summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/arraypad.py4
-rw-r--r--numpy/lib/recfunctions.py2
-rw-r--r--numpy/lib/tests/test_histograms.py2
3 files changed, 4 insertions, 4 deletions
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index 247eed07c..7569e7651 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -232,7 +232,7 @@ def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
def _get_stats(padded, axis, width_pair, length_pair, stat_func):
"""
- Calculate statistic for the empty-padded array in given dimnsion.
+ Calculate statistic for the empty-padded array in given dimension.
Parameters
----------
@@ -271,7 +271,7 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func):
if (left_length == 0 or right_length == 0) \
and stat_func in {np.amax, np.amin}:
- # amax and amin can't operate on an emtpy array,
+ # amax and amin can't operate on an empty array,
# raise a more descriptive warning here instead of the default one
raise ValueError("stat_length of 0 yields no value for padding")
diff --git a/numpy/lib/recfunctions.py b/numpy/lib/recfunctions.py
index 93aa67a3b..4e62169f4 100644
--- a/numpy/lib/recfunctions.py
+++ b/numpy/lib/recfunctions.py
@@ -436,7 +436,7 @@ def merge_arrays(seqarrays, fill_value=-1, flatten=False,
if seqdtype.names is None:
seqdtype = np.dtype([('', seqdtype)])
if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
- # Minimal processing needed: just make sure everythng's a-ok
+ # Minimal processing needed: just make sure everything's a-ok
seqarrays = seqarrays.ravel()
# Find what type of array we must return
if usemask:
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index c21103891..fc16b7396 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -81,7 +81,7 @@ class TestHistogram:
a, b = histogram(v, bins, density=False)
assert_array_equal(a, [1, 2, 3, 4])
- # Variale bin widths are especially useful to deal with
+ # Variable bin widths are especially useful to deal with
# infinities.
v = np.arange(10)
bins = [0, 1, 3, 6, np.inf]