diff options
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/arraypad.py | 9 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraypad.py | 23 |
2 files changed, 31 insertions, 1 deletions
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py index f08d425d6..62330e692 100644 --- a/numpy/lib/arraypad.py +++ b/numpy/lib/arraypad.py @@ -323,6 +323,12 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func): if right_length is None or max_length < right_length: right_length = max_length + if (left_length == 0 or right_length == 0) \ + and stat_func in {np.amax, np.amin}: + # amax and amin can't operate on an emtpy array, + # raise a more descriptive warning here instead of the default one + raise ValueError("stat_length of 0 yields no value for padding") + # Calculate statistic for the left side left_slice = _slice_at_axis( slice(left_index, left_index + left_length), axis) @@ -340,6 +346,7 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func): right_chunk = padded[right_slice] right_stat = stat_func(right_chunk, axis=axis, keepdims=True) _round_if_needed(right_stat, padded.dtype) + return left_stat, right_stat @@ -835,7 +842,7 @@ def pad(array, pad_width, mode='constant', **kwargs): raise ValueError("unsupported keyword arguments for mode '{}': {}" .format(mode, unsupported_kwargs)) - stat_functions = {"maximum": np.max, "minimum": np.min, + stat_functions = {"maximum": np.amax, "minimum": np.amin, "mean": np.mean, "median": np.median} # Create array with final shape and original values diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py index b7630cdcd..b6dd3b31c 100644 --- a/numpy/lib/tests/test_arraypad.py +++ b/numpy/lib/tests/test_arraypad.py @@ -469,6 +469,29 @@ class TestStatistic(object): ) assert_array_equal(a, b) + @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning") + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in (true_divide|double_scalars):" + "RuntimeWarning" + ) + @pytest.mark.parametrize("mode", ["mean", "median"]) + def test_zero_stat_length_valid(self, mode): + arr = np.pad([1., 2.], (1, 2), mode, stat_length=0) + expected = np.array([np.nan, 1., 2., np.nan, np.nan]) + assert_equal(arr, expected) + + @pytest.mark.parametrize("mode", ["minimum", "maximum"]) + def test_zero_stat_length_invalid(self, mode): + match = "stat_length of 0 yields no value for padding" + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=(1, 0)) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=(1, 0)) + class TestConstant(object): def test_check_constant(self): |