-
- /* define PyGetSetDescr_Type and PyMemberDescr_Type */
- define_types();
-
- return;
-}
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
deleted file mode 100644
index e2e703b9a..000000000
--- a/numpy/lib/tests/test_arraysetops.py
+++ /dev/null
@@ -1,171 +0,0 @@
-""" Test functions for 1D array set operations.
-
-"""
-
-from numpy.testing import *
-set_package_path()
-import numpy
-from numpy.lib.arraysetops import *
-from numpy.lib.arraysetops import ediff1d
-restore_path()
-
-##################################################
-
-class TestAso(NumpyTestCase):
- ##
- # 03.11.2005, c
- def check_unique1d( self ):
-
- a = numpy.array( [5, 7, 1, 2, 1, 5, 7] )
-
- ec = numpy.array( [1, 2, 5, 7] )
- c = unique1d( a )
- assert_array_equal( c, ec )
-
- assert_array_equal([], unique1d([]))
-
- ##
- # 03.11.2005, c
- def check_intersect1d( self ):
-
- a = numpy.array( [5, 7, 1, 2] )
- b = numpy.array( [2, 4, 3, 1, 5] )
-
- ec = numpy.array( [1, 2, 5] )
- c = intersect1d( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], intersect1d([],[]))
-
- ##
- # 03.11.2005, c
- def check_intersect1d_nu( self ):
-
- a = numpy.array( [5, 5, 7, 1, 2] )
- b = numpy.array( [2, 1, 4, 3, 3, 1, 5] )
-
- ec = numpy.array( [1, 2, 5] )
- c = intersect1d_nu( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], intersect1d_nu([],[]))
-
- ##
- # 03.11.2005, c
- def check_setxor1d( self ):
-
- a = numpy.array( [5, 7, 1, 2] )
- b = numpy.array( [2, 4, 3, 1, 5] )
-
- ec = numpy.array( [3, 4, 7] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
-
- a = numpy.array( [1, 2, 3] )
- b = numpy.array( [6, 5, 4] )
-
- ec = numpy.array( [1, 2, 3, 4, 5, 6] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
-
- a = numpy.array( [1, 8, 2, 3] )
- b = numpy.array( [6, 5, 4, 8] )
-
- ec = numpy.array( [1, 2, 3, 4, 5, 6] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], setxor1d([],[]))
-
- def check_ediff1d(self):
- zero_elem = numpy.array([])
- one_elem = numpy.array([1])
- two_elem = numpy.array([1,2])
-
- assert_array_equal([],ediff1d(zero_elem))
- assert_array_equal([0],ediff1d(zero_elem,to_begin=0))
- assert_array_equal([0],ediff1d(zero_elem,to_end=0))
- assert_array_equal([-1,0],ediff1d(zero_elem,to_begin=-1,to_end=0))
- assert_array_equal([],ediff1d(one_elem))
- assert_array_equal([1],ediff1d(two_elem))
-
- ##
- # 03.11.2005, c
- def check_setmember1d( self ):
-
- a = numpy.array( [5, 7, 1, 2] )
- b = numpy.array( [2, 4, 3, 1, 5] )
-
- ec = numpy.array( [True, False, True, True] )
- c = setmember1d( a, b )
- assert_array_equal( c, ec )
-
- a[0] = 8
- ec = numpy.array( [False, False, True, True] )
- c = setmember1d( a, b )
- assert_array_equal( c, ec )
-
- a[0], a[3] = 4, 8
- ec = numpy.array( [True, False, True, False] )
- c = setmember1d( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], setmember1d([],[]))
-
- ##
- # 03.11.2005, c
- def check_union1d( self ):
-
- a = numpy.array( [5, 4, 7, 1, 2] )
- b = numpy.array( [2, 4, 3, 3, 2, 1, 5] )
-
- ec = numpy.array( [1, 2, 3, 4, 5, 7] )
- c = union1d( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], union1d([],[]))
-
- ##
- # 03.11.2005, c
- # 09.01.2006
- def check_setdiff1d( self ):
-
- a = numpy.array( [6, 5, 4, 7, 1, 2] )
- b = numpy.array( [2, 4, 3, 3, 2, 1, 5] )
-
- ec = numpy.array( [6, 7] )
- c = setdiff1d( a, b )
- assert_array_equal( c, ec )
-
- a = numpy.arange( 21 )
- b = numpy.arange( 19 )
- ec = numpy.array( [19, 20] )
- c = setdiff1d( a, b )
- assert_array_equal( c, ec )
-
- assert_array_equal([], setdiff1d([],[]))
-
-
- ##
- # 03.11.2005, c
- def check_manyways( self ):
-
- nItem = 100
- a = numpy.fix( nItem / 10 * numpy.random.random( nItem ) )
- b = numpy.fix( nItem / 10 * numpy.random.random( nItem ) )
-
- c1 = intersect1d_nu( a, b )
- c2 = unique1d( intersect1d( a, b ) )
- assert_array_equal( c1, c2 )
-
- a = numpy.array( [5, 7, 1, 2, 8] )
- b = numpy.array( [9, 8, 2, 4, 3, 1, 5] )
-
- c1 = setxor1d( a, b )
- aux1 = intersect1d( a, b )
- aux2 = union1d( a, b )
- c2 = setdiff1d( aux2, aux1 )
- assert_array_equal( c1, c2 )
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
deleted file mode 100644
index f1b64c8d5..000000000
--- a/numpy/lib/tests/test_function_base.py
+++ /dev/null
@@ -1,454 +0,0 @@
-import sys
-
-from numpy.testing import *
-set_package_path()
-import numpy.lib;reload(numpy.lib)
-from numpy.lib import *
-from numpy.core import *
-del sys.path[0]
-
-class TestAny(NumpyTestCase):
- def check_basic(self):
- y1 = [0,0,1,0]
- y2 = [0,0,0,0]
- y3 = [1,0,1,0]
- assert(any(y1))
- assert(any(y3))
- assert(not any(y2))
-
- def check_nd(self):
- y1 = [[0,0,0],[0,1,0],[1,1,0]]
- assert(any(y1))
- assert_array_equal(sometrue(y1,axis=0),[1,1,0])
- assert_array_equal(sometrue(y1,axis=1),[0,1,1])
-
-class TestAll(NumpyTestCase):
- def check_basic(self):
- y1 = [0,1,1,0]
- y2 = [0,0,0,0]
- y3 = [1,1,1,1]
- assert(not all(y1))
- assert(all(y3))
- assert(not all(y2))
- assert(all(~array(y2)))
-
- def check_nd(self):
- y1 = [[0,0,1],[0,1,1],[1,1,1]]
- assert(not all(y1))
- assert_array_equal(alltrue(y1,axis=0),[0,0,1])
- assert_array_equal(alltrue(y1,axis=1),[0,0,1])
-
-class TestAverage(NumpyTestCase):
- def check_basic(self):
- y1 = array([1,2,3])
- assert(average(y1,axis=0) == 2.)
- y2 = array([1.,2.,3.])
- assert(average(y2,axis=0) == 2.)
- y3 = [0.,0.,0.]
- assert(average(y3,axis=0) == 0.)
-
- y4 = ones((4,4))
- y4[0,1] = 0
- y4[1,0] = 2
- assert_array_equal(y4.mean(0), average(y4, 0))
- assert_array_equal(y4.mean(1), average(y4, 1))
-
- y5 = rand(5,5)
- assert_array_equal(y5.mean(0), average(y5, 0))
- assert_array_equal(y5.mean(1), average(y5, 1))
-
- def check_weighted(self):
- y1 = array([[1,2,3],
- [4,5,6]])
- actual = average(y1,weights=[1,2],axis=0)
- desired = array([3.,4.,5.])
- assert_array_equal(actual, desired)
-
-class TestSelect(NumpyTestCase):
- def _select(self,cond,values,default=0):
- output = []
- for m in range(len(cond)):
- output += [V[m] for V,C in zip(values,cond) if C[m]] or [default]
- return output
-
- def check_basic(self):
- choices = [array([1,2,3]),
- array([4,5,6]),
- array([7,8,9])]
- conditions = [array([0,0,0]),
- array([0,1,0]),
- array([0,0,1])]
- assert_array_equal(select(conditions,choices,default=15),
- self._select(conditions,choices,default=15))
-
- assert_equal(len(choices),3)
- assert_equal(len(conditions),3)
-
-class TestLogspace(NumpyTestCase):
- def check_basic(self):
- y = logspace(0,6)
- assert(len(y)==50)
- y = logspace(0,6,num=100)
- assert(y[-1] == 10**6)
- y = logspace(0,6,endpoint=0)
- assert(y[-1] < 10**6)
- y = logspace(0,6,num=7)
- assert_array_equal(y,[1,10,100,1e3,1e4,1e5,1e6])
-
-class TestLinspace(NumpyTestCase):
- def check_basic(self):
- y = linspace(0,10)
- assert(len(y)==50)
- y = linspace(2,10,num=100)
- assert(y[-1] == 10)
- y = linspace(2,10,endpoint=0)
- assert(y[-1] < 10)
- y,st = linspace(2,10,retstep=1)
- assert_almost_equal(st,8/49.0)
- assert_array_almost_equal(y,mgrid[2:10:50j],13)
-
- def check_corner(self):
- y = list(linspace(0,1,1))
- assert y == [0.0], y
- y = list(linspace(0,1,2.5))
- assert y == [0.0, 1.0]
-
- def check_type(self):
- t1 = linspace(0,1,0).dtype
- t2 = linspace(0,1,1).dtype
- t3 = linspace(0,1,2).dtype
- assert_equal(t1, t2)
- assert_equal(t2, t3)
-
-class TestInsert(NumpyTestCase):
- def check_basic(self):
- a = [1,2,3]
- assert_equal(insert(a,0,1), [1,1,2,3])
- assert_equal(insert(a,3,1), [1,2,3,1])
- assert_equal(insert(a,[1,1,1],[1,2,3]), [1,1,2,3,2,3])
-
-class TestAmax(NumpyTestCase):
- def check_basic(self):
- a = [3,4,5,10,-3,-5,6.0]
- assert_equal(amax(a),10.0)
- b = [[3,6.0, 9.0],
- [4,10.0,5.0],
- [8,3.0,2.0]]
- assert_equal(amax(b,axis=0),[8.0,10.0,9.0])
- assert_equal(amax(b,axis=1),[9.0,10.0,8.0])
-
-class TestAmin(NumpyTestCase):
- def check_basic(self):
- a = [3,4,5,10,-3,-5,6.0]
- assert_equal(amin(a),-5.0)
- b = [[3,6.0, 9.0],
- [4,10.0,5.0],
- [8,3.0,2.0]]
- assert_equal(amin(b,axis=0),[3.0,3.0,2.0])
- assert_equal(amin(b,axis=1),[3.0,4.0,2.0])
-
-class TestPtp(NumpyTestCase):
- def check_basic(self):
- a = [3,4,5,10,-3,-5,6.0]
- assert_equal(ptp(a,axis=0),15.0)
- b = [[3,6.0, 9.0],
- [4,10.0,5.0],
- [8,3.0,2.0]]
- assert_equal(ptp(b,axis=0),[5.0,7.0,7.0])
- assert_equal(ptp(b,axis=-1),[6.0,6.0,6.0])
-
-class TestCumsum(NumpyTestCase):
- def check_basic(self):
- ba = [1,2,10,11,6,5,4]
- ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
- for ctype in [int8,uint8,int16,uint16,int32,uint32,
- float32,float64,complex64,complex128]:
- a = array(ba,ctype)
- a2 = array(ba2,ctype)
- assert_array_equal(cumsum(a,axis=0), array([1,3,13,24,30,35,39],ctype))
- assert_array_equal(cumsum(a2,axis=0), array([[1,2,3,4],[6,8,10,13],
- [16,11,14,18]],ctype))
- assert_array_equal(cumsum(a2,axis=1),
- array([[1,3,6,10],
- [5,11,18,27],
- [10,13,17,22]],ctype))
-
-class TestProd(NumpyTestCase):
- def check_basic(self):
- ba = [1,2,10,11,6,5,4]
- ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
- for ctype in [int16,uint16,int32,uint32,
- float32,float64,complex64,complex128]:
- a = array(ba,ctype)
- a2 = array(ba2,ctype)
- if ctype in ['1', 'b']:
- self.failUnlessRaises(ArithmeticError, prod, a)
- self.failUnlessRaises(ArithmeticError, prod, a2, 1)
- self.failUnlessRaises(ArithmeticError, prod, a)
- else:
- assert_equal(prod(a,axis=0),26400)
- assert_array_equal(prod(a2,axis=0),
- array([50,36,84,180],ctype))
- assert_array_equal(prod(a2,axis=-1),array([24, 1890, 600],ctype))
-
-class TestCumprod(NumpyTestCase):
- def check_basic(self):
- ba = [1,2,10,11,6,5,4]
- ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
- for ctype in [int16,uint16,int32,uint32,
- float32,float64,complex64,complex128]:
- a = array(ba,ctype)
- a2 = array(ba2,ctype)
- if ctype in ['1', 'b']:
- self.failUnlessRaises(ArithmeticError, cumprod, a)
- self.failUnlessRaises(ArithmeticError, cumprod, a2, 1)
- self.failUnlessRaises(ArithmeticError, cumprod, a)
- else:
- assert_array_equal(cumprod(a,axis=-1),
- array([1, 2, 20, 220,
- 1320, 6600, 26400],ctype))
- assert_array_equal(cumprod(a2,axis=0),
- array([[ 1, 2, 3, 4],
- [ 5, 12, 21, 36],
- [50, 36, 84, 180]],ctype))
- assert_array_equal(cumprod(a2,axis=-1),
- array([[ 1, 2, 6, 24],
- [ 5, 30, 210, 1890],
- [10, 30, 120, 600]],ctype))
-
-class TestDiff(NumpyTestCase):
- def check_basic(self):
- x = [1,4,6,7,12]
- out = array([3,2,1,5])
- out2 = array([-1,-1,4])
- out3 = array([0,5])
- assert_array_equal(diff(x),out)
- assert_array_equal(diff(x,n=2),out2)
- assert_array_equal(diff(x,n=3),out3)
-
- def check_nd(self):
- x = 20*rand(10,20,30)
- out1 = x[:,:,1:] - x[:,:,:-1]
- out2 = out1[:,:,1:] - out1[:,:,:-1]
- out3 = x[1:,:,:] - x[:-1,:,:]
- out4 = out3[1:,:,:] - out3[:-1,:,:]
- assert_array_equal(diff(x),out1)
- assert_array_equal(diff(x,n=2),out2)
- assert_array_equal(diff(x,axis=0),out3)
- assert_array_equal(diff(x,n=2,axis=0),out4)
-
-class TestAngle(NumpyTestCase):
- def check_basic(self):
- x = [1+3j,sqrt(2)/2.0+1j*sqrt(2)/2,1,1j,-1,-1j,1-3j,-1+3j]
- y = angle(x)
- yo = [arctan(3.0/1.0),arctan(1.0),0,pi/2,pi,-pi/2.0,
- -arctan(3.0/1.0),pi-arctan(3.0/1.0)]
- z = angle(x,deg=1)
- zo = array(yo)*180/pi
- assert_array_almost_equal(y,yo,11)
- assert_array_almost_equal(z,zo,11)
-
-class TestTrimZeros(NumpyTestCase):
- """ only testing for integer splits.
- """
- def check_basic(self):
- a= array([0,0,1,2,3,4,0])
- res = trim_zeros(a)
- assert_array_equal(res,array([1,2,3,4]))
- def check_leading_skip(self):
- a= array([0,0,1,0,2,3,4,0])
- res = trim_zeros(a)
- assert_array_equal(res,array([1,0,2,3,4]))
- def check_trailing_skip(self):
- a= array([0,0,1,0,2,3,0,4,0])
- res = trim_zeros(a)
- assert_array_equal(res,array([1,0,2,3,0,4]))
-
-
-class TestExtins(NumpyTestCase):
- def check_basic(self):
- a = array([1,3,2,1,2,3,3])
- b = extract(a>1,a)
- assert_array_equal(b,[3,2,2,3,3])
- def check_place(self):
- a = array([1,4,3,2,5,8,7])
- place(a,[0,1,0,1,0,1,0],[2,4,6])
- assert_array_equal(a,[1,2,3,4,5,6,7])
- def check_both(self):
- a = rand(10)
- mask = a > 0.5
- ac = a.copy()
- c = extract(mask, a)
- place(a,mask,0)
- place(a,mask,c)
- assert_array_equal(a,ac)
-
-class TestVectorize(NumpyTestCase):
- def check_simple(self):
- def addsubtract(a,b):
- if a > b:
- return a - b
- else:
- return a + b
- f = vectorize(addsubtract)
- r = f([0,3,6,9],[1,3,5,7])
- assert_array_equal(r,[1,6,1,2])
- def check_scalar(self):
- def addsubtract(a,b):
- if a > b:
- return a - b
- else:
- return a + b
- f = vectorize(addsubtract)
- r = f([0,3,6,9],5)
- assert_array_equal(r,[5,8,1,4])
- def check_large(self):
- x = linspace(-3,2,10000)
- f = vectorize(lambda x: x)
- y = f(x)
- assert_array_equal(y, x)
-
-class TestDigitize(NumpyTestCase):
- def check_forward(self):
- x = arange(-6,5)
- bins = arange(-5,5)
- assert_array_equal(digitize(x,bins),arange(11))
-
- def check_reverse(self):
- x = arange(5,-6,-1)
- bins = arange(5,-5,-1)
- assert_array_equal(digitize(x,bins),arange(11))
-
- def check_random(self):
- x = rand(10)
- bin = linspace(x.min(), x.max(), 10)
- assert all(digitize(x,bin) != 0)
-
-class TestUnwrap(NumpyTestCase):
- def check_simple(self):
- #check that unwrap removes jumps greather that 2*pi
- assert_array_equal(unwrap([1,1+2*pi]),[1,1])
- #check that unwrap maintans continuity
- assert(all(diff(unwrap(rand(10)*100))<pi))
-
-
-class TestFilterwindows(NumpyTestCase):
- def check_hanning(self):
- #check symmetry
- w=hanning(10)
- assert_array_almost_equal(w,flipud(w),7)
- #check known value
- assert_almost_equal(sum(w,axis=0),4.500,4)
-
- def check_hamming(self):
- #check symmetry
- w=hamming(10)
- assert_array_almost_equal(w,flipud(w),7)
- #check known value
- assert_almost_equal(sum(w,axis=0),4.9400,4)
-
- def check_bartlett(self):
- #check symmetry
- w=bartlett(10)
- assert_array_almost_equal(w,flipud(w),7)
- #check known value
- assert_almost_equal(sum(w,axis=0),4.4444,4)
-
- def check_blackman(self):
- #check symmetry
- w=blackman(10)
- assert_array_almost_equal(w,flipud(w),7)
- #check known value
- assert_almost_equal(sum(w,axis=0),3.7800,4)
-
-
-class TestTrapz(NumpyTestCase):
- def check_simple(self):
- r=trapz(exp(-1.0/2*(arange(-10,10,.1))**2)/sqrt(2*pi),dx=0.1)
- #check integral of normal equals 1
- assert_almost_equal(sum(r,axis=0),1,7)
-
-class TestSinc(NumpyTestCase):
- def check_simple(self):
- assert(sinc(0)==1)
- w=sinc(linspace(-1,1,100))
- #check symmetry
- assert_array_almost_equal(w,flipud(w),7)
-
-class TestHistogram(NumpyTestCase):
- def check_simple(self):
- n=100
- v=rand(n)
- (a,b)=histogram(v)
- #check if the sum of the bins equals the number of samples
- assert(sum(a,axis=0)==n)
- #check that the bin counts are evenly spaced when the data is from a linear function
- (a,b)=histogram(linspace(0,10,100))
- assert(all(a==10))
-
-class TestHistogramdd(NumpyTestCase):
- def check_simple(self):
- x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
- [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
- H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
- answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1], [0,0,1]]])
- assert_array_equal(H,answer)
- # Check normalization
- ed = [[-2,0,2], [0,1,2,3], [0,1,2,3]]
- H, edges = histogramdd(x, bins = ed, normed = True)
- assert(all(H == answer/12.))
- # Check that H has the correct shape.
- H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]], normed=True)
- answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0], [0,0,1,0], [0,0,1,0]]])
- assert_array_almost_equal(H, answer/6., 4)
- # Check that a sequence of arrays is accepted and H has the correct shape.
- z = [squeeze(y) for y in split(x,3,axis=1)]
- H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
- answer = asarray([[[0,0],[0,0],[0,0]],
- [[0,1], [0,0], [1,0]],
- [[0,1], [0,0],[0,0]],
- [[0,0],[0,0],[0,0]]])
- assert_array_equal(H, answer)
-
- Z = zeros((5,5,5))
- Z[range(5), range(5), range(5)] = 1.
- H,edges = histogramdd([arange(5), arange(5), arange(5)], 5)
- assert_array_equal(H, Z)
-
- def check_shape(self):
- x = rand(100,3)
- hist3d, edges = histogramdd(x, bins = (5, 7, 6))
- assert_array_equal(hist3d.shape, (5,7,6))
-
- def check_weights(self):
- v = rand(100,2)
- hist, edges = histogramdd(v)
- n_hist, edges = histogramdd(v, normed=True)
- w_hist, edges = histogramdd(v, weights=ones(100))
- assert_array_equal(w_hist, hist)
- w_hist, edges = histogramdd(v, weights=ones(100)*2, normed=True)
- assert_array_equal(w_hist, n_hist)
- w_hist, edges = histogramdd(v, weights=ones(100, int)*2)
- assert_array_equal(w_hist, 2*hist)
-
- def check_identical_samples(self):
- x = zeros((10,2),int)
- hist, edges = histogramdd(x, bins=2)
- assert_array_equal(edges[0],array([-0.5, 0. , 0.5]))
-
-class TestUnique(NumpyTestCase):
- def check_simple(self):
- x = array([4,3,2,1,1,2,3,4, 0])
- assert(all(unique(x) == [0,1,2,3,4]))
- assert(unique(array([1,1,1,1,1])) == array([1]))
- x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
- assert(all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
- x = array([5+6j, 1+1j, 1+10j, 10, 5+6j])
- assert(all(unique(x) == [1+1j, 1+10j, 5+6j, 10]))
-
-def compare_results(res,desired):
- for i in range(len(desired)):
- assert_array_equal(res[i],desired[i])
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_getlimits.py b/numpy/lib/tests/test_getlimits.py
deleted file mode 100644
index 3c53f3322..000000000
--- a/numpy/lib/tests/test_getlimits.py
+++ /dev/null
@@ -1,55 +0,0 @@
-""" Test functions for limits module.
-"""
-
-from numpy.testing import *
-set_package_path()
-import numpy.lib;reload(numpy.lib)
-from numpy.lib.getlimits import finfo, iinfo
-from numpy import single,double,longdouble
-import numpy as N
-restore_path()
-
-##################################################
-
-class TestPythonFloat(NumpyTestCase):
- def check_singleton(self):
- ftype = finfo(float)
- ftype2 = finfo(float)
- assert_equal(id(ftype),id(ftype2))
-
-class TestSingle(NumpyTestCase):
- def check_singleton(self):
- ftype = finfo(single)
- ftype2 = finfo(single)
- assert_equal(id(ftype),id(ftype2))
-
-class TestDouble(NumpyTestCase):
- def check_singleton(self):
- ftype = finfo(double)
- ftype2 = finfo(double)
- assert_equal(id(ftype),id(ftype2))
-
-class TestLongdouble(NumpyTestCase):
- def check_singleton(self,level=2):
- ftype = finfo(longdouble)
- ftype2 = finfo(longdouble)
- assert_equal(id(ftype),id(ftype2))
-
-class TestIinfo(NumpyTestCase):
- def check_basic(self):
- dts = zip(['i1', 'i2', 'i4', 'i8',
- 'u1', 'u2', 'u4', 'u8'],
- [N.int8, N.int16, N.int32, N.int64,
- N.uint8, N.uint16, N.uint32, N.uint64])
- for dt1, dt2 in dts:
- assert_equal(iinfo(dt1).min, iinfo(dt2).min)
- assert_equal(iinfo(dt1).max, iinfo(dt2).max)
- self.assertRaises(ValueError, iinfo, 'f4')
-
- def check_unsigned_max(self):
- types = N.sctypes['uint']
- for T in types:
- assert_equal(iinfo(T).max, T(-1))
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
deleted file mode 100644
index 8fc192202..000000000
--- a/numpy/lib/tests/test_index_tricks.py
+++ /dev/null
@@ -1,51 +0,0 @@
-from numpy.testing import *
-set_package_path()
-from numpy import array, ones, r_, mgrid
-restore_path()
-
-class TestGrid(NumpyTestCase):
- def check_basic(self):
- a = mgrid[-1:1:10j]
- b = mgrid[-1:1:0.1]
- assert(a.shape == (10,))
- assert(b.shape == (20,))
- assert(a[0] == -1)
- assert_almost_equal(a[-1],1)
- assert(b[0] == -1)
- assert_almost_equal(b[1]-b[0],0.1,11)
- assert_almost_equal(b[-1],b[0]+19*0.1,11)
- assert_almost_equal(a[1]-a[0],2.0/9.0,11)
-
- def check_nd(self):
- c = mgrid[-1:1:10j,-2:2:10j]
- d = mgrid[-1:1:0.1,-2:2:0.2]
- assert(c.shape == (2,10,10))
- assert(d.shape == (2,20,20))
- assert_array_equal(c[0][0,:],-ones(10,'d'))
- assert_array_equal(c[1][:,0],-2*ones(10,'d'))
- assert_array_almost_equal(c[0][-1,:],ones(10,'d'),11)
- assert_array_almost_equal(c[1][:,-1],2*ones(10,'d'),11)
- assert_array_almost_equal(d[0,1,:]-d[0,0,:], 0.1*ones(20,'d'),11)
- assert_array_almost_equal(d[1,:,1]-d[1,:,0], 0.2*ones(20,'d'),11)
-
-class TestConcatenator(NumpyTestCase):
- def check_1d(self):
- assert_array_equal(r_[1,2,3,4,5,6],array([1,2,3,4,5,6]))
- b = ones(5)
- c = r_[b,0,0,b]
- assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1])
-
- def check_2d(self):
- b = rand(5,5)
- c = rand(5,5)
- d = r_['1',b,c] # append columns
- assert(d.shape == (5,10))
- assert_array_equal(d[:,:5],b)
- assert_array_equal(d[:,5:],c)
- d = r_[b,c]
- assert(d.shape == (10,5))
- assert_array_equal(d[:5,:],b)
- assert_array_equal(d[5:,:],c)
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py
deleted file mode 100644
index c9a230775..000000000
--- a/numpy/lib/tests/test_polynomial.py
+++ /dev/null
@@ -1,98 +0,0 @@
-"""
->>> import numpy.core as nx
->>> from numpy.lib.polynomial import poly1d, polydiv
-
->>> p = poly1d([1.,2,3])
->>> p
-poly1d([ 1., 2., 3.])
->>> print p
- 2
-1 x + 2 x + 3
->>> q = poly1d([3.,2,1])
->>> q
-poly1d([ 3., 2., 1.])
->>> print q
- 2
-3 x + 2 x + 1
-
->>> p(0)
-3.0
->>> p(5)
-38.0
->>> q(0)
-1.0
->>> q(5)
-86.0
-
->>> p * q
-poly1d([ 3., 8., 14., 8., 3.])
->>> p / q
-(poly1d([ 0.33333333]), poly1d([ 1.33333333, 2.66666667]))
->>> p + q
-poly1d([ 4., 4., 4.])
->>> p - q
-poly1d([-2., 0., 2.])
->>> p ** 4
-poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.])
-
->>> p(q)
-poly1d([ 9., 12., 16., 8., 6.])
->>> q(p)
-poly1d([ 3., 12., 32., 40., 34.])
-
->>> nx.asarray(p)
-array([ 1., 2., 3.])
->>> len(p)
-2
-
->>> p[0], p[1], p[2], p[3]
-(3.0, 2.0, 1.0, 0)
-
->>> p.integ()
-poly1d([ 0.33333333, 1. , 3. , 0. ])
->>> p.integ(1)
-poly1d([ 0.33333333, 1. , 3. , 0. ])
->>> p.integ(5)
-poly1d([ 0.00039683, 0.00277778, 0.025 , 0. , 0. ,
- 0. , 0. , 0. ])
->>> p.deriv()
-poly1d([ 2., 2.])
->>> p.deriv(2)
-poly1d([ 2.])
-
->>> q = poly1d([1.,2,3], variable='y')
->>> print q
- 2
-1 y + 2 y + 3
->>> q = poly1d([1.,2,3], variable='lambda')
->>> print q
- 2
-1 lambda + 2 lambda + 3
-
->>> polydiv(poly1d([1,0,-1]), poly1d([1,1]))
-(poly1d([ 1., -1.]), poly1d([ 0.]))
-"""
-
-from numpy.testing import *
-import numpy as N
-
-class TestDocs(NumpyTestCase):
- def check_doctests(self): return self.rundocs()
-
- def check_roots(self):
- assert_array_equal(N.roots([1,0,0]), [0,0])
-
- def check_str_leading_zeros(self):
- p = N.poly1d([4,3,2,1])
- p[3] = 0
- assert_equal(str(p),
- " 2\n"
- "3 x + 2 x + 1")
-
- p = N.poly1d([1,2])
- p[0] = 0
- p[1] = 0
- assert_equal(str(p), " \n0")
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py
deleted file mode 100644
index 320871a95..000000000
--- a/numpy/lib/tests/test_shape_base.py
+++ /dev/null
@@ -1,412 +0,0 @@
-from numpy.testing import *
-set_package_path()
-import numpy.lib;
-from numpy.lib import *
-from numpy.core import *
-restore_path()
-
-class TestApplyAlongAxis(NumpyTestCase):
- def check_simple(self):
- a = ones((20,10),'d')
- assert_array_equal(apply_along_axis(len,0,a),len(a)*ones(shape(a)[1]))
- def check_simple101(self,level=11):
- a = ones((10,101),'d')
- assert_array_equal(apply_along_axis(len,0,a),len(a)*ones(shape(a)[1]))
-
- def check_3d(self):
- a = arange(27).reshape((3,3,3))
- assert_array_equal(apply_along_axis(sum,0,a), [[27,30,33],[36,39,42],[45,48,51]])
-
-class TestArraySplit(NumpyTestCase):
- def check_integer_0_split(self):
- a = arange(10)
- try:
- res = array_split(a,0)
- assert(0) # it should have thrown a value error
- except ValueError:
- pass
- def check_integer_split(self):
- a = arange(10)
- res = array_split(a,1)
- desired = [arange(10)]
- compare_results(res,desired)
-
- res = array_split(a,2)
- desired = [arange(5),arange(5,10)]
- compare_results(res,desired)
-
- res = array_split(a,3)
- desired = [arange(4),arange(4,7),arange(7,10)]
- compare_results(res,desired)
-
- res = array_split(a,4)
- desired = [arange(3),arange(3,6),arange(6,8),arange(8,10)]
- compare_results(res,desired)
-
- res = array_split(a,5)
- desired = [arange(2),arange(2,4),arange(4,6),arange(6,8),arange(8,10)]
- compare_results(res,desired)
-
- res = array_split(a,6)
- desired = [arange(2),arange(2,4),arange(4,6),arange(6,8),arange(8,9),
- arange(9,10)]
- compare_results(res,desired)
-
- res = array_split(a,7)
- desired = [arange(2),arange(2,4),arange(4,6),arange(6,7),arange(7,8),
- arange(8,9), arange(9,10)]
- compare_results(res,desired)
-
- res = array_split(a,8)
- desired = [arange(2),arange(2,4),arange(4,5),arange(5,6),arange(6,7),
- arange(7,8), arange(8,9), arange(9,10)]
- compare_results(res,desired)
-
- res = array_split(a,9)
- desired = [arange(2),arange(2,3),arange(3,4),arange(4,5),arange(5,6),
- arange(6,7), arange(7,8), arange(8,9), arange(9,10)]
- compare_results(res,desired)
-
- res = array_split(a,10)
- desired = [arange(1),arange(1,2),arange(2,3),arange(3,4),
- arange(4,5),arange(5,6), arange(6,7), arange(7,8),
- arange(8,9), arange(9,10)]
- compare_results(res,desired)
-
- res = array_split(a,11)
- desired = [arange(1),arange(1,2),arange(2,3),arange(3,4),
- arange(4,5),arange(5,6), arange(6,7), arange(7,8),
- arange(8,9), arange(9,10),array([])]
- compare_results(res,desired)
- def check_integer_split_2D_rows(self):
- a = array([arange(10),arange(10)])
- res = array_split(a,3,axis=0)
- desired = [array([arange(10)]),array([arange(10)]),array([])]
- compare_results(res,desired)
- def check_integer_split_2D_cols(self):
- a = array([arange(10),arange(10)])
- res = array_split(a,3,axis=-1)
- desired = [array([arange(4),arange(4)]),
- array([arange(4,7),arange(4,7)]),
- array([arange(7,10),arange(7,10)])]
- compare_results(res,desired)
- def check_integer_split_2D_default(self):
- """ This will fail if we change default axis
- """
- a = array([arange(10),arange(10)])
- res = array_split(a,3)
- desired = [array([arange(10)]),array([arange(10)]),array([])]
- compare_results(res,desired)
- #perhaps should check higher dimensions
-
- def check_index_split_simple(self):
- a = arange(10)
- indices = [1,5,7]
- res = array_split(a,indices,axis=-1)
- desired = [arange(0,1),arange(1,5),arange(5,7),arange(7,10)]
- compare_results(res,desired)
-
- def check_index_split_low_bound(self):
- a = arange(10)
- indices = [0,5,7]
- res = array_split(a,indices,axis=-1)
- desired = [array([]),arange(0,5),arange(5,7),arange(7,10)]
- compare_results(res,desired)
- def check_index_split_high_bound(self):
- a = arange(10)
- indices = [0,5,7,10,12]
- res = array_split(a,indices,axis=-1)
- desired = [array([]),arange(0,5),arange(5,7),arange(7,10),
- array([]),array([])]
- compare_results(res,desired)
-
-class TestSplit(NumpyTestCase):
- """* This function is essentially the same as array_split,
- except that it test if splitting will result in an
- equal split. Only test for this case.
- *"""
- def check_equal_split(self):
- a = arange(10)
- res = split(a,2)
- desired = [arange(5),arange(5,10)]
- compare_results(res,desired)
-
- def check_unequal_split(self):
- a = arange(10)
- try:
- res = split(a,3)
- assert(0) # should raise an error
- except ValueError:
- pass
-
-class TestAtleast1d(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=map(atleast_1d,[a,b])
- desired = [array([1]),array([2])]
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1,2]); b = array([2,3]);
- res=map(atleast_1d,[a,b])
- desired = [array([1,2]),array([2,3])]
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- res=map(atleast_1d,[a,b])
- desired = [a,b]
- assert_array_equal(res,desired)
- def check_3D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- a = array([a,a]);b = array([b,b]);
- res=map(atleast_1d,[a,b])
- desired = [a,b]
- assert_array_equal(res,desired)
- def check_r1array(self):
- """ Test to make sure equivalent Travis O's r1array function
- """
- assert(atleast_1d(3).shape == (1,))
- assert(atleast_1d(3j).shape == (1,))
- assert(atleast_1d(3L).shape == (1,))
- assert(atleast_1d(3.0).shape == (1,))
- assert(atleast_1d([[2,3],[4,5]]).shape == (2,2))
-
-class TestAtleast2d(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=map(atleast_2d,[a,b])
- desired = [array([[1]]),array([[2]])]
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1,2]); b = array([2,3]);
- res=map(atleast_2d,[a,b])
- desired = [array([[1,2]]),array([[2,3]])]
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- res=map(atleast_2d,[a,b])
- desired = [a,b]
- assert_array_equal(res,desired)
- def check_3D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- a = array([a,a]);b = array([b,b]);
- res=map(atleast_2d,[a,b])
- desired = [a,b]
- assert_array_equal(res,desired)
- def check_r2array(self):
- """ Test to make sure equivalent Travis O's r2array function
- """
- assert(atleast_2d(3).shape == (1,1))
- assert(atleast_2d([3j,1]).shape == (1,2))
- assert(atleast_2d([[[3,1],[4,5]],[[3,5],[1,2]]]).shape == (2,2,2))
-
-class TestAtleast3d(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=map(atleast_3d,[a,b])
- desired = [array([[[1]]]),array([[[2]]])]
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1,2]); b = array([2,3]);
- res=map(atleast_3d,[a,b])
- desired = [array([[[1],[2]]]),array([[[2],[3]]])]
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- res=map(atleast_3d,[a,b])
- desired = [a[:,:,newaxis],b[:,:,newaxis]]
- assert_array_equal(res,desired)
- def check_3D_array(self):
- a = array([[1,2],[1,2]]); b = array([[2,3],[2,3]]);
- a = array([a,a]);b = array([b,b]);
- res=map(atleast_3d,[a,b])
- desired = [a,b]
- assert_array_equal(res,desired)
-
-class TestHstack(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=hstack([a,b])
- desired = array([1,2])
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1]); b = array([2]);
- res=hstack([a,b])
- desired = array([1,2])
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1],[2]]); b = array([[1],[2]]);
- res=hstack([a,b])
- desired = array([[1,1],[2,2]])
- assert_array_equal(res,desired)
-
-class TestVstack(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=vstack([a,b])
- desired = array([[1],[2]])
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1]); b = array([2]);
- res=vstack([a,b])
- desired = array([[1],[2]])
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1],[2]]); b = array([[1],[2]]);
- res=vstack([a,b])
- desired = array([[1],[2],[1],[2]])
- assert_array_equal(res,desired)
- def check_2D_array2(self):
- a = array([1,2]); b = array([1,2]);
- res=vstack([a,b])
- desired = array([[1,2],[1,2]])
- assert_array_equal(res,desired)
-
-class TestDstack(NumpyTestCase):
- def check_0D_array(self):
- a = array(1); b = array(2);
- res=dstack([a,b])
- desired = array([[[1,2]]])
- assert_array_equal(res,desired)
- def check_1D_array(self):
- a = array([1]); b = array([2]);
- res=dstack([a,b])
- desired = array([[[1,2]]])
- assert_array_equal(res,desired)
- def check_2D_array(self):
- a = array([[1],[2]]); b = array([[1],[2]]);
- res=dstack([a,b])
- desired = array([[[1,1]],[[2,2,]]])
- assert_array_equal(res,desired)
- def check_2D_array2(self):
- a = array([1,2]); b = array([1,2]);
- res=dstack([a,b])
- desired = array([[[1,1],[2,2]]])
- assert_array_equal(res,desired)
-
-""" array_split has more comprehensive test of splitting.
- only do simple test on hsplit, vsplit, and dsplit
-"""
-class TestHsplit(NumpyTestCase):
- """ only testing for integer splits.
- """
- def check_0D_array(self):
- a= array(1)
- try:
- hsplit(a,2)
- assert(0)
- except ValueError:
- pass
- def check_1D_array(self):
- a= array([1,2,3,4])
- res = hsplit(a,2)
- desired = [array([1,2]),array([3,4])]
- compare_results(res,desired)
- def check_2D_array(self):
- a= array([[1,2,3,4],
- [1,2,3,4]])
- res = hsplit(a,2)
- desired = [array([[1,2],[1,2]]),array([[3,4],[3,4]])]
- compare_results(res,desired)
-
-class TestVsplit(NumpyTestCase):
- """ only testing for integer splits.
- """
- def check_1D_array(self):
- a= array([1,2,3,4])
- try:
- vsplit(a,2)
- assert(0)
- except ValueError:
- pass
- def check_2D_array(self):
- a= array([[1,2,3,4],
- [1,2,3,4]])
- res = vsplit(a,2)
- desired = [array([[1,2,3,4]]),array([[1,2,3,4]])]
- compare_results(res,desired)
-
-class TestDsplit(NumpyTestCase):
- """ only testing for integer splits.
- """
- def check_2D_array(self):
- a= array([[1,2,3,4],
- [1,2,3,4]])
- try:
- dsplit(a,2)
- assert(0)
- except ValueError:
- pass
- def check_3D_array(self):
- a= array([[[1,2,3,4],
- [1,2,3,4]],
- [[1,2,3,4],
- [1,2,3,4]]])
- res = dsplit(a,2)
- desired = [array([[[1,2],[1,2]],[[1,2],[1,2]]]),
- array([[[3,4],[3,4]],[[3,4],[3,4]]])]
- compare_results(res,desired)
-
-class TestSqueeze(NumpyTestCase):
- def check_basic(self):
- a = rand(20,10,10,1,1)
- b = rand(20,1,10,1,20)
- c = rand(1,1,20,10)
- assert_array_equal(squeeze(a),reshape(a,(20,10,10)))
- assert_array_equal(squeeze(b),reshape(b,(20,10,20)))
- assert_array_equal(squeeze(c),reshape(c,(20,10)))
-
-class TestKron(NumpyTestCase):
- def check_return_type(self):
- a = ones([2,2])
- m = asmatrix(a)
- assert_equal(type(kron(a,a)), ndarray)
- assert_equal(type(kron(m,m)), matrix)
- assert_equal(type(kron(a,m)), matrix)
- assert_equal(type(kron(m,a)), matrix)
- class myarray(ndarray):
- __array_priority__ = 0.0
- ma = myarray(a.shape, a.dtype, a.data)
- assert_equal(type(kron(a,a)), ndarray)
- assert_equal(type(kron(ma,ma)), myarray)
- assert_equal(type(kron(a,ma)), ndarray)
- assert_equal(type(kron(ma,a)), myarray)
-
-
-class TestTile(NumpyTestCase):
- def check_basic(self):
- a = array([0,1,2])
- b = [[1,2],[3,4]]
- assert_equal(tile(a,2), [0,1,2,0,1,2])
- assert_equal(tile(a,(2,2)), [[0,1,2,0,1,2],[0,1,2,0,1,2]])
- assert_equal(tile(a,(1,2)), [[0,1,2,0,1,2]])
- assert_equal(tile(b, 2), [[1,2,1,2],[3,4,3,4]])
- assert_equal(tile(b,(2,1)),[[1,2],[3,4],[1,2],[3,4]])
- assert_equal(tile(b,(2,2)),[[1,2,1,2],[3,4,3,4],
- [1,2,1,2],[3,4,3,4]])
-
- def check_empty(self):
- a = array([[[]]])
- d = tile(a,(3,2,5)).shape
- assert_equal(d,(3,2,0))
-
- def check_kroncompare(self):
- import numpy.random as nr
- reps=[(2,),(1,2),(2,1),(2,2),(2,3,2),(3,2)]
- shape=[(3,),(2,3),(3,4,3),(3,2,3),(4,3,2,4),(2,2)]
- for s in shape:
- b = nr.randint(0,10,size=s)
- for r in reps:
- a = ones(r, b.dtype)
- large = tile(b, r)
- klarge = kron(a, b)
- assert_equal(large, klarge)
-
-# Utility
-
-def compare_results(res,desired):
- for i in range(len(desired)):
- assert_array_equal(res[i],desired[i])
-
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py
deleted file mode 100644
index 3a9e8df80..000000000
--- a/numpy/lib/tests/test_twodim_base.py
+++ /dev/null
@@ -1,200 +0,0 @@
-""" Test functions for matrix module
-
-"""
-
-from numpy.testing import *
-set_package_path()
-from numpy import arange, rot90, add, fliplr, flipud, zeros, ones, eye, \
- array, diag, histogram2d, tri
-import numpy as np
-restore_path()
-
-##################################################
-
-
-def get_mat(n):
- data = arange(n)
- data = add.outer(data,data)
- return data
-
-class TestEye(NumpyTestCase):
- def check_basic(self):
- assert_equal(eye(4),array([[1,0,0,0],
- [0,1,0,0],
- [0,0,1,0],
- [0,0,0,1]]))
- assert_equal(eye(4,dtype='f'),array([[1,0,0,0],
- [0,1,0,0],
- [0,0,1,0],
- [0,0,0,1]],'f'))
- assert_equal(eye(3) == 1, eye(3,dtype=bool))
-
- def check_diag(self):
- assert_equal(eye(4,k=1),array([[0,1,0,0],
- [0,0,1,0],
- [0,0,0,1],
- [0,0,0,0]]))
- assert_equal(eye(4,k=-1),array([[0,0,0,0],
- [1,0,0,0],
- [0,1,0,0],
- [0,0,1,0]]))
- def check_2d(self):
- assert_equal(eye(4,3),array([[1,0,0],
- [0,1,0],
- [0,0,1],
- [0,0,0]]))
- assert_equal(eye(3,4),array([[1,0,0,0],
- [0,1,0,0],
- [0,0,1,0]]))
- def check_diag2d(self):
- assert_equal(eye(3,4,k=2),array([[0,0,1,0],
- [0,0,0,1],
- [0,0,0,0]]))
- assert_equal(eye(4,3,k=-2),array([[0,0,0],
- [0,0,0],
- [1,0,0],
- [0,1,0]]))
-
-class TestDiag(NumpyTestCase):
- def check_vector(self):
- vals = (100*arange(5)).astype('l')
- b = zeros((5,5))
- for k in range(5):
- b[k,k] = vals[k]
- assert_equal(diag(vals),b)
- b = zeros((7,7))
- c = b.copy()
- for k in range(5):
- b[k,k+2] = vals[k]
- c[k+2,k] = vals[k]
- assert_equal(diag(vals,k=2), b)
- assert_equal(diag(vals,k=-2), c)
-
- def check_matrix(self):
- vals = (100*get_mat(5)+1).astype('l')
- b = zeros((5,))
- for k in range(5):
- b[k] = vals[k,k]
- assert_equal(diag(vals),b)
- b = b*0
- for k in range(3):
- b[k] = vals[k,k+2]
- assert_equal(diag(vals,2),b[:3])
- for k in range(3):
- b[k] = vals[k+2,k]
- assert_equal(diag(vals,-2),b[:3])
-
-class TestFliplr(NumpyTestCase):
- def check_basic(self):
- self.failUnlessRaises(ValueError, fliplr, ones(4))
- a = get_mat(4)
- b = a[:,::-1]
- assert_equal(fliplr(a),b)
- a = [[0,1,2],
- [3,4,5]]
- b = [[2,1,0],
- [5,4,3]]
- assert_equal(fliplr(a),b)
-
-class TestFlipud(NumpyTestCase):
- def check_basic(self):
- a = get_mat(4)
- b = a[::-1,:]
- assert_equal(flipud(a),b)
- a = [[0,1,2],
- [3,4,5]]
- b = [[3,4,5],
- [0,1,2]]
- assert_equal(flipud(a),b)
-
-class TestRot90(NumpyTestCase):
- def check_basic(self):
- self.failUnlessRaises(ValueError, rot90, ones(4))
-
- a = [[0,1,2],
- [3,4,5]]
- b1 = [[2,5],
- [1,4],
- [0,3]]
- b2 = [[5,4,3],
- [2,1,0]]
- b3 = [[3,0],
- [4,1],
- [5,2]]
- b4 = [[0,1,2],
- [3,4,5]]
-
- for k in range(-3,13,4):
- assert_equal(rot90(a,k=k),b1)
- for k in range(-2,13,4):
- assert_equal(rot90(a,k=k),b2)
- for k in range(-1,13,4):
- assert_equal(rot90(a,k=k),b3)
- for k in range(0,13,4):
- assert_equal(rot90(a,k=k),b4)
-
- def check_axes(self):
- a = ones((50,40,3))
- assert_equal(rot90(a).shape,(40,50,3))
-
-class TestHistogram2d(NumpyTestCase):
- def check_simple(self):
- x = array([ 0.41702200, 0.72032449, 0.00011437481, 0.302332573, 0.146755891])
- y = array([ 0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
- xedges = np.linspace(0,1,10)
- yedges = np.linspace(0,1,10)
- H = histogram2d(x, y, (xedges, yedges))[0]
- answer = array([[0, 0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
- assert_array_equal(H.T, answer)
- H = histogram2d(x, y, xedges)[0]
- assert_array_equal(H.T, answer)
- H,xedges,yedges = histogram2d(range(10),range(10))
- assert_array_equal(H, eye(10,10))
- assert_array_equal(xedges, np.linspace(0,9,11))
- assert_array_equal(yedges, np.linspace(0,9,11))
-
- def check_asym(self):
- x = array([1, 1, 2, 3, 4, 4, 4, 5])
- y = array([1, 3, 2, 0, 1, 2, 3, 4])
- H, xed, yed = histogram2d(x,y, (6, 5), range = [[0,6],[0,5]], normed=True)
- answer = array([[0.,0,0,0,0],
- [0,1,0,1,0],
- [0,0,1,0,0],
- [1,0,0,0,0],
- [0,1,1,1,0],
- [0,0,0,0,1]])
- assert_array_almost_equal(H, answer/8., 3)
- assert_array_equal(xed, np.linspace(0,6,7))
- assert_array_equal(yed, np.linspace(0,5,6))
- def check_norm(self):
- x = array([1,2,3,1,2,3,1,2,3])
- y = array([1,1,1,2,2,2,3,3,3])
- H, xed, yed = histogram2d(x,y,[[1,2,3,5], [1,2,3,5]], normed=True)
- answer=array([[1,1,.5],
- [1,1,.5],
- [.5,.5,.25]])/9.
- assert_array_almost_equal(H, answer, 3)
-
- def check_all_outliers(self):
- r = rand(100)+1.
- H, xed, yed = histogram2d(r, r, (4, 5), range=([0,1], [0,1]))
- assert_array_equal(H, 0)
-
-class TestTri(NumpyTestCase):
- def test_dtype(self):
- out = array([[1,0,0],
- [1,1,0],
- [1,1,1]])
- assert_array_equal(tri(3),out)
- assert_array_equal(tri(3,dtype=bool),out.astype(bool))
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py
deleted file mode 100644
index 633c34dc8..000000000
--- a/numpy/lib/tests/test_type_check.py
+++ /dev/null
@@ -1,280 +0,0 @@
-import sys
-
-from numpy.testing import *
-set_package_path()
-import numpy.lib;reload(numpy.lib);reload(numpy.lib.type_check)
-from numpy.lib import *
-from numpy.core import *
-restore_path()
-
-def assert_all(x):
- assert(all(x)), x
-
-class TestMintypecode(NumpyTestCase):
-
- def check_default_1(self):
- for itype in '1bcsuwil':
- assert_equal(mintypecode(itype),'d')
- assert_equal(mintypecode('f'),'f')
- assert_equal(mintypecode('d'),'d')
- assert_equal(mintypecode('F'),'F')
- assert_equal(mintypecode('D'),'D')
-
- def check_default_2(self):
- for itype in '1bcsuwil':
- assert_equal(mintypecode(itype+'f'),'f')
- assert_equal(mintypecode(itype+'d'),'d')
- assert_equal(mintypecode(itype+'F'),'F')
- assert_equal(mintypecode(itype+'D'),'D')
- assert_equal(mintypecode('ff'),'f')
- assert_equal(mintypecode('fd'),'d')
- assert_equal(mintypecode('fF'),'F')
- assert_equal(mintypecode('fD'),'D')
- assert_equal(mintypecode('df'),'d')
- assert_equal(mintypecode('dd'),'d')
- #assert_equal(mintypecode('dF',savespace=1),'F')
- assert_equal(mintypecode('dF'),'D')
- assert_equal(mintypecode('dD'),'D')
- assert_equal(mintypecode('Ff'),'F')
- #assert_equal(mintypecode('Fd',savespace=1),'F')
- assert_equal(mintypecode('Fd'),'D')
- assert_equal(mintypecode('FF'),'F')
- assert_equal(mintypecode('FD'),'D')
- assert_equal(mintypecode('Df'),'D')
- assert_equal(mintypecode('Dd'),'D')
- assert_equal(mintypecode('DF'),'D')
- assert_equal(mintypecode('DD'),'D')
-
- def check_default_3(self):
- assert_equal(mintypecode('fdF'),'D')
- #assert_equal(mintypecode('fdF',savespace=1),'F')
- assert_equal(mintypecode('fdD'),'D')
- assert_equal(mintypecode('fFD'),'D')
- assert_equal(mintypecode('dFD'),'D')
-
- assert_equal(mintypecode('ifd'),'d')
- assert_equal(mintypecode('ifF'),'F')
- assert_equal(mintypecode('ifD'),'D')
- assert_equal(mintypecode('idF'),'D')
- #assert_equal(mintypecode('idF',savespace=1),'F')
- assert_equal(mintypecode('idD'),'D')
-
-class TestIsscalar(NumpyTestCase):
- def check_basic(self):
- assert(isscalar(3))
- assert(not isscalar([3]))
- assert(not isscalar((3,)))
- assert(isscalar(3j))
- assert(isscalar(10L))
- assert(isscalar(4.0))
-
-class TestReal(NumpyTestCase):
- def check_real(self):
- y = rand(10,)
- assert_array_equal(y,real(y))
-
- def check_cmplx(self):
- y = rand(10,)+1j*rand(10,)
- assert_array_equal(y.real,real(y))
-
-class TestImag(NumpyTestCase):
- def check_real(self):
- y = rand(10,)
- assert_array_equal(0,imag(y))
-
- def check_cmplx(self):
- y = rand(10,)+1j*rand(10,)
- assert_array_equal(y.imag,imag(y))
-
-class TestIscomplex(NumpyTestCase):
- def check_fail(self):
- z = array([-1,0,1])
- res = iscomplex(z)
- assert(not sometrue(res,axis=0))
- def check_pass(self):
- z = array([-1j,1,0])
- res = iscomplex(z)
- assert_array_equal(res,[1,0,0])
-
-class TestIsreal(NumpyTestCase):
- def check_pass(self):
- z = array([-1,0,1j])
- res = isreal(z)
- assert_array_equal(res,[1,1,0])
- def check_fail(self):
- z = array([-1j,1,0])
- res = isreal(z)
- assert_array_equal(res,[0,1,1])
-
-class TestIscomplexobj(NumpyTestCase):
- def check_basic(self):
- z = array([-1,0,1])
- assert(not iscomplexobj(z))
- z = array([-1j,0,-1])
- assert(iscomplexobj(z))
-
-class TestIsrealobj(NumpyTestCase):
- def check_basic(self):
- z = array([-1,0,1])
- assert(isrealobj(z))
- z = array([-1j,0,-1])
- assert(not isrealobj(z))
-
-class TestIsnan(NumpyTestCase):
- def check_goodvalues(self):
- z = array((-1.,0.,1.))
- res = isnan(z) == 0
- assert_all(alltrue(res,axis=0))
- def check_posinf(self):
- olderr = seterr(divide='ignore')
- assert_all(isnan(array((1.,))/0.) == 0)
- seterr(**olderr)
- def check_neginf(self):
- olderr = seterr(divide='ignore')
- assert_all(isnan(array((-1.,))/0.) == 0)
- seterr(**olderr)
- def check_ind(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- assert_all(isnan(array((0.,))/0.) == 1)
- seterr(**olderr)
- #def check_qnan(self): log(-1) return pi*j now
- # assert_all(isnan(log(-1.)) == 1)
- def check_integer(self):
- assert_all(isnan(1) == 0)
- def check_complex(self):
- assert_all(isnan(1+1j) == 0)
- def check_complex1(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- assert_all(isnan(array(0+0j)/0.) == 1)
- seterr(**olderr)
-
-class TestIsfinite(NumpyTestCase):
- def check_goodvalues(self):
- z = array((-1.,0.,1.))
- res = isfinite(z) == 1
- assert_all(alltrue(res,axis=0))
- def check_posinf(self):
- olderr = seterr(divide='ignore')
- assert_all(isfinite(array((1.,))/0.) == 0)
- seterr(**olderr)
- def check_neginf(self):
- olderr = seterr(divide='ignore')
- assert_all(isfinite(array((-1.,))/0.) == 0)
- seterr(**olderr)
- def check_ind(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- assert_all(isfinite(array((0.,))/0.) == 0)
- seterr(**olderr)
- #def check_qnan(self):
- # assert_all(isfinite(log(-1.)) == 0)
- def check_integer(self):
- assert_all(isfinite(1) == 1)
- def check_complex(self):
- assert_all(isfinite(1+1j) == 1)
- def check_complex1(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- assert_all(isfinite(array(1+1j)/0.) == 0)
- seterr(**olderr)
-
-class TestIsinf(NumpyTestCase):
- def check_goodvalues(self):
- z = array((-1.,0.,1.))
- res = isinf(z) == 0
- assert_all(alltrue(res,axis=0))
- def check_posinf(self):
- olderr = seterr(divide='ignore')
- assert_all(isinf(array((1.,))/0.) == 1)
- seterr(**olderr)
- def check_posinf_scalar(self):
- olderr = seterr(divide='ignore')
- assert_all(isinf(array(1.,)/0.) == 1)
- seterr(**olderr)
- def check_neginf(self):
- olderr = seterr(divide='ignore')
- assert_all(isinf(array((-1.,))/0.) == 1)
- seterr(**olderr)
- def check_neginf_scalar(self):
- olderr = seterr(divide='ignore')
- assert_all(isinf(array(-1.)/0.) == 1)
- seterr(**olderr)
- def check_ind(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- assert_all(isinf(array((0.,))/0.) == 0)
- seterr(**olderr)
- #def check_qnan(self):
- # assert_all(isinf(log(-1.)) == 0)
- # assert_all(isnan(log(-1.)) == 1)
-
-class TestIsposinf(NumpyTestCase):
- def check_generic(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- vals = isposinf(array((-1.,0,1))/0.)
- seterr(**olderr)
- assert(vals[0] == 0)
- assert(vals[1] == 0)
- assert(vals[2] == 1)
-
-class TestIsneginf(NumpyTestCase):
- def check_generic(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- vals = isneginf(array((-1.,0,1))/0.)
- seterr(**olderr)
- assert(vals[0] == 1)
- assert(vals[1] == 0)
- assert(vals[2] == 0)
-
-class TestNanToNum(NumpyTestCase):
- def check_generic(self):
- olderr = seterr(divide='ignore', invalid='ignore')
- vals = nan_to_num(array((-1.,0,1))/0.)
- seterr(**olderr)
- assert_all(vals[0] < -1e10) and assert_all(isfinite(vals[0]))
- assert(vals[1] == 0)
- assert_all(vals[2] > 1e10) and assert_all(isfinite(vals[2]))
- def check_integer(self):
- vals = nan_to_num(1)
- assert_all(vals == 1)
- def check_complex_good(self):
- vals = nan_to_num(1+1j)
- assert_all(vals == 1+1j)
- def check_complex_bad(self):
- v = 1+1j
- olderr = seterr(divide='ignore', invalid='ignore')
- v += array(0+1.j)/0.
- seterr(**olderr)
- vals = nan_to_num(v)
- # !! This is actually (unexpectedly) zero
- assert_all(isfinite(vals))
- def check_complex_bad2(self):
- v = 1+1j
- olderr = seterr(divide='ignore', invalid='ignore')
- v += array(-1+1.j)/0.
- seterr(**olderr)
- vals = nan_to_num(v)
- assert_all(isfinite(vals))
- #assert_all(vals.imag > 1e10) and assert_all(isfinite(vals))
- # !! This is actually (unexpectedly) positive
- # !! inf. Comment out for now, and see if it
- # !! changes
- #assert_all(vals.real < -1e10) and assert_all(isfinite(vals))
-
-
-class TestRealIfClose(NumpyTestCase):
- def check_basic(self):
- a = rand(10)
- b = real_if_close(a+1e-15j)
- assert_all(isrealobj(b))
- assert_array_equal(a,b)
- b = real_if_close(a+1e-7j)
- assert_all(iscomplexobj(b))
- b = real_if_close(a+1e-7j,tol=1e-6)
- assert_all(isrealobj(b))
-
-class TestArrayConversion(NumpyTestCase):
- def check_asfarray(self):
- a = asfarray(array([1,2,3]))
- assert_equal(a.__class__,ndarray)
- assert issubdtype(a.dtype,float)
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/tests/test_ufunclike.py b/numpy/lib/tests/test_ufunclike.py
deleted file mode 100644
index 926439fb4..000000000
--- a/numpy/lib/tests/test_ufunclike.py
+++ /dev/null
@@ -1,66 +0,0 @@
-"""
->>> import numpy.core as nx
->>> import numpy.lib.ufunclike as U
-
-Test fix:
->>> a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]])
->>> U.fix(a)
-array([[ 1., 1., 1., 1.],
- [ 0., -1., -1., -1.]])
->>> y = nx.zeros(a.shape, float)
->>> U.fix(a, y)
-array([[ 1., 1., 1., 1.],
- [ 0., -1., -1., -1.]])
->>> y
-array([[ 1., 1., 1., 1.],
- [ 0., -1., -1., -1.]])
-
-Test isposinf, isneginf, sign
->>> a = nx.array([nx.Inf, -nx.Inf, nx.NaN, 0.0, 3.0, -3.0])
->>> U.isposinf(a)
-array([ True, False, False, False, False, False], dtype=bool)
->>> U.isneginf(a)
-array([False, True, False, False, False, False], dtype=bool)
->>> olderr = nx.seterr(invalid='ignore')
->>> nx.sign(a)
-array([ 1., -1., 0., 0., 1., -1.])
->>> olderr = nx.seterr(**olderr)
-
-Same thing with an output array:
->>> y = nx.zeros(a.shape, bool)
->>> U.isposinf(a, y)
-array([ True, False, False, False, False, False], dtype=bool)
->>> y
-array([ True, False, False, False, False, False], dtype=bool)
->>> U.isneginf(a, y)
-array([False, True, False, False, False, False], dtype=bool)
->>> y
-array([False, True, False, False, False, False], dtype=bool)
->>> olderr = nx.seterr(invalid='ignore')
->>> nx.sign(a, y)
-array([ True, True, False, False, True, True], dtype=bool)
->>> olderr = nx.seterr(**olderr)
->>> y
-array([ True, True, False, False, True, True], dtype=bool)
-
-Now log2:
->>> a = nx.array([4.5, 2.3, 6.5])
->>> U.log2(a)
-array([ 2.169925 , 1.20163386, 2.70043972])
->>> 2**_
-array([ 4.5, 2.3, 6.5])
->>> y = nx.zeros(a.shape, float)
->>> U.log2(a, y)
-array([ 2.169925 , 1.20163386, 2.70043972])
->>> y
-array([ 2.169925 , 1.20163386, 2.70043972])
-
-"""
-
-from numpy.testing import *
-
-class TestDocs(NumpyTestCase):
- def check_doctests(self): return self.rundocs()
-
-if __name__ == "__main__":
- NumpyTest().run()
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
deleted file mode 100644
index 4852097f3..000000000
--- a/numpy/lib/twodim_base.py
+++ /dev/null
@@ -1,184 +0,0 @@
-""" Basic functions for manipulating 2d arrays
-
-"""
-
-__all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu',
- 'tril','vander','histogram2d']
-
-from numpy.core.numeric import asanyarray, equal, subtract, arange, \
- zeros, arange, greater_equal, multiply, ones, asarray
-
-def fliplr(m):
- """ returns an array m with the rows preserved and columns flipped
- in the left/right direction. Works on the first two dimensions of m.
- """
- m = asanyarray(m)
- if m.ndim < 2:
- raise ValueError, "Input must be >= 2-d."
- return m[:, ::-1]
-
-def flipud(m):
- """ returns an array with the columns preserved and rows flipped in
- the up/down direction. Works on the first dimension of m.
- """
- m = asanyarray(m)
- if m.ndim < 1:
- raise ValueError, "Input must be >= 1-d."
- return m[::-1,...]
-
-def rot90(m, k=1):
- """ returns the array found by rotating m by k*90
- degrees in the counterclockwise direction. Works on the first two
- dimensions of m.
- """
- m = asanyarray(m)
- if m.ndim < 2:
- raise ValueError, "Input must >= 2-d."
- k = k % 4
- if k == 0: return m
- elif k == 1: return fliplr(m).swapaxes(0,1)
- elif k == 2: return fliplr(flipud(m))
- else: return fliplr(m.swapaxes(0,1)) # k==3
-
-def eye(N, M=None, k=0, dtype=float):
- """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones,
- and everything else is zeros.
- """
- if M is None: M = N
- m = equal(subtract.outer(arange(N), arange(M)),-k)
- if m.dtype != dtype:
- m = m.astype(dtype)
- return m
-
-def diag(v, k=0):
- """ returns a copy of the the k-th diagonal if v is a 2-d array
- or returns a 2-d array with v as the k-th diagonal if v is a
- 1-d array.
- """
- v = asarray(v)
- s = v.shape
- if len(s)==1:
- n = s[0]+abs(k)
- res = zeros((n,n), v.dtype)
- if (k>=0):
- i = arange(0,n-k)
- fi = i+k+i*n
- else:
- i = arange(0,n+k)
- fi = i+(i-k)*n
- res.flat[fi] = v
- return res
- elif len(s)==2:
- N1,N2 = s
- if k >= 0:
- M = min(N1,N2-k)
- i = arange(0,M)
- fi = i+k+i*N2
- else:
- M = min(N1+k,N2)
- i = arange(0,M)
- fi = i + (i-k)*N2
- return v.flat[fi]
- else:
- raise ValueError, "Input must be 1- or 2-d."
-
-def diagflat(v,k=0):
- try:
- wrap = v.__array_wrap__
- except AttributeError:
- wrap = None
- v = asarray(v).ravel()
- s = len(v)
- n = s + abs(k)
- res = zeros((n,n), v.dtype)
- if (k>=0):
- i = arange(0,n-k)
- fi = i+k+i*n
- else:
- i = arange(0,n+k)
- fi = i+(i-k)*n
- res.flat[fi] = v
- if not wrap:
- return res
- return wrap(res)
-
-def tri(N, M=None, k=0, dtype=float):
- """ returns a N-by-M array where all the diagonals starting from
- lower left corner up to the k-th are all ones.
- """
- if M is None: M = N
- m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
- return m.astype(dtype)
-
-def tril(m, k=0):
- """ returns the elements on and below the k-th diagonal of m. k=0 is the
- main diagonal, k > 0 is above and k < 0 is below the main diagonal.
- """
- m = asanyarray(m)
- out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
- return out
-
-def triu(m, k=0):
- """ returns the elements on and above the k-th diagonal of m. k=0 is the
- main diagonal, k > 0 is above and k < 0 is below the main diagonal.
- """
- m = asanyarray(m)
- out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
- return out
-
-# borrowed from John Hunter and matplotlib
-def vander(x, N=None):
- """
- X = vander(x,N=None)
-
- The Vandermonde matrix of vector x. The i-th column of X is the
- the i-th power of x. N is the maximum power to compute; if N is
- None it defaults to len(x).
-
- """
- x = asarray(x)
- if N is None: N=len(x)
- X = ones( (len(x),N), x.dtype)
- for i in range(N-1):
- X[:,i] = x**(N-i-1)
- return X
-
-
-def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
- """histogram2d(x,y, bins=10, range=None, normed=False) -> H, xedges, yedges
-
- Compute the 2D histogram from samples x,y.
-
- :Parameters:
- - `x,y` : Sample arrays (1D).
- - `bins` : Number of bins -or- [nbin x, nbin y] -or-
- [bin edges] -or- [x bin edges, y bin edges].
- - `range` : A sequence of lower and upper bin edges (default: [min, max]).
- - `normed` : Boolean, if False, return the number of samples in each bin,
- if True, returns the density.
- - `weights` : An array of weights. The weights are normed only if normed
- is True. Should weights.sum() not equal N, the total bin count \
- will not be equal to the number of samples.
-
- :Return:
- - `hist` : Histogram array.
- - `xedges, yedges` : Arrays defining the bin edges.
-
- Example:
- >>> x = random.randn(100,2)
- >>> hist2d, xedges, yedges = histogram2d(x, bins = (6, 7))
-
- :SeeAlso: histogramdd
- """
- from numpy import histogramdd
-
- try:
- N = len(bins)
- except TypeError:
- N = 1
-
- if N != 1 and N != 2:
- xedges = yedges = asarray(bins, float)
- bins = [xedges, yedges]
- hist, edges = histogramdd([x,y], bins, range, normed, weights)
- return hist, edges[0], edges[1]
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
deleted file mode 100644
index 20817ab01..000000000
--- a/numpy/lib/type_check.py
+++ /dev/null
@@ -1,233 +0,0 @@
-## Automatically adapted for numpy Sep 19, 2005 by convertcode.py
-
-__all__ = ['iscomplexobj','isrealobj','imag','iscomplex',
- 'isreal','nan_to_num','real','real_if_close',
- 'typename','asfarray','mintypecode','asscalar',
- 'common_type']
-
-import numpy.core.numeric as _nx
-from numpy.core.numeric import asarray, asanyarray, array, isnan, \
- obj2sctype, zeros
-from ufunclike import isneginf, isposinf
-
-_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?'
-
-def mintypecode(typechars,typeset='GDFgdf',default='d'):
- """ Return a minimum data type character from typeset that
- handles all typechars given
-
- The returned type character must be the smallest size such that
- an array of the returned type can handle the data from an array of
- type t for each t in typechars (or if typechars is an array,
- then its dtype.char).
-
- If the typechars does not intersect with the typeset, then default
- is returned.
-
- If t in typechars is not a string then t=asarray(t).dtype.char is
- applied.
- """
- typecodes = [(type(t) is type('') and t) or asarray(t).dtype.char\
- for t in typechars]
- intersection = [t for t in typecodes if t in typeset]
- if not intersection:
- return default
- if 'F' in intersection and 'd' in intersection:
- return 'D'
- l = []
- for t in intersection:
- i = _typecodes_by_elsize.index(t)
- l.append((i,t))
- l.sort()
- return l[0][1]
-
-def asfarray(a, dtype=_nx.float_):
- """asfarray(a,dtype=None) returns a as a float array."""
- dtype = _nx.obj2sctype(dtype)
- if not issubclass(dtype, _nx.inexact):
- dtype = _nx.float_
- return asarray(a,dtype=dtype)
-
-def real(val):
- """Return the real part of val.
-
- Useful if val maybe a scalar or an array.
- """
- return asanyarray(val).real
-
-def imag(val):
- """Return the imaginary part of val.
-
- Useful if val maybe a scalar or an array.
- """
- return asanyarray(val).imag
-
-def iscomplex(x):
- """Return a boolean array where elements are True if that element
- is complex (has non-zero imaginary part).
-
- For scalars, return a boolean.
- """
- ax = asanyarray(x)
- if issubclass(ax.dtype.type, _nx.complexfloating):
- return ax.imag != 0
- res = zeros(ax.shape, bool)
- return +res # convet to array-scalar if needed
-
-def isreal(x):
- """Return a boolean array where elements are True if that element
- is real (has zero imaginary part)
-
- For scalars, return a boolean.
- """
- return imag(x) == 0
-
-def iscomplexobj(x):
- """Return True if x is a complex type or an array of complex numbers.
-
- Unlike iscomplex(x), complex(3.0) is considered a complex object.
- """
- return issubclass( asarray(x).dtype.type, _nx.complexfloating)
-
-def isrealobj(x):
- """Return True if x is not a complex type.
-
- Unlike isreal(x), complex(3.0) is considered a complex object.
- """
- return not issubclass( asarray(x).dtype.type, _nx.complexfloating)
-
-#-----------------------------------------------------------------------------
-
-def _getmaxmin(t):
- import getlimits
- f = getlimits.finfo(t)
- return f.max, f.min
-
-def nan_to_num(x):
- """
- Returns a copy of replacing NaN's with 0 and Infs with large numbers
-
- The following mappings are applied:
- NaN -> 0
- Inf -> limits.double_max
- -Inf -> limits.double_min
- """
- try:
- t = x.dtype.type
- except AttributeError:
- t = obj2sctype(type(x))
- if issubclass(t, _nx.complexfloating):
- return nan_to_num(x.real) + 1j * nan_to_num(x.imag)
- else:
- try:
- y = x.copy()
- except AttributeError:
- y = array(x)
- if not issubclass(t, _nx.integer):
- if not y.shape:
- y = array([x])
- scalar = True
- else:
- scalar = False
- are_inf = isposinf(y)
- are_neg_inf = isneginf(y)
- are_nan = isnan(y)
- maxf, minf = _getmaxmin(y.dtype.type)
- y[are_nan] = 0
- y[are_inf] = maxf
- y[are_neg_inf] = minf
- if scalar:
- y = y[0]
- return y
-
-#-----------------------------------------------------------------------------
-
-def real_if_close(a,tol=100):
- """If a is a complex array, return it as a real array if the imaginary
- part is close enough to zero.
-
- "Close enough" is defined as tol*(machine epsilon of a's element type).
- """
- a = asanyarray(a)
- if not issubclass(a.dtype.type, _nx.complexfloating):
- return a
- if tol > 1:
- import getlimits
- f = getlimits.finfo(a.dtype.type)
- tol = f.eps * tol
- if _nx.allclose(a.imag, 0, atol=tol):
- a = a.real
- return a
-
-
-def asscalar(a):
- """Convert an array of size 1 to its scalar equivalent.
- """
- return a.item()
-
-#-----------------------------------------------------------------------------
-
-_namefromtype = {'S1' : 'character',
- '?' : 'bool',
- 'b' : 'signed char',
- 'B' : 'unsigned char',
- 'h' : 'short',
- 'H' : 'unsigned short',
- 'i' : 'integer',
- 'I' : 'unsigned integer',
- 'l' : 'long integer',
- 'L' : 'unsigned long integer',
- 'q' : 'long long integer',
- 'Q' : 'unsigned long long integer',
- 'f' : 'single precision',
- 'd' : 'double precision',
- 'g' : 'long precision',
- 'F' : 'complex single precision',
- 'D' : 'complex double precision',
- 'G' : 'complex long double precision',
- 'S' : 'string',
- 'U' : 'unicode',
- 'V' : 'void',
- 'O' : 'object'
- }
-
-def typename(char):
- """Return an english description for the given data type character.
- """
- return _namefromtype[char]
-
-#-----------------------------------------------------------------------------
-
-#determine the "minimum common type" for a group of arrays.
-array_type = [[_nx.single, _nx.double, _nx.longdouble],
- [_nx.csingle, _nx.cdouble, _nx.clongdouble]]
-array_precision = {_nx.single : 0,
- _nx.double : 1,
- _nx.longdouble : 2,
- _nx.csingle : 0,
- _nx.cdouble : 1,
- _nx.clongdouble : 2}
-def common_type(*arrays):
- """Given a sequence of arrays as arguments, return the best inexact
- scalar type which is "most" common amongst them.
-
- The return type will always be a inexact scalar type, even if all
- the arrays are integer arrays.
- """
- is_complex = False
- precision = 0
- for a in arrays:
- t = a.dtype.type
- if iscomplexobj(a):
- is_complex = True
- if issubclass(t, _nx.integer):
- p = 1
- else:
- p = array_precision.get(t, None)
- if p is None:
- raise TypeError("can't get common type for non-numeric array")
- precision = max(precision, p)
- if is_complex:
- return array_type[1][precision]
- else:
- return array_type[0][precision]
diff --git a/numpy/lib/ufunclike.py b/numpy/lib/ufunclike.py
deleted file mode 100644
index a8c2c1e25..000000000
--- a/numpy/lib/ufunclike.py
+++ /dev/null
@@ -1,60 +0,0 @@
-"""
-Module of functions that are like ufuncs in acting on arrays and optionally
-storing results in an output array.
-"""
-__all__ = ['fix', 'isneginf', 'isposinf', 'log2']
-
-import numpy.core.numeric as nx
-from numpy.core.numeric import asarray, empty, isinf, signbit, asanyarray
-import numpy.core.umath as umath
-
-def fix(x, y=None):
- """ Round x to nearest integer towards zero.
- """
- x = asanyarray(x)
- if y is None:
- y = nx.floor(x)
- else:
- nx.floor(x, y)
- if x.ndim == 0:
- if (x<0):
- y += 1
- else:
- y[x<0] = y[x<0]+1
- return y
-
-def isposinf(x, y=None):
- """Return a boolean array y with y[i] True for x[i] = +Inf.
-
- If y is an array, the result replaces the contents of y.
- """
- if y is None:
- x = asarray(x)
- y = empty(x.shape, dtype=nx.bool_)
- umath.logical_and(isinf(x), ~signbit(x), y)
- return y
-
-def isneginf(x, y=None):
- """Return a boolean array y with y[i] True for x[i] = -Inf.
-
- If y is an array, the result replaces the contents of y.
- """
- if y is None:
- x = asarray(x)
- y = empty(x.shape, dtype=nx.bool_)
- umath.logical_and(isinf(x), signbit(x), y)
- return y
-
-_log2 = umath.log(2)
-def log2(x, y=None):
- """Returns the base 2 logarithm of x
-
- If y is an array, the result replaces the contents of y.
- """
- x = asanyarray(x)
- if y is None:
- y = umath.log(x)
- else:
- umath.log(x, y)
- y /= _log2
- return y
diff --git a/numpy/lib/user_array.py b/numpy/lib/user_array.py
deleted file mode 100644
index 43e9da3f2..000000000
--- a/numpy/lib/user_array.py
+++ /dev/null
@@ -1,217 +0,0 @@
-"""
-Standard container-class for easy multiple-inheritance.
-Try to inherit from the ndarray instead of using this class as this is not
-complete.
-"""
-
-from numpy.core import array, asarray, absolute, add, subtract, multiply, \
- divide, remainder, power, left_shift, right_shift, bitwise_and, \
- bitwise_or, bitwise_xor, invert, less, less_equal, not_equal, equal, \
- greater, greater_equal, shape, reshape, arange, sin, sqrt, transpose
-
-class container(object):
- def __init__(self, data, dtype=None, copy=True):
- self.array = array(data, dtype, copy=copy)
-
- def __repr__(self):
- if len(self.shape) > 0:
- return self.__class__.__name__+repr(self.array)[len("array"):]
- else:
- return self.__class__.__name__+"("+repr(self.array)+")"
-
- def __array__(self,t=None):
- if t: return self.array.astype(t)
- return self.array
-
- # Array as sequence
- def __len__(self): return len(self.array)
-
- def __getitem__(self, index):
- return self._rc(self.array[index])
-
- def __getslice__(self, i, j):
- return self._rc(self.array[i:j])
-
-
- def __setitem__(self, index, value):
- self.array[index] = asarray(value,self.dtype)
- def __setslice__(self, i, j, value):
- self.array[i:j] = asarray(value,self.dtype)
-
- def __abs__(self):
- return self._rc(absolute(self.array))
- def __neg__(self):
- return self._rc(-self.array)
-
- def __add__(self, other):
- return self._rc(self.array+asarray(other))
- __radd__ = __add__
-
- def __iadd__(self, other):
- add(self.array, other, self.array)
- return self
-
- def __sub__(self, other):
- return self._rc(self.array-asarray(other))
- def __rsub__(self, other):
- return self._rc(asarray(other)-self.array)
- def __isub__(self, other):
- subtract(self.array, other, self.array)
- return self
-
- def __mul__(self, other):
- return self._rc(multiply(self.array,asarray(other)))
- __rmul__ = __mul__
- def __imul__(self, other):
- multiply(self.array, other, self.array)
- return self
-
- def __div__(self, other):
- return self._rc(divide(self.array,asarray(other)))
- def __rdiv__(self, other):
- return self._rc(divide(asarray(other),self.array))
- def __idiv__(self, other):
- divide(self.array, other, self.array)
- return self
-
- def __mod__(self, other):
- return self._rc(remainder(self.array, other))
- def __rmod__(self, other):
- return self._rc(remainder(other, self.array))
- def __imod__(self, other):
- remainder(self.array, other, self.array)
- return self
-
- def __divmod__(self, other):
- return (self._rc(divide(self.array,other)),
- self._rc(remainder(self.array, other)))
- def __rdivmod__(self, other):
- return (self._rc(divide(other, self.array)),
- self._rc(remainder(other, self.array)))
-
- def __pow__(self,other):
- return self._rc(power(self.array,asarray(other)))
- def __rpow__(self,other):
- return self._rc(power(asarray(other),self.array))
- def __ipow__(self,other):
- power(self.array, other, self.array)
- return self
-
- def __lshift__(self,other):
- return self._rc(left_shift(self.array, other))
- def __rshift__(self,other):
- return self._rc(right_shift(self.array, other))
- def __rlshift__(self,other):
- return self._rc(left_shift(other, self.array))
- def __rrshift__(self,other):
- return self._rc(right_shift(other, self.array))
- def __ilshift__(self,other):
- left_shift(self.array, other, self.array)
- return self
- def __irshift__(self,other):
- right_shift(self.array, other, self.array)
- return self
-
- def __and__(self, other):
- return self._rc(bitwise_and(self.array, other))
- def __rand__(self, other):
- return self._rc(bitwise_and(other, self.array))
- def __iand__(self, other):
- bitwise_and(self.array, other, self.array)
- return self
-
- def __xor__(self, other):
- return self._rc(bitwise_xor(self.array, other))
- def __rxor__(self, other):
- return self._rc(bitwise_xor(other, self.array))
- def __ixor__(self, other):
- bitwise_xor(self.array, other, self.array)
- return self
-
- def __or__(self, other):
- return self._rc(bitwise_or(self.array, other))
- def __ror__(self, other):
- return self._rc(bitwise_or(other, self.array))
- def __ior__(self, other):
- bitwise_or(self.array, other, self.array)
- return self
-
- def __neg__(self):
- return self._rc(-self.array)
- def __pos__(self):
- return self._rc(self.array)
- def __abs__(self):
- return self._rc(abs(self.array))
- def __invert__(self):
- return self._rc(invert(self.array))
-
- def _scalarfunc(self, func):
- if len(self.shape) == 0:
- return func(self[0])
- else:
- raise TypeError, "only rank-0 arrays can be converted to Python scalars."
-
- def __complex__(self): return self._scalarfunc(complex)
- def __float__(self): return self._scalarfunc(float)
- def __int__(self): return self._scalarfunc(int)
- def __long__(self): return self._scalarfunc(long)
- def __hex__(self): return self._scalarfunc(hex)
- def __oct__(self): return self._scalarfunc(oct)
-
- def __lt__(self,other): return self._rc(less(self.array,other))
- def __le__(self,other): return self._rc(less_equal(self.array,other))
- def __eq__(self,other): return self._rc(equal(self.array,other))
- def __ne__(self,other): return self._rc(not_equal(self.array,other))
- def __gt__(self,other): return self._rc(greater(self.array,other))
- def __ge__(self,other): return self._rc(greater_equal(self.array,other))
-
- def copy(self): return self._rc(self.array.copy())
-
- def tostring(self): return self.array.tostring()
-
- def byteswap(self): return self._rc(self.array.byteswap())
-
- def astype(self, typecode): return self._rc(self.array.astype(typecode))
-
- def _rc(self, a):
- if len(shape(a)) == 0: return a
- else: return self.__class__(a)
-
- def __array_wrap__(self, *args):
- return self.__class__(args[0])
-
- def __setattr__(self,attr,value):
- if attr == 'array':
- object.__setattr__(self, attr, value)
- return
- try:
- self.array.__setattr__(attr, value)
- except AttributeError:
- object.__setattr__(self, attr, value)
-
- # Only called after other approaches fail.
- def __getattr__(self,attr):
- if (attr == 'array'):
- return object.__getattribute__(self, attr)
- return self.array.__getattribute__(attr)
-
-#############################################################
-# Test of class container
-#############################################################
-if __name__ == '__main__':
- temp=reshape(arange(10000),(100,100))
-
- ua=container(temp)
- # new object created begin test
- print dir(ua)
- print shape(ua),ua.shape # I have changed Numeric.py
-
- ua_small=ua[:3,:5]
- print ua_small
- ua_small[0,0]=10 # this did not change ua[0,0], which is not normal behavior
- print ua_small[0,0],ua[0,0]
- print sin(ua_small)/3.*6.+sqrt(ua_small**2)
- print less(ua_small,103),type(less(ua_small,103))
- print type(ua_small*reshape(arange(15),shape(ua_small)))
- print reshape(ua_small,(5,3))
- print transpose(ua_small)
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
deleted file mode 100644
index 95dd4f581..000000000
--- a/numpy/lib/utils.py
+++ /dev/null
@@ -1,432 +0,0 @@
-import os
-import sys
-import inspect
-import types
-from numpy.core.numerictypes import obj2sctype, generic
-from numpy.core.multiarray import dtype as _dtype
-from numpy.core import product, ndarray
-
-__all__ = ['issubclass_', 'get_numpy_include', 'issubsctype',
- 'issubdtype', 'deprecate', 'get_numarray_include',
- 'get_include', 'info', 'source', 'who',
- 'byte_bounds', 'may_share_memory']
-
-def issubclass_(arg1, arg2):
- try:
- return issubclass(arg1, arg2)
- except TypeError:
- return False
-
-def issubsctype(arg1, arg2):
- return issubclass(obj2sctype(arg1), obj2sctype(arg2))
-
-def issubdtype(arg1, arg2):
- if issubclass_(arg2, generic):
- return issubclass(_dtype(arg1).type, arg2)
- mro = _dtype(arg2).type.mro()
- if len(mro) > 1:
- val = mro[1]
- else:
- val = mro[0]
- return issubclass(_dtype(arg1).type, val)
-
-def get_include():
- """Return the directory in the package that contains the numpy/*.h header
- files.
-
- Extension modules that need to compile against numpy should use this
- function to locate the appropriate include directory. Using distutils:
-
- import numpy
- Extension('extension_name', ...
- include_dirs=[numpy.get_include()])
- """
- import numpy
- if numpy.show_config is None:
- # running from numpy source directory
- d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include')
- else:
- # using installed numpy core headers
- import numpy.core as core
- d = os.path.join(os.path.dirname(core.__file__), 'include')
- return d
-
-def get_numarray_include(type=None):
- """Return the directory in the package that contains the numpy/*.h header
- files.
-
- Extension modules that need to compile against numpy should use this
- function to locate the appropriate include directory. Using distutils:
-
- import numpy
- Extension('extension_name', ...
- include_dirs=[numpy.get_numarray_include()])
- """
- from numpy.numarray import get_numarray_include_dirs
- include_dirs = get_numarray_include_dirs()
- if type is None:
- return include_dirs[0]
- else:
- return include_dirs + [get_include()]
-
-
-if sys.version_info < (2, 4):
- # Can't set __name__ in 2.3
- import new
- def _set_function_name(func, name):
- func = new.function(func.func_code, func.func_globals,
- name, func.func_defaults, func.func_closure)
- return func
-else:
- def _set_function_name(func, name):
- func.__name__ = name
- return func
-
-def deprecate(func, oldname, newname):
- import warnings
- def newfunc(*args,**kwds):
- warnings.warn("%s is deprecated, use %s" % (oldname, newname),
- DeprecationWarning)
- return func(*args, **kwds)
- newfunc = _set_function_name(newfunc, oldname)
- doc = func.__doc__
- depdoc = '%s is DEPRECATED in numpy: use %s instead' % (oldname, newname,)
- if doc is None:
- doc = depdoc
- else:
- doc = '\n'.join([depdoc, doc])
- newfunc.__doc__ = doc
- try:
- d = func.__dict__
- except AttributeError:
- pass
- else:
- newfunc.__dict__.update(d)
- return newfunc
-
-get_numpy_include = deprecate(get_include, 'get_numpy_include', 'get_include')
-
-
-#--------------------------------------------
-# Determine if two arrays can share memory
-#--------------------------------------------
-
-def byte_bounds(a):
- """(low, high) are pointers to the end-points of an array
-
- low is the first byte
- high is just *past* the last byte
-
- If the array is not single-segment, then it may not actually
- use every byte between these bounds.
-
- The array provided must conform to the Python-side of the array interface
- """
- ai = a.__array_interface__
- a_data = ai['data'][0]
- astrides = ai['strides']
- ashape = ai['shape']
- nd_a = len(ashape)
- bytes_a = int(ai['typestr'][2:])
-
- a_low = a_high = a_data
- if astrides is None: # contiguous case
- a_high += product(ashape, dtype=int)*bytes_a
- else:
- for shape, stride in zip(ashape, astrides):
- if stride < 0:
- a_low += (shape-1)*stride
- else:
- a_high += (shape-1)*stride
- a_high += bytes_a
- return a_low, a_high
-
-
-def may_share_memory(a, b):
- """Determine if two arrays can share memory
-
- The memory-bounds of a and b are computed. If they overlap then
- this function returns True. Otherwise, it returns False.
-
- A return of True does not necessarily mean that the two arrays
- share any element. It just means that they *might*.
- """
- a_low, a_high = byte_bounds(a)
- b_low, b_high = byte_bounds(b)
- if b_low >= a_high or a_low >= b_high:
- return False
- return True
-
-#-----------------------------------------------------------------------------
-# Function for output and information on the variables used.
-#-----------------------------------------------------------------------------
-
-
-def who(vardict=None):
- """Print the Numpy arrays in the given dictionary (or globals() if None).
- """
- if vardict is None:
- frame = sys._getframe().f_back
- vardict = frame.f_globals
- sta = []
- cache = {}
- for name in vardict.keys():
- if isinstance(vardict[name],ndarray):
- var = vardict[name]
- idv = id(var)
- if idv in cache.keys():
- namestr = name + " (%s)" % cache[idv]
- original=0
- else:
- cache[idv] = name
- namestr = name
- original=1
- shapestr = " x ".join(map(str, var.shape))
- bytestr = str(var.itemsize*product(var.shape))
- sta.append([namestr, shapestr, bytestr, var.dtype.name,
- original])
-
- maxname = 0
- maxshape = 0
- maxbyte = 0
- totalbytes = 0
- for k in range(len(sta)):
- val = sta[k]
- if maxname < len(val[0]):
- maxname = len(val[0])
- if maxshape < len(val[1]):
- maxshape = len(val[1])
- if maxbyte < len(val[2]):
- maxbyte = len(val[2])
- if val[4]:
- totalbytes += int(val[2])
-
- if len(sta) > 0:
- sp1 = max(10,maxname)
- sp2 = max(10,maxshape)
- sp3 = max(10,maxbyte)
- prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ')
- print prval + "\n" + "="*(len(prval)+5) + "\n"
-
- for k in range(len(sta)):
- val = sta[k]
- print "%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4),
- val[1], ' '*(sp2-len(val[1])+5),
- val[2], ' '*(sp3-len(val[2])+5),
- val[3])
- print "\nUpper bound on total bytes = %d" % totalbytes
- return
-
-#-----------------------------------------------------------------------------
-
-
-# NOTE: pydoc defines a help function which works simliarly to this
-# except it uses a pager to take over the screen.
-
-# combine name and arguments and split to multiple lines of
-# width characters. End lines on a comma and begin argument list
-# indented with the rest of the arguments.
-def _split_line(name, arguments, width):
- firstwidth = len(name)
- k = firstwidth
- newstr = name
- sepstr = ", "
- arglist = arguments.split(sepstr)
- for argument in arglist:
- if k == firstwidth:
- addstr = ""
- else:
- addstr = sepstr
- k = k + len(argument) + len(addstr)
- if k > width:
- k = firstwidth + 1 + len(argument)
- newstr = newstr + ",\n" + " "*(firstwidth+2) + argument
- else:
- newstr = newstr + addstr + argument
- return newstr
-
-_namedict = None
-_dictlist = None
-
-# Traverse all module directories underneath globals
-# to see if something is defined
-def _makenamedict(module='numpy'):
- module = __import__(module, globals(), locals(), [])
- thedict = {module.__name__:module.__dict__}
- dictlist = [module.__name__]
- totraverse = [module.__dict__]
- while 1:
- if len(totraverse) == 0:
- break
- thisdict = totraverse.pop(0)
- for x in thisdict.keys():
- if isinstance(thisdict[x],types.ModuleType):
- modname = thisdict[x].__name__
- if modname not in dictlist:
- moddict = thisdict[x].__dict__
- dictlist.append(modname)
- totraverse.append(moddict)
- thedict[modname] = moddict
- return thedict, dictlist
-
-def info(object=None,maxwidth=76,output=sys.stdout,toplevel='numpy'):
- """Get help information for a function, class, or module.
-
- Example:
- >>> from numpy import *
- >>> info(polyval) # doctest: +SKIP
-
- polyval(p, x)
-
- Evaluate the polymnomial p at x.
-
- Description:
- If p is of length N, this function returns the value:
- p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]
- """
- global _namedict, _dictlist
- import pydoc
-
- if hasattr(object,'_ppimport_importer') or \
- hasattr(object, '_ppimport_module'):
- object = object._ppimport_module
- elif hasattr(object, '_ppimport_attr'):
- object = object._ppimport_attr
-
- if object is None:
- info(info)
- elif isinstance(object, ndarray):
- import numpy.numarray as nn
- nn.info(object, output=output, numpy=1)
- elif isinstance(object, str):
- if _namedict is None:
- _namedict, _dictlist = _makenamedict(toplevel)
- numfound = 0
- objlist = []
- for namestr in _dictlist:
- try:
- obj = _namedict[namestr][object]
- if id(obj) in objlist:
- print >> output, "\n *** Repeat reference found in %s *** " % namestr
- else:
- objlist.append(id(obj))
- print >> output, " *** Found in %s ***" % namestr
- info(obj)
- print >> output, "-"*maxwidth
- numfound += 1
- except KeyError:
- pass
- if numfound == 0:
- print >> output, "Help for %s not found." % object
- else:
- print >> output, "\n *** Total of %d references found. ***" % numfound
-
- elif inspect.isfunction(object):
- name = object.func_name
- arguments = inspect.formatargspec(*inspect.getargspec(object))
-
- if len(name+arguments) > maxwidth:
- argstr = _split_line(name, arguments, maxwidth)
- else:
- argstr = name + arguments
-
- print >> output, " " + argstr + "\n"
- print >> output, inspect.getdoc(object)
-
- elif inspect.isclass(object):
- name = object.__name__
- arguments = "()"
- try:
- if hasattr(object, '__init__'):
- arguments = inspect.formatargspec(*inspect.getargspec(object.__init__.im_func))
- arglist = arguments.split(', ')
- if len(arglist) > 1:
- arglist[1] = "("+arglist[1]
- arguments = ", ".join(arglist[1:])
- except:
- pass
-
- if len(name+arguments) > maxwidth:
- argstr = _split_line(name, arguments, maxwidth)
- else:
- argstr = name + arguments
-
- print >> output, " " + argstr + "\n"
- doc1 = inspect.getdoc(object)
- if doc1 is None:
- if hasattr(object,'__init__'):
- print >> output, inspect.getdoc(object.__init__)
- else:
- print >> output, inspect.getdoc(object)
-
- methods = pydoc.allmethods(object)
- if methods != []:
- print >> output, "\n\nMethods:\n"
- for meth in methods:
- if meth[0] == '_':
- continue
- thisobj = getattr(object, meth, None)
- if thisobj is not None:
- methstr, other = pydoc.splitdoc(inspect.getdoc(thisobj) or "None")
- print >> output, " %s -- %s" % (meth, methstr)
-
- elif type(object) is types.InstanceType: ## check for __call__ method
- print >> output, "Instance of class: ", object.__class__.__name__
- print >> output
- if hasattr(object, '__call__'):
- arguments = inspect.formatargspec(*inspect.getargspec(object.__call__.im_func))
- arglist = arguments.split(', ')
- if len(arglist) > 1:
- arglist[1] = "("+arglist[1]
- arguments = ", ".join(arglist[1:])
- else:
- arguments = "()"
-
- if hasattr(object,'name'):
- name = "%s" % object.name
- else:
- name = "<name>"
- if len(name+arguments) > maxwidth:
- argstr = _split_line(name, arguments, maxwidth)
- else:
- argstr = name + arguments
-
- print >> output, " " + argstr + "\n"
- doc = inspect.getdoc(object.__call__)
- if doc is not None:
- print >> output, inspect.getdoc(object.__call__)
- print >> output, inspect.getdoc(object)
-
- else:
- print >> output, inspect.getdoc(object)
-
- elif inspect.ismethod(object):
- name = object.__name__
- arguments = inspect.formatargspec(*inspect.getargspec(object.im_func))
- arglist = arguments.split(', ')
- if len(arglist) > 1:
- arglist[1] = "("+arglist[1]
- arguments = ", ".join(arglist[1:])
- else:
- arguments = "()"
-
- if len(name+arguments) > maxwidth:
- argstr = _split_line(name, arguments, maxwidth)
- else:
- argstr = name + arguments
-
- print >> output, " " + argstr + "\n"
- print >> output, inspect.getdoc(object)
-
- elif hasattr(object, '__doc__'):
- print >> output, inspect.getdoc(object)
-
-
-def source(object, output=sys.stdout):
- """Write source for this object to output.
- """
- try:
- print >> output, "In file: %s\n" % inspect.getsourcefile(object)
- print >> output, inspect.getsource(object)
- except:
- print >> output, "Not available for this object."