diff options
Diffstat (limited to 'numpy/lib')
25 files changed, 505 insertions, 205 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py index dc40ac67b..c1757150e 100644 --- a/numpy/lib/__init__.py +++ b/numpy/lib/__init__.py @@ -26,7 +26,7 @@ from .financial import * from .arrayterator import Arrayterator from .arraypad import * from ._version import * -from numpy.core.multiarray import tracemalloc_domain +from numpy.core._multiarray_umath import tracemalloc_domain __all__ = ['emath', 'math', 'tracemalloc_domain'] __all__ += type_check.__all__ diff --git a/numpy/lib/_datasource.py b/numpy/lib/_datasource.py index 6f1295f09..ab00b1444 100644 --- a/numpy/lib/_datasource.py +++ b/numpy/lib/_datasource.py @@ -37,6 +37,7 @@ from __future__ import division, absolute_import, print_function import os import sys +import warnings import shutil import io @@ -85,9 +86,10 @@ def _python2_bz2open(fn, mode, encoding, newline): if "t" in mode: # BZ2File is missing necessary functions for TextIOWrapper - raise ValueError("bz2 text files not supported in python2") - else: - return bz2.BZ2File(fn, mode) + warnings.warn("Assuming latin1 encoding for bz2 text file in Python2", + RuntimeWarning, stacklevel=5) + mode = mode.replace("t", "") + return bz2.BZ2File(fn, mode) def _python2_gzipopen(fn, mode, encoding, newline): """ Wrapper to open gzip in text mode. diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index 5880ea154..62e9b6d50 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -82,6 +82,11 @@ def ediff1d(ary, to_end=None, to_begin=None): # force a 1d array ary = np.asanyarray(ary).ravel() + # we have unit tests enforcing + # propagation of the dtype of input + # ary to returned result + dtype_req = ary.dtype + # fast track default case if to_begin is None and to_end is None: return ary[1:] - ary[:-1] @@ -89,13 +94,23 @@ def ediff1d(ary, to_end=None, to_begin=None): if to_begin is None: l_begin = 0 else: - to_begin = np.asanyarray(to_begin).ravel() + to_begin = np.asanyarray(to_begin) + if not np.can_cast(to_begin, dtype_req): + raise TypeError("dtype of to_begin must be compatible " + "with input ary") + + to_begin = to_begin.ravel() l_begin = len(to_begin) if to_end is None: l_end = 0 else: - to_end = np.asanyarray(to_end).ravel() + to_end = np.asanyarray(to_end) + if not np.can_cast(to_end, dtype_req): + raise TypeError("dtype of to_end must be compatible " + "with input ary") + + to_end = to_end.ravel() l_end = len(to_end) # do the calculation in place and copy to_begin and to_end @@ -312,12 +327,12 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. return_indices : bool - If True, the indices which correspond to the intersection of the - two arrays are returned. The first instance of a value is used - if there are multiple. Default is False. - - .. versionadded:: 1.15.0 - + If True, the indices which correspond to the intersection of the two + arrays are returned. The first instance of a value is used if there are + multiple. Default is False. + + .. versionadded:: 1.15.0 + Returns ------- intersect1d : ndarray @@ -326,7 +341,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): The indices of the first occurrences of the common values in `ar1`. Only provided if `return_indices` is True. comm2 : ndarray - The indices of the first occurrences of the common values in `ar2`. + The indices of the first occurrences of the common values in `ar2`. Only provided if `return_indices` is True. @@ -345,7 +360,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): >>> from functools import reduce >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) array([3]) - + To return the indices of the values common to the input arrays along with the intersected values: >>> x = np.array([1, 1, 2, 3, 4]) @@ -355,8 +370,11 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): (array([0, 2, 4]), array([1, 0, 2])) >>> xy, x[x_ind], y[y_ind] (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) - + """ + ar1 = np.asanyarray(ar1) + ar2 = np.asanyarray(ar2) + if not assume_unique: if return_indices: ar1, ind1 = unique(ar1, return_index=True) @@ -367,7 +385,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): else: ar1 = ar1.ravel() ar2 = ar2.ravel() - + aux = np.concatenate((ar1, ar2)) if return_indices: aux_sort_indices = np.argsort(aux, kind='mergesort') @@ -389,6 +407,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): else: return int1d + def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 1a43da8b0..2992e92bb 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -305,12 +305,17 @@ def average(a, axis=None, weights=None, returned=False): Returns ------- - average, [sum_of_weights] : array_type or double - Return the average along the specified axis. When returned is `True`, + retval, [sum_of_weights] : array_type or double + Return the average along the specified axis. When `returned` is `True`, return a tuple with the average as the first element and the sum - of the weights as the second element. The return type is `Float` - if `a` is of integer type, otherwise it is of the same type as `a`. - `sum_of_weights` is of the same type as `average`. + of the weights as the second element. `sum_of_weights` is of the + same type as `retval`. The result dtype follows a genereal pattern. + If `weights` is None, the result dtype will be that of `a` , or ``float64`` + if `a` is integral. Otherwise, if `weights` is not None and `a` is non- + integral, the result type will be the type of lowest precision capable of + representing values of both `a` and `weights`. If `a` happens to be + integral, the previous rules still applies but the result dtype will + at least be ``float64``. Raises ------ @@ -327,6 +332,8 @@ def average(a, axis=None, weights=None, returned=False): ma.average : average for masked arrays -- useful if your data contains "missing" values + numpy.result_type : Returns the type that results from applying the + numpy type promotion rules to the arguments. Examples -------- @@ -346,10 +353,16 @@ def average(a, axis=None, weights=None, returned=False): >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) + Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. - + + >>> a = np.ones(5, dtype=np.float128) + >>> w = np.ones(5, dtype=np.complex64) + >>> avg = np.average(a, weights=w) + >>> print(avg.dtype) + complex256 """ a = np.asanyarray(a) @@ -1309,7 +1322,7 @@ def interp(x, xp, fp, left=None, right=None, period=None): return interp_func(x, xp, fp, left, right) -def angle(z, deg=0): +def angle(z, deg=False): """ Return the angle of the complex argument. @@ -1325,6 +1338,9 @@ def angle(z, deg=0): angle : ndarray or scalar The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. + + ..versionchanged:: 1.16.0 + This function works on subclasses of ndarray like `ma.array`. See Also -------- @@ -1339,18 +1355,18 @@ def angle(z, deg=0): 45.0 """ - if deg: - fact = 180/pi - else: - fact = 1.0 - z = asarray(z) - if (issubclass(z.dtype.type, _nx.complexfloating)): + z = asanyarray(z) + if issubclass(z.dtype.type, _nx.complexfloating): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z - return arctan2(zimag, zreal) * fact + + a = arctan2(zimag, zreal) + if deg: + a *= 180/pi + return a def unwrap(p, discont=pi, axis=-1): @@ -1766,8 +1782,8 @@ class vectorize(object): Generalized function class. Define a vectorized function which takes a nested sequence of objects or - numpy arrays as inputs and returns an single or tuple of numpy array as - output. The vectorized function evaluates `pyfunc` over successive tuples + numpy arrays as inputs and returns a single numpy array or a tuple of numpy + arrays. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. @@ -3989,11 +4005,13 @@ def meshgrid(*xi, **kwargs): `meshgrid` is very useful to evaluate functions on a grid. + >>> import matplotlib.pyplot as plt >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = np.meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) + >>> plt.show() """ ndim = len(xi) diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py index 422b356f7..f03f30fb0 100644 --- a/numpy/lib/histograms.py +++ b/numpy/lib/histograms.py @@ -260,6 +260,32 @@ def _get_outer_edges(a, range): return first_edge, last_edge +def _unsigned_subtract(a, b): + """ + Subtract two values where a >= b, and produce an unsigned result + + This is needed when finding the difference between the upper and lower + bound of an int16 histogram + """ + # coerce to a single type + signed_to_unsigned = { + np.byte: np.ubyte, + np.short: np.ushort, + np.intc: np.uintc, + np.int_: np.uint, + np.longlong: np.ulonglong + } + dt = np.result_type(a, b) + try: + dt = signed_to_unsigned[dt.type] + except KeyError: + return np.subtract(a, b, dtype=dt) + else: + # we know the inputs are integers, and we are deliberately casting + # signed to unsigned + return np.subtract(a, b, casting='unsafe', dtype=dt) + + def _get_bin_edges(a, bins, range, weights): """ Computes the bins used internally by `histogram`. @@ -311,7 +337,7 @@ def _get_bin_edges(a, bins, range, weights): # Do not call selectors on empty arrays width = _hist_bin_selectors[bin_name](a) if width: - n_equal_bins = int(np.ceil((last_edge - first_edge) / width)) + n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width)) else: # Width can be zero for some estimators, e.g. FD when # the IQR of the data is zero. @@ -703,7 +729,7 @@ def histogram(a, bins=10, range=None, normed=None, weights=None, n = np.zeros(n_equal_bins, ntype) # Pre-compute histogram scaling factor - norm = n_equal_bins / (last_edge - first_edge) + norm = n_equal_bins / _unsigned_subtract(last_edge, first_edge) # We iterate over blocks here for two reasons: the first is that for # large arrays, it is actually faster (for example for a 10^8 array it @@ -731,7 +757,7 @@ def histogram(a, bins=10, range=None, normed=None, weights=None, # Compute the bin indices, and for values that lie exactly on # last_edge we need to subtract one - f_indices = (tmp_a - first_edge) * norm + f_indices = _unsigned_subtract(tmp_a, first_edge) * norm indices = f_indices.astype(np.intp) indices[indices == n_equal_bins] -= 1 diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py index abd2da1a2..8d6b0f139 100644 --- a/numpy/lib/nanfunctions.py +++ b/numpy/lib/nanfunctions.py @@ -1178,13 +1178,15 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False, This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: - * linear: ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * lower: ``i``. - * higher: ``j``. - * nearest: ``i`` or ``j``, whichever is nearest. - * midpoint: ``(i + j) / 2``. + + * linear: ``i + (j - i) * fraction``, where ``fraction`` + is the fractional part of the index surrounded by ``i`` + and ``j``. + * lower: ``i``. + * higher: ``j``. + * nearest: ``i`` or ``j``, whichever is nearest. + * midpoint: ``(i + j) / 2``. + keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py index 7788ac319..73cf5554a 100644 --- a/numpy/lib/npyio.py +++ b/numpy/lib/npyio.py @@ -13,6 +13,7 @@ import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits +from numpy.core._internal import recursive from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, @@ -379,16 +380,6 @@ def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, memmap([4, 5, 6]) """ - own_fid = False - if isinstance(file, basestring): - fid = open(file, "rb") - own_fid = True - elif is_pathlib_path(file): - fid = file.open("rb") - own_fid = True - else: - fid = file - if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded @@ -409,21 +400,33 @@ def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, # Nothing to do on Python 2 pickle_kwargs = {} + # TODO: Use contextlib.ExitStack once we drop Python 2 + if isinstance(file, basestring): + fid = open(file, "rb") + own_fid = True + elif is_pathlib_path(file): + fid = file.open("rb") + own_fid = True + else: + fid = file + own_fid = False + try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = b'PK\x03\x04' + _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up - if magic.startswith(_ZIP_PREFIX): + if magic.startswith(_ZIP_PREFIX) or magic.startswith(_ZIP_SUFFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile - tmp = own_fid + ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs) own_fid = False - return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, - pickle_kwargs=pickle_kwargs) + return ret elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: @@ -943,7 +946,8 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, fencoding = locale.getpreferredencoding() # not to be confused with the flatten_dtype we import... - def flatten_dtype_internal(dt): + @recursive + def flatten_dtype_internal(self, dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. @@ -963,7 +967,7 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, packing = [] for field in dt.names: tp, bytes = dt.fields[field] - flat_dt, flat_packing = flatten_dtype_internal(tp) + flat_dt, flat_packing = self(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if tp.ndim > 0: @@ -972,7 +976,8 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, packing.append((len(flat_dt), flat_packing)) return (types, packing) - def pack_items(items, packing): + @recursive + def pack_items(self, items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] @@ -984,7 +989,7 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, start = 0 ret = [] for length, subpacking in packing: - ret.append(pack_items(items[start:start+length], subpacking)) + ret.append(self(items[start:start+length], subpacking)) start += length return tuple(ret) @@ -1110,11 +1115,6 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None, finally: if fown: fh.close() - # recursive closures have a cyclic reference to themselves, which - # requires gc to collect (gh-10620). To avoid this problem, for - # performance and PyPy friendliness, we break the cycle: - flatten_dtype_internal = None - pack_items = None if X is None: X = np.array([], dtype) diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index 0e691f56e..9f3b84732 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -396,7 +396,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises - the squared error. + the squared error in the order `deg`, `deg-1`, ... `0`. + + The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class + method is recommended for new code as it is more stable numerically. See + the documentation of the method for more information. Parameters ---------- diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index 65104115a..66f534734 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -536,7 +536,11 @@ def expand_dims(a, axis): True """ - a = asarray(a) + if isinstance(a, matrix): + a = asarray(a) + else: + a = asanyarray(a) + shape = a.shape if axis > a.ndim or axis < -a.ndim - 1: # 2017-05-17, 1.13.0 @@ -684,7 +688,7 @@ def array_split(ary, indices_or_sections, axis=0): except AttributeError: Ntotal = len(ary) try: - # handle scalar case. + # handle array case. Nsections = len(indices_or_sections) + 1 div_points = [0] + list(indices_or_sections) + [Ntotal] except TypeError: @@ -696,7 +700,7 @@ def array_split(ary, indices_or_sections, axis=0): section_sizes = ([0] + extras * [Neach_section+1] + (Nsections-extras) * [Neach_section]) - div_points = _nx.array(section_sizes).cumsum() + div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum() sub_arys = [] sary = _nx.swapaxes(ary, axis, 0) diff --git a/numpy/lib/stride_tricks.py b/numpy/lib/stride_tricks.py index bc5993802..ca13738c1 100644 --- a/numpy/lib/stride_tricks.py +++ b/numpy/lib/stride_tricks.py @@ -242,7 +242,7 @@ def broadcast_arrays(*args, **kwargs): subok = kwargs.pop('subok', False) if kwargs: raise TypeError('broadcast_arrays() got an unexpected keyword ' - 'argument {!r}'.format(kwargs.keys()[0])) + 'argument {!r}'.format(list(kwargs.keys())[0])) args = [np.array(_m, copy=False, subok=subok) for _m in args] shape = _broadcast_shape(*args) diff --git a/numpy/lib/tests/test__datasource.py b/numpy/lib/tests/test__datasource.py index 32812990c..1df8bebf6 100644 --- a/numpy/lib/tests/test__datasource.py +++ b/numpy/lib/tests/test__datasource.py @@ -2,11 +2,14 @@ from __future__ import division, absolute_import, print_function import os import sys +import pytest from tempfile import mkdtemp, mkstemp, NamedTemporaryFile from shutil import rmtree -from numpy.testing import assert_, assert_equal, assert_raises, SkipTest import numpy.lib._datasource as datasource +from numpy.testing import ( + assert_, assert_equal, assert_raises, assert_warns + ) if sys.version_info[0] >= 3: import urllib.request as urllib_request @@ -30,14 +33,14 @@ def urlopen_stub(url, data=None): old_urlopen = None -def setup(): +def setup_module(): global old_urlopen old_urlopen = urllib_request.urlopen urllib_request.urlopen = urlopen_stub -def teardown(): +def teardown_module(): urllib_request.urlopen = old_urlopen # A valid website for more robust testing @@ -134,7 +137,7 @@ class TestDataSourceOpen(object): import gzip except ImportError: # We don't have the gzip capabilities to test. - raise SkipTest + pytest.skip() # Test datasource's internal file_opener for Gzip files. filepath = os.path.join(self.tmpdir, 'foobar.txt.gz') fp = gzip.open(filepath, 'w') @@ -150,7 +153,7 @@ class TestDataSourceOpen(object): import bz2 except ImportError: # We don't have the bz2 capabilities to test. - raise SkipTest + pytest.skip() # Test datasource's internal file_opener for BZip2 files. filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2') fp = bz2.BZ2File(filepath, 'w') @@ -161,6 +164,24 @@ class TestDataSourceOpen(object): fp.close() assert_equal(magic_line, result) + @pytest.mark.skipif(sys.version_info[0] >= 3, reason="Python 2 only") + def test_Bz2File_text_mode_warning(self): + try: + import bz2 + except ImportError: + # We don't have the bz2 capabilities to test. + pytest.skip() + # Test datasource's internal file_opener for BZip2 files. + filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2') + fp = bz2.BZ2File(filepath, 'w') + fp.write(magic_line) + fp.close() + with assert_warns(RuntimeWarning): + fp = self.ds.open(filepath, 'rt') + result = fp.readline() + fp.close() + assert_equal(magic_line, result) + class TestDataSourceExists(object): def setup(self): diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py index 45d624781..e62fccaa0 100644 --- a/numpy/lib/tests/test_arraypad.py +++ b/numpy/lib/tests/test_arraypad.py @@ -3,8 +3,11 @@ """ from __future__ import division, absolute_import, print_function +import pytest + import numpy as np -from numpy.testing import (assert_array_equal, assert_raises, assert_allclose,) +from numpy.testing import (assert_array_equal, assert_raises, assert_allclose, + assert_equal) from numpy.lib import pad @@ -344,6 +347,20 @@ class TestStatistic(object): ) assert_array_equal(a, b) + @pytest.mark.parametrize("mode", [ + pytest.param("mean", marks=pytest.mark.xfail(reason="gh-11216")), + "median", + "minimum", + "maximum" + ]) + def test_same_prepend_append(self, mode): + """ Test that appended and prepended values are equal """ + # This test is constructed to trigger floating point rounding errors in + # a way that caused gh-11216 for mode=='mean' + a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64) + a = np.pad(a, (1, 1), mode) + assert_equal(a[0], a[-1]) + class TestConstant(object): def test_check_constant(self): @@ -502,6 +519,21 @@ class TestConstant(object): expected = np.full(7, int64_max, dtype=np.int64) assert_array_equal(test, expected) + def test_check_object_array(self): + arr = np.empty(1, dtype=object) + obj_a = object() + arr[0] = obj_a + obj_b = object() + obj_c = object() + arr = np.pad(arr, pad_width=1, mode='constant', + constant_values=(obj_b, obj_c)) + + expected = np.empty((3,), dtype=object) + expected[0] = obj_b + expected[1] = obj_a + expected[2] = obj_c + + assert_array_equal(arr, expected) class TestLinearRamp(object): def test_check_simple(self): @@ -542,6 +574,25 @@ class TestLinearRamp(object): [0., 0., 0., 0., 0., 0., 0., 0., 0.]]) assert_allclose(test, expected) + @pytest.mark.xfail(exceptions=(AssertionError,)) + def test_object_array(self): + from fractions import Fraction + arr = np.array([Fraction(1, 2), Fraction(-1, 2)]) + actual = np.pad(arr, (2, 3), mode='linear_ramp', end_values=0) + + # deliberately chosen to have a non-power-of-2 denominator such that + # rounding to floats causes a failure. + expected = np.array([ + Fraction( 0, 12), + Fraction( 3, 12), + Fraction( 6, 12), + Fraction(-6, 12), + Fraction(-4, 12), + Fraction(-2, 12), + Fraction(-0, 12), + ]) + assert_equal(actual, expected) + class TestReflect(object): def test_check_simple(self): @@ -887,6 +938,11 @@ class TestWrap(object): b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]) assert_array_equal(a, b) + def test_pad_with_zero(self): + a = np.ones((3, 5)) + b = np.pad(a, (0, 5), mode="wrap") + assert_array_equal(a, b[:-5, :-5]) + class TestStatLen(object): def test_check_simple(self): diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index dace5ade8..4b61726d2 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -6,10 +6,13 @@ from __future__ import division, absolute_import, print_function import numpy as np import sys -from numpy.testing import assert_array_equal, assert_equal, assert_raises +from numpy.testing import (assert_array_equal, assert_equal, + assert_raises, assert_raises_regex) from numpy.lib.arraysetops import ( ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin ) +import pytest + class TestSetOps(object): @@ -30,19 +33,30 @@ class TestSetOps(object): ed = np.array([1, 2, 5]) c = intersect1d(a, b) assert_array_equal(c, ed) - assert_array_equal([], intersect1d([], [])) - + + def test_intersect1d_array_like(self): + # See gh-11772 + class Test(object): + def __array__(self): + return np.arange(3) + + a = Test() + res = intersect1d(a, a) + assert_array_equal(res, a) + res = intersect1d([1, 2, 3], [1, 2, 3]) + assert_array_equal(res, [1, 2, 3]) + def test_intersect1d_indices(self): # unique inputs - a = np.array([1, 2, 3, 4]) + a = np.array([1, 2, 3, 4]) b = np.array([2, 1, 4, 6]) c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) ee = np.array([1, 2, 4]) assert_array_equal(c, ee) assert_array_equal(a[i1], ee) assert_array_equal(b[i2], ee) - + # non-unique inputs a = np.array([1, 2, 2, 3, 4, 3, 2]) b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) @@ -51,7 +65,7 @@ class TestSetOps(object): assert_array_equal(c, ef) assert_array_equal(a[i1], ef) assert_array_equal(b[i2], ef) - + # non1d, unique inputs a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) @@ -61,7 +75,7 @@ class TestSetOps(object): ea = np.array([2, 6, 7, 8]) assert_array_equal(ea, a[ui1]) assert_array_equal(ea, b[ui2]) - + # non1d, not assumed to be uniqueinputs a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) @@ -71,7 +85,7 @@ class TestSetOps(object): ea = np.array([2, 7, 8]) assert_array_equal(ea, a[ui1]) assert_array_equal(ea, b[ui2]) - + def test_setxor1d(self): a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) @@ -114,6 +128,68 @@ class TestSetOps(object): assert_array_equal([7,1], ediff1d(two_elem, to_begin=7)) assert_array_equal([5,6,1], ediff1d(two_elem, to_begin=[5,6])) + @pytest.mark.parametrize("ary, prepend, append", [ + # should fail because trying to cast + # np.nan standard floating point value + # into an integer array: + (np.array([1, 2, 3], dtype=np.int64), + None, + np.nan), + # should fail because attempting + # to downcast to smaller int type: + (np.array([1, 2, 3], dtype=np.int32), + np.array([5, 7, 2], dtype=np.int64), + None), + # should fail because attempting to cast + # two special floating point values + # to integers (on both sides of ary): + (np.array([1., 3., 9.], dtype=np.int8), + np.nan, + np.nan), + ]) + def test_ediff1d_forbidden_type_casts(self, ary, prepend, append): + # verify resolution of gh-11490 + + # specifically, raise an appropriate + # Exception when attempting to append or + # prepend with an incompatible type + msg = 'must be compatible' + with assert_raises_regex(TypeError, msg): + ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + + @pytest.mark.parametrize("ary," + "prepend," + "append," + "expected", [ + (np.array([1, 2, 3], dtype=np.int16), + 0, + None, + np.array([0, 1, 1], dtype=np.int16)), + (np.array([1, 2, 3], dtype=np.int32), + 0, + 0, + np.array([0, 1, 1, 0], dtype=np.int32)), + (np.array([1, 2, 3], dtype=np.int64), + 3, + -9, + np.array([3, 1, 1, -9], dtype=np.int64)), + ]) + def test_ediff1d_scalar_handling(self, + ary, + prepend, + append, + expected): + # maintain backwards-compatibility + # of scalar prepend / append behavior + # in ediff1d following fix for gh-11490 + actual = np.ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + assert_equal(actual, expected) + + def test_isin(self): # the tests for in1d cover most of isin's behavior # if in1d is removed, would need to change those tests to test diff --git a/numpy/lib/tests/test_format.py b/numpy/lib/tests/test_format.py index fd227595a..3185e32ac 100644 --- a/numpy/lib/tests/test_format.py +++ b/numpy/lib/tests/test_format.py @@ -286,7 +286,8 @@ from io import BytesIO import numpy as np from numpy.testing import ( - assert_, assert_array_equal, assert_raises, raises, SkipTest + assert_, assert_array_equal, assert_raises, assert_raises_regex, + raises ) from numpy.lib import format @@ -678,12 +679,9 @@ def test_write_version(): (255, 255), ] for version in bad_versions: - try: + with assert_raises_regex(ValueError, + 'we only support format version.*'): format.write_array(f, arr, version=version) - except ValueError: - pass - else: - raise AssertionError("we should have raised a ValueError for the bad version %r" % (version,)) bad_version_magic = [ @@ -809,7 +807,7 @@ def test_bad_header(): def test_large_file_support(): if (sys.platform == 'win32' or sys.platform == 'cygwin'): - raise SkipTest("Unknown if Windows has sparse filesystems") + pytest.skip("Unknown if Windows has sparse filesystems") # try creating a large sparse file tf_name = os.path.join(tempdir, 'sparse_file') try: @@ -819,7 +817,7 @@ def test_large_file_support(): import subprocess as sp sp.check_call(["truncate", "-s", "5368709120", tf_name]) except Exception: - raise SkipTest("Could not create 5GB large file") + pytest.skip("Could not create 5GB large file") # write a small array to the end with open(tf_name, "wb") as f: f.seek(5368709120) @@ -841,7 +839,7 @@ def test_large_archive(): try: a = np.empty((2**30, 2), dtype=np.uint8) except MemoryError: - raise SkipTest("Could not create large file") + pytest.skip("Could not create large file") fname = os.path.join(tempdir, "large_archive") @@ -852,3 +850,10 @@ def test_large_archive(): new_a = np.load(f)["arr"] assert_(a.shape == new_a.shape) + + +def test_empty_npz(): + # Test for gh-9989 + fname = os.path.join(tempdir, "nothing.npz") + np.savez(fname) + np.load(fname) diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index ba5b90e8c..d5faed6ae 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -1043,6 +1043,16 @@ class TestAngle(object): assert_array_almost_equal(y, yo, 11) assert_array_almost_equal(z, zo, 11) + def test_subclass(self): + x = np.ma.array([1 + 3j, 1, np.sqrt(2)/2 * (1 + 1j)]) + x[1] = np.ma.masked + expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)]) + expected[1] = np.ma.masked + actual = angle(x) + assert_equal(type(actual), type(expected)) + assert_equal(actual.mask, expected.mask) + assert_equal(actual, expected) + class TestTrimZeros(object): diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py index f136b5c81..561f5f938 100644 --- a/numpy/lib/tests/test_histograms.py +++ b/numpy/lib/tests/test_histograms.py @@ -310,6 +310,20 @@ class TestHistogram(object): assert_equal(d_edge.dtype, dates.dtype) assert_equal(t_edge.dtype, td) + def do_signed_overflow_bounds(self, dtype): + exponent = 8 * np.dtype(dtype).itemsize - 1 + arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype) + hist, e = histogram(arr, bins=2) + assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4]) + assert_equal(hist, [1, 1]) + + def test_signed_overflow_bounds(self): + self.do_signed_overflow_bounds(np.byte) + self.do_signed_overflow_bounds(np.short) + self.do_signed_overflow_bounds(np.intc) + self.do_signed_overflow_bounds(np.int_) + self.do_signed_overflow_bounds(np.longlong) + def do_precision_lower_bound(self, float_small, float_large): eps = np.finfo(float_large).eps diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py index 315251daa..7e9c026e4 100644 --- a/numpy/lib/tests/test_index_tricks.py +++ b/numpy/lib/tests/test_index_tricks.py @@ -113,7 +113,6 @@ class TestRavelUnravelIndex(object): assert_(x.flags.writeable) assert_(y.flags.writeable) - def test_0d(self): # gh-580 x = np.unravel_index(0, ()) diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py index f58c9e33d..ef08c3f41 100644 --- a/numpy/lib/tests/test_io.py +++ b/numpy/lib/tests/test_io.py @@ -21,7 +21,7 @@ from numpy.lib._iotools import ConverterError, ConversionWarning from numpy.compat import asbytes, bytes, unicode, Path from numpy.ma.testutils import assert_equal from numpy.testing import ( - assert_warns, assert_, SkipTest, assert_raises_regex, assert_raises, + assert_warns, assert_, assert_raises_regex, assert_raises, assert_allclose, assert_array_equal, temppath, tempdir, IS_PYPY, HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles, ) @@ -348,7 +348,6 @@ class TestSaveTxt(object): assert_raises(ValueError, np.savetxt, c, np.array(1)) assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]])) - def test_record(self): a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) c = BytesIO() @@ -568,12 +567,12 @@ class LoadTxtBase(object): @pytest.mark.skipif(not HAS_BZ2, reason="Needs bz2") @pytest.mark.skipif(MAJVER == 2, reason="Needs Python version >= 3") - def test_compressed_gzip(self): + def test_compressed_bz2(self): self.check_compressed(bz2.open, ('.bz2',)) @pytest.mark.skipif(not HAS_LZMA, reason="Needs lzma") @pytest.mark.skipif(MAJVER == 2, reason="Needs Python version >= 3") - def test_compressed_gzip(self): + def test_compressed_lzma(self): self.check_compressed(lzma.open, ('.xz', '.lzma')) def test_encoding(self): @@ -1455,14 +1454,10 @@ M 33 21.99 assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', object)])] - try: + with assert_raises_regex(NotImplementedError, + 'Nested fields.* not supported.*'): test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) - except NotImplementedError: - pass - else: - errmsg = "Nested dtype involving objects should be supported." - raise AssertionError(errmsg) def test_userconverters_with_explicit_dtype(self): # Test user_converters w/ explicit (standard) dtype @@ -2025,7 +2020,6 @@ M 33 21.99 assert_equal(test['f0'], 0) assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8")) - def test_utf8_file_nodtype_unicode(self): # bytes encoding with non-latin1 -> unicode upcast utf8 = u'\u03d6' @@ -2039,8 +2033,8 @@ M 33 21.99 encoding = locale.getpreferredencoding() utf8.encode(encoding) except (UnicodeError, ImportError): - raise SkipTest('Skipping test_utf8_file_nodtype_unicode, ' - 'unable to encode utf8 in preferred encoding') + pytest.skip('Skipping test_utf8_file_nodtype_unicode, ' + 'unable to encode utf8 in preferred encoding') with temppath() as path: with io.open(path, "wt") as f: @@ -2418,3 +2412,9 @@ def test_load_refcount(): with assert_no_gc_cycles(): np.load(f) + + f.seek(0) + dt = [("a", 'u1', 2), ("b", 'u1', 2)] + with assert_no_gc_cycles(): + x = np.loadtxt(TextIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt)) diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py index 7f6fca4a4..9f7c117a2 100644 --- a/numpy/lib/tests/test_polynomial.py +++ b/numpy/lib/tests/test_polynomial.py @@ -1,93 +1,79 @@ -''' ->>> p = np.poly1d([1.,2,3]) ->>> p -poly1d([1., 2., 3.]) ->>> print(p) - 2 -1 x + 2 x + 3 ->>> q = np.poly1d([3.,2,1]) ->>> q -poly1d([3., 2., 1.]) ->>> print(q) - 2 -3 x + 2 x + 1 ->>> print(np.poly1d([1.89999+2j, -3j, -5.12345678, 2+1j])) - 3 2 -(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j) ->>> print(np.poly1d([-3, -2, -1])) - 2 --3 x - 2 x - 1 - ->>> p(0) -3.0 ->>> p(5) -38.0 ->>> q(0) -1.0 ->>> q(5) -86.0 - ->>> p * q -poly1d([ 3., 8., 14., 8., 3.]) ->>> p / q -(poly1d([0.33333333]), poly1d([1.33333333, 2.66666667])) ->>> p + q -poly1d([4., 4., 4.]) ->>> p - q -poly1d([-2., 0., 2.]) ->>> p ** 4 -poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.]) - ->>> p(q) -poly1d([ 9., 12., 16., 8., 6.]) ->>> q(p) -poly1d([ 3., 12., 32., 40., 34.]) - ->>> np.asarray(p) -array([1., 2., 3.]) ->>> len(p) -2 - ->>> p[0], p[1], p[2], p[3] -(3.0, 2.0, 1.0, 0) - ->>> p.integ() -poly1d([0.33333333, 1. , 3. , 0. ]) ->>> p.integ(1) -poly1d([0.33333333, 1. , 3. , 0. ]) ->>> p.integ(5) -poly1d([0.00039683, 0.00277778, 0.025 , 0. , 0. , - 0. , 0. , 0. ]) ->>> p.deriv() -poly1d([2., 2.]) ->>> p.deriv(2) -poly1d([2.]) - ->>> q = np.poly1d([1.,2,3], variable='y') ->>> print(q) - 2 -1 y + 2 y + 3 ->>> q = np.poly1d([1.,2,3], variable='lambda') ->>> print(q) - 2 -1 lambda + 2 lambda + 3 - ->>> np.polydiv(np.poly1d([1,0,-1]), np.poly1d([1,1])) -(poly1d([ 1., -1.]), poly1d([0.])) - -''' from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_almost_equal, - assert_array_almost_equal, assert_raises, rundocs + assert_array_almost_equal, assert_raises ) -class TestDocs(object): - def test_doctests(self): - return rundocs() +class TestPolynomial(object): + def test_poly1d_str_and_repr(self): + p = np.poly1d([1., 2, 3]) + assert_equal(repr(p), 'poly1d([1., 2., 3.])') + assert_equal(str(p), + ' 2\n' + '1 x + 2 x + 3') + + q = np.poly1d([3., 2, 1]) + assert_equal(repr(q), 'poly1d([3., 2., 1.])') + assert_equal(str(q), + ' 2\n' + '3 x + 2 x + 1') + + r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j]) + assert_equal(str(r), + ' 3 2\n' + '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)') + + assert_equal(str(np.poly1d([-3, -2, -1])), + ' 2\n' + '-3 x - 2 x - 1') + + def test_poly1d_resolution(self): + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p(0), 3.0) + assert_equal(p(5), 38.0) + assert_equal(q(0), 1.0) + assert_equal(q(5), 86.0) + + def test_poly1d_math(self): + # here we use some simple coeffs to make calculations easier + p = np.poly1d([1., 2, 4]) + q = np.poly1d([4., 2, 1]) + assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75]))) + assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.])) + assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.])) + + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.])) + assert_equal(p + q, np.poly1d([4., 4., 4.])) + assert_equal(p - q, np.poly1d([-2., 0., 2.])) + assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.])) + assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.])) + assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.])) + assert_equal(p.deriv(), np.poly1d([2., 2.])) + assert_equal(p.deriv(2), np.poly1d([2.])) + assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])), + (np.poly1d([1., -1.]), np.poly1d([0.]))) + + def test_poly1d_misc(self): + p = np.poly1d([1., 2, 3]) + assert_equal(np.asarray(p), np.array([1., 2., 3.])) + assert_equal(len(p), 2) + assert_equal((p[0], p[1], p[2], p[3]), (3.0, 2.0, 1.0, 0)) + + def test_poly1d_variable_arg(self): + q = np.poly1d([1., 2, 3], variable='y') + assert_equal(str(q), + ' 2\n' + '1 y + 2 y + 3') + q = np.poly1d([1., 2, 3], variable='lambda') + assert_equal(str(q), + ' 2\n' + '1 lambda + 2 lambda + 3') def test_poly(self): assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py index d4828bc1f..5585a95f9 100644 --- a/numpy/lib/tests/test_recfunctions.py +++ b/numpy/lib/tests/test_recfunctions.py @@ -541,12 +541,8 @@ class TestStackArrays(object): test = stack_arrays((a, b), autoconvert=True) assert_equal(test, control) assert_equal(test.mask, control.mask) - try: - test = stack_arrays((a, b), autoconvert=False) - except TypeError: - pass - else: - raise AssertionError + with assert_raises(TypeError): + stack_arrays((a, b), autoconvert=False) def test_checktitles(self): # Test using titles in the field names diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py index c95894f94..6e4cd225d 100644 --- a/numpy/lib/tests/test_shape_base.py +++ b/numpy/lib/tests/test_shape_base.py @@ -3,6 +3,8 @@ from __future__ import division, absolute_import, print_function import numpy as np import warnings import functools +import sys +import pytest from numpy.lib.shape_base import ( apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit, @@ -14,6 +16,9 @@ from numpy.testing import ( ) +IS_64BIT = sys.maxsize > 2**32 + + def _add_keepdims(func): """ hack in keepdims behavior into a function taking an axis """ @functools.wraps(func) @@ -293,6 +298,15 @@ class TestExpandDims(object): assert_warns(DeprecationWarning, expand_dims, a, -6) assert_warns(DeprecationWarning, expand_dims, a, 5) + def test_subclasses(self): + a = np.arange(10).reshape((2, 5)) + a = np.ma.array(a, mask=a%3 == 0) + + expanded = np.expand_dims(a, axis=1) + assert_(isinstance(expanded, np.ma.MaskedArray)) + assert_equal(expanded.shape, (2, 1, 5)) + assert_equal(expanded.mask.shape, (2, 1, 5)) + class TestArraySplit(object): def test_integer_0_split(self): @@ -394,6 +408,15 @@ class TestArraySplit(object): assert_(a.dtype.type is res[-1].dtype.type) # perhaps should check higher dimensions + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + def test_integer_split_2D_rows_greater_max_int32(self): + a = np.broadcast_to([0], (1 << 32, 2)) + res = array_split(a, 4) + chunk = np.broadcast_to([0], (1 << 30, 2)) + tgt = [chunk] * 4 + for i in range(len(tgt)): + assert_equal(res[i].shape, tgt[i].shape) + def test_index_split_simple(self): a = np.arange(10) indices = [1, 5, 7] diff --git a/numpy/lib/tests/test_stride_tricks.py b/numpy/lib/tests/test_stride_tricks.py index 3c2ca8b87..b2bd7da3e 100644 --- a/numpy/lib/tests/test_stride_tricks.py +++ b/numpy/lib/tests/test_stride_tricks.py @@ -3,7 +3,8 @@ from __future__ import division, absolute_import, print_function import numpy as np from numpy.core._rational_tests import rational from numpy.testing import ( - assert_equal, assert_array_equal, assert_raises, assert_ + assert_equal, assert_array_equal, assert_raises, assert_, + assert_raises_regex ) from numpy.lib.stride_tricks import ( as_strided, broadcast_arrays, _broadcast_shape, broadcast_to @@ -57,6 +58,17 @@ def test_same(): assert_array_equal(x, bx) assert_array_equal(y, by) +def test_broadcast_kwargs(): + # ensure that a TypeError is appropriately raised when + # np.broadcast_arrays() is called with any keyword + # argument other than 'subok' + x = np.arange(10) + y = np.arange(10) + + with assert_raises_regex(TypeError, + r'broadcast_arrays\(\) got an unexpected keyword*'): + broadcast_arrays(x, y, dtype='float64') + def test_one_off(): x = np.array([[1, 2, 3]]) diff --git a/numpy/lib/tests/test_ufunclike.py b/numpy/lib/tests/test_ufunclike.py index 5604b3744..0f06876a1 100644 --- a/numpy/lib/tests/test_ufunclike.py +++ b/numpy/lib/tests/test_ufunclike.py @@ -4,8 +4,8 @@ import numpy as np import numpy.core as nx import numpy.lib.ufunclike as ufl from numpy.testing import ( - assert_, assert_equal, assert_array_equal, assert_warns - ) + assert_, assert_equal, assert_array_equal, assert_warns, assert_raises +) class TestUfunclike(object): @@ -21,6 +21,10 @@ class TestUfunclike(object): assert_equal(res, tgt) assert_equal(out, tgt) + a = a.astype(np.complex) + with assert_raises(TypeError): + ufl.isposinf(a) + def test_isneginf(self): a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0]) out = nx.zeros(a.shape, bool) @@ -32,6 +36,10 @@ class TestUfunclike(object): assert_equal(res, tgt) assert_equal(out, tgt) + a = a.astype(np.complex) + with assert_raises(TypeError): + ufl.isneginf(a) + def test_fix(self): a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) out = nx.zeros(a.shape, float) @@ -52,7 +60,8 @@ class TestUfunclike(object): return res def __array_wrap__(self, obj, context=None): - obj.metadata = self.metadata + if isinstance(obj, MyArray): + obj.metadata = self.metadata return obj def __array_finalize__(self, obj): diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py index 1664e6ebb..3f7aa32fa 100644 --- a/numpy/lib/type_check.py +++ b/numpy/lib/type_check.py @@ -215,7 +215,7 @@ def iscomplex(x): if issubclass(ax.dtype.type, _nx.complexfloating): return ax.imag != 0 res = zeros(ax.shape, bool) - return +res # convert to array-scalar if needed + return res[()] # convert to scalar if needed def isreal(x): """ diff --git a/numpy/lib/ufunclike.py b/numpy/lib/ufunclike.py index e0bd95182..6259c5445 100644 --- a/numpy/lib/ufunclike.py +++ b/numpy/lib/ufunclike.py @@ -11,6 +11,7 @@ import numpy.core.numeric as nx import warnings import functools + def _deprecate_out_named_y(f): """ Allow the out argument to be passed as the name `y` (deprecated) @@ -81,6 +82,7 @@ def fix(x, out=None): res = res[()] return res + @_deprecate_out_named_y def isposinf(x, out=None): """ @@ -116,8 +118,9 @@ def isposinf(x, out=None): NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). - Errors result if the second argument is also supplied when `x` is a - scalar input, or if first and second arguments have different shapes. + Errors result if the second argument is also supplied when x is a scalar + input, if first and second arguments have different shapes, or if the + first argument has complex values Examples -------- @@ -138,7 +141,14 @@ def isposinf(x, out=None): array([0, 0, 1]) """ - return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) + is_inf = nx.isinf(x) + try: + signbit = ~nx.signbit(x) + except TypeError: + raise TypeError('This operation is not supported for complex values ' + 'because it would be ambiguous.') + else: + return nx.logical_and(is_inf, signbit, out) @_deprecate_out_named_y @@ -178,7 +188,8 @@ def isneginf(x, out=None): (IEEE 754). Errors result if the second argument is also supplied when x is a scalar - input, or if first and second arguments have different shapes. + input, if first and second arguments have different shapes, or if the + first argument has complex values. Examples -------- @@ -199,4 +210,11 @@ def isneginf(x, out=None): array([1, 0, 0]) """ - return nx.logical_and(nx.isinf(x), nx.signbit(x), out) + is_inf = nx.isinf(x) + try: + signbit = nx.signbit(x) + except TypeError: + raise TypeError('This operation is not supported for complex values ' + 'because it would be ambiguous.') + else: + return nx.logical_and(is_inf, signbit, out) |
