summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/function_base.py7
-rw-r--r--numpy/lib/twodim_base.pyi265
-rw-r--r--numpy/lib/type_check.pyi246
3 files changed, 480 insertions, 38 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 783d45c2f..2e9ae6644 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -88,8 +88,11 @@ def rot90(m, k=1, axes=(0, 1)):
Notes
-----
- rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1))
- rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1))
+ ``rot90(m, k=1, axes=(1,0))`` is the reverse of
+ ``rot90(m, k=1, axes=(0,1))``
+
+ ``rot90(m, k=1, axes=(1,0))`` is equivalent to
+ ``rot90(m, k=-1, axes=(0,1))``
Examples
--------
diff --git a/numpy/lib/twodim_base.pyi b/numpy/lib/twodim_base.pyi
index 79b9511b8..007338d77 100644
--- a/numpy/lib/twodim_base.pyi
+++ b/numpy/lib/twodim_base.pyi
@@ -1,32 +1,255 @@
-from typing import List, Optional, Any
+from typing import (
+ Any,
+ Callable,
+ List,
+ Sequence,
+ overload,
+ Tuple,
+ Type,
+ TypeVar,
+ Union,
+)
-from numpy import ndarray, _OrderCF
-from numpy.typing import ArrayLike, DTypeLike
+from numpy import (
+ ndarray,
+ dtype,
+ generic,
+ number,
+ bool_,
+ timedelta64,
+ datetime64,
+ int_,
+ intp,
+ float64,
+ signedinteger,
+ floating,
+ complexfloating,
+ object_,
+ _OrderCF,
+)
+
+from numpy.typing import (
+ DTypeLike,
+ _SupportsDType,
+ ArrayLike,
+ NDArray,
+ _NestedSequence,
+ _SupportsArray,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeObject_co,
+)
+
+_T = TypeVar("_T")
+_SCT = TypeVar("_SCT", bound=generic)
+
+# The returned arrays dtype must be compatible with `np.equal`
+_MaskFunc = Callable[
+ [NDArray[int_], _T],
+ NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],
+]
+
+_DTypeLike = Union[
+ Type[_SCT],
+ dtype[_SCT],
+ _SupportsDType[dtype[_SCT]],
+]
+_ArrayLike = _NestedSequence[_SupportsArray[dtype[_SCT]]]
__all__: List[str]
-def fliplr(m): ...
-def flipud(m): ...
+@overload
+def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
+@overload
+def fliplr(m: ArrayLike) -> NDArray[Any]: ...
+
+@overload
+def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
+@overload
+def flipud(m: ArrayLike) -> NDArray[Any]: ...
+@overload
def eye(
N: int,
- M: Optional[int] = ...,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ *,
+ like: None | ArrayLike = ...,
+) -> NDArray[float64]: ...
+@overload
+def eye(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: _DTypeLike[_SCT] = ...,
+ order: _OrderCF = ...,
+ *,
+ like: None | ArrayLike = ...,
+) -> NDArray[_SCT]: ...
+@overload
+def eye(
+ N: int,
+ M: None | int = ...,
k: int = ...,
dtype: DTypeLike = ...,
order: _OrderCF = ...,
*,
- like: Optional[ArrayLike] = ...
-) -> ndarray[Any, Any]: ...
-
-def diag(v, k=...): ...
-def diagflat(v, k=...): ...
-def tri(N, M=..., k=..., dtype = ..., *, like=...): ...
-def tril(m, k=...): ...
-def triu(m, k=...): ...
-def vander(x, N=..., increasing=...): ...
-def histogram2d(x, y, bins=..., range=..., normed=..., weights=..., density=...): ...
-def mask_indices(n, mask_func, k=...): ...
-def tril_indices(n, k=..., m=...): ...
-def tril_indices_from(arr, k=...): ...
-def triu_indices(n, k=..., m=...): ...
-def triu_indices_from(arr, k=...): ...
+ like: None | ArrayLike = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: None = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[float64]: ...
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: _DTypeLike[_SCT] = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[_SCT]: ...
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: DTypeLike = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[Any]: ...
+
+@overload
+def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def vander( # type: ignore[misc]
+ x: _ArrayLikeInt_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[signedinteger[Any]]: ...
+@overload
+def vander( # type: ignore[misc]
+ x: _ArrayLikeFloat_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def vander(
+ x: _ArrayLikeComplex_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+@overload
+def vander(
+ x: _ArrayLikeObject_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def histogram2d( # type: ignore[misc]
+ x: _ArrayLikeFloat_co,
+ y: _ArrayLikeFloat_co,
+ bins: int | Sequence[int] = ...,
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[floating[Any]],
+ NDArray[floating[Any]],
+]: ...
+@overload
+def histogram2d(
+ x: _ArrayLikeComplex_co,
+ y: _ArrayLikeComplex_co,
+ bins: int | Sequence[int] = ...,
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[complexfloating[Any, Any]],
+ NDArray[complexfloating[Any, Any]],
+]: ...
+@overload # TODO: Sort out `bins`
+def histogram2d(
+ x: _ArrayLikeComplex_co,
+ y: _ArrayLikeComplex_co,
+ bins: Sequence[_ArrayLikeInt_co],
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[Any],
+ NDArray[Any],
+]: ...
+
+# NOTE: we're assuming/demanding here the `mask_func` returns
+# an ndarray of shape `(n, n)`; otherwise there is the possibility
+# of the output tuple having more or less than 2 elements
+@overload
+def mask_indices(
+ n: int,
+ mask_func: _MaskFunc[int],
+ k: int = ...,
+) -> Tuple[NDArray[intp], NDArray[intp]]: ...
+@overload
+def mask_indices(
+ n: int,
+ mask_func: _MaskFunc[_T],
+ k: _T,
+) -> Tuple[NDArray[intp], NDArray[intp]]: ...
+
+def tril_indices(
+ n: int,
+ k: int = ...,
+ m: None | int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def tril_indices_from(
+ arr: NDArray[Any],
+ k: int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def triu_indices(
+ n: int,
+ k: int = ...,
+ m: None | int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def triu_indices_from(
+ arr: NDArray[Any],
+ k: int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
diff --git a/numpy/lib/type_check.pyi b/numpy/lib/type_check.pyi
index 7da02bb9f..fbe325858 100644
--- a/numpy/lib/type_check.pyi
+++ b/numpy/lib/type_check.pyi
@@ -1,19 +1,235 @@
-from typing import List
+import sys
+from typing import (
+ Any,
+ Container,
+ Iterable,
+ List,
+ overload,
+ Type,
+ TypeVar,
+)
+
+from numpy import (
+ dtype,
+ generic,
+ bool_,
+ floating,
+ float64,
+ complexfloating,
+ integer,
+)
+
+from numpy.typing import (
+ ArrayLike,
+ DTypeLike,
+ NBitBase,
+ NDArray,
+ _64Bit,
+ _SupportsDType,
+ _ScalarLike_co,
+ _NestedSequence,
+ _SupportsArray,
+ _DTypeLikeComplex,
+)
+
+if sys.version_info >= (3, 8):
+ from typing import Protocol, Literal as L
+else:
+ from typing_extensions import Protocol, Literal as L
+
+_T = TypeVar("_T")
+_T_co = TypeVar("_T_co", covariant=True)
+_SCT = TypeVar("_SCT", bound=generic)
+_NBit1 = TypeVar("_NBit1", bound=NBitBase)
+_NBit2 = TypeVar("_NBit2", bound=NBitBase)
+
+_ArrayLike = _NestedSequence[_SupportsArray[dtype[_SCT]]]
+
+class _SupportsReal(Protocol[_T_co]):
+ @property
+ def real(self) -> _T_co: ...
+
+class _SupportsImag(Protocol[_T_co]):
+ @property
+ def imag(self) -> _T_co: ...
__all__: List[str]
-def mintypecode(typechars, typeset=..., default=...): ...
-def asfarray(a, dtype = ...): ...
-def real(val): ...
-def imag(val): ...
-def iscomplex(x): ...
-def isreal(x): ...
-def iscomplexobj(x): ...
-def isrealobj(x): ...
-def nan_to_num(x, copy=..., nan=..., posinf=..., neginf=...): ...
-def real_if_close(a, tol=...): ...
-def typename(char): ...
-def common_type(*arrays): ...
-
-# NOTE: Deprecated
+def mintypecode(
+ typechars: Iterable[str | ArrayLike],
+ typeset: Container[str] = ...,
+ default: str = ...,
+) -> str: ...
+
+# `asfarray` ignores dtypes if they're not inexact
+
+@overload
+def asfarray(
+ a: object,
+ dtype: None | Type[float] = ...,
+) -> NDArray[float64]: ...
+@overload
+def asfarray( # type: ignore[misc]
+ a: Any,
+ dtype: _DTypeLikeComplex,
+) -> NDArray[complexfloating[Any, Any]]: ...
+@overload
+def asfarray(
+ a: Any,
+ dtype: DTypeLike,
+) -> NDArray[floating[Any]]: ...
+
+@overload
+def real(val: _SupportsReal[_T]) -> _T: ...
+@overload
+def real(val: ArrayLike) -> NDArray[Any]: ...
+
+@overload
+def imag(val: _SupportsImag[_T]) -> _T: ...
+@overload
+def imag(val: ArrayLike) -> NDArray[Any]: ...
+
+@overload
+def iscomplex(x: _ScalarLike_co) -> bool_: ... # type: ignore[misc]
+@overload
+def iscomplex(x: ArrayLike) -> NDArray[bool_]: ...
+
+@overload
+def isreal(x: _ScalarLike_co) -> bool_: ... # type: ignore[misc]
+@overload
+def isreal(x: ArrayLike) -> NDArray[bool_]: ...
+
+def iscomplexobj(x: _SupportsDType[dtype[Any]] | ArrayLike) -> bool: ...
+
+def isrealobj(x: _SupportsDType[dtype[Any]] | ArrayLike) -> bool: ...
+
+@overload
+def nan_to_num( # type: ignore[misc]
+ x: _SCT,
+ copy: bool = ...,
+ nan: float = ...,
+ posinf: None | float = ...,
+ neginf: None | float = ...,
+) -> _SCT: ...
+@overload
+def nan_to_num(
+ x: _ScalarLike_co,
+ copy: bool = ...,
+ nan: float = ...,
+ posinf: None | float = ...,
+ neginf: None | float = ...,
+) -> Any: ...
+@overload
+def nan_to_num(
+ x: _ArrayLike[_SCT],
+ copy: bool = ...,
+ nan: float = ...,
+ posinf: None | float = ...,
+ neginf: None | float = ...,
+) -> NDArray[_SCT]: ...
+@overload
+def nan_to_num(
+ x: ArrayLike,
+ copy: bool = ...,
+ nan: float = ...,
+ posinf: None | float = ...,
+ neginf: None | float = ...,
+) -> NDArray[Any]: ...
+
+# If one passes a complex array to `real_if_close`, then one is reasonably
+# expected to verify the output dtype (so we can return an unsafe union here)
+
+@overload
+def real_if_close( # type: ignore[misc]
+ a: _ArrayLike[complexfloating[_NBit1, _NBit1]],
+ tol: float = ...,
+) -> NDArray[floating[_NBit1]] | NDArray[complexfloating[_NBit1, _NBit1]]: ...
+@overload
+def real_if_close(
+ a: _ArrayLike[_SCT],
+ tol: float = ...,
+) -> NDArray[_SCT]: ...
+@overload
+def real_if_close(
+ a: ArrayLike,
+ tol: float = ...,
+) -> NDArray[Any]: ...
+
+# NOTE: deprecated
# def asscalar(a): ...
+
+@overload
+def typename(char: L['S1']) -> L['character']: ...
+@overload
+def typename(char: L['?']) -> L['bool']: ...
+@overload
+def typename(char: L['b']) -> L['signed char']: ...
+@overload
+def typename(char: L['B']) -> L['unsigned char']: ...
+@overload
+def typename(char: L['h']) -> L['short']: ...
+@overload
+def typename(char: L['H']) -> L['unsigned short']: ...
+@overload
+def typename(char: L['i']) -> L['integer']: ...
+@overload
+def typename(char: L['I']) -> L['unsigned integer']: ...
+@overload
+def typename(char: L['l']) -> L['long integer']: ...
+@overload
+def typename(char: L['L']) -> L['unsigned long integer']: ...
+@overload
+def typename(char: L['q']) -> L['long long integer']: ...
+@overload
+def typename(char: L['Q']) -> L['unsigned long long integer']: ...
+@overload
+def typename(char: L['f']) -> L['single precision']: ...
+@overload
+def typename(char: L['d']) -> L['double precision']: ...
+@overload
+def typename(char: L['g']) -> L['long precision']: ...
+@overload
+def typename(char: L['F']) -> L['complex single precision']: ...
+@overload
+def typename(char: L['D']) -> L['complex double precision']: ...
+@overload
+def typename(char: L['G']) -> L['complex long double precision']: ...
+@overload
+def typename(char: L['S']) -> L['string']: ...
+@overload
+def typename(char: L['U']) -> L['unicode']: ...
+@overload
+def typename(char: L['V']) -> L['void']: ...
+@overload
+def typename(char: L['O']) -> L['object']: ...
+
+@overload
+def common_type( # type: ignore[misc]
+ *arrays: _SupportsDType[dtype[
+ integer[Any]
+ ]]
+) -> Type[floating[_64Bit]]: ...
+@overload
+def common_type( # type: ignore[misc]
+ *arrays: _SupportsDType[dtype[
+ floating[_NBit1]
+ ]]
+) -> Type[floating[_NBit1]]: ...
+@overload
+def common_type( # type: ignore[misc]
+ *arrays: _SupportsDType[dtype[
+ integer[Any] | floating[_NBit1]
+ ]]
+) -> Type[floating[_NBit1 | _64Bit]]: ...
+@overload
+def common_type( # type: ignore[misc]
+ *arrays: _SupportsDType[dtype[
+ floating[_NBit1] | complexfloating[_NBit2, _NBit2]
+ ]]
+) -> Type[complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]]: ...
+@overload
+def common_type(
+ *arrays: _SupportsDType[dtype[
+ integer[Any] | floating[_NBit1] | complexfloating[_NBit2, _NBit2]
+ ]]
+) -> Type[complexfloating[_64Bit | _NBit1 | _NBit2, _64Bit | _NBit1 | _NBit2]]: ...