diff options
Diffstat (limited to 'numpy/linalg/dlamch.c')
-rw-r--r-- | numpy/linalg/dlamch.c | 951 |
1 files changed, 0 insertions, 951 deletions
diff --git a/numpy/linalg/dlamch.c b/numpy/linalg/dlamch.c deleted file mode 100644 index dda3f36e2..000000000 --- a/numpy/linalg/dlamch.c +++ /dev/null @@ -1,951 +0,0 @@ -#include <stdio.h> -#include "f2c.h" - -/* If config.h is available, we only need dlamc3 */ -#ifndef HAVE_CONFIG -doublereal dlamch_(char *cmach) -{ -/* -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMCH determines double precision machine parameters. - - Arguments - ========= - - CMACH (input) CHARACTER*1 - Specifies the value to be returned by DLAMCH: - = 'E' or 'e', DLAMCH := eps - = 'S' or 's , DLAMCH := sfmin - = 'B' or 'b', DLAMCH := base - = 'P' or 'p', DLAMCH := eps*base - = 'N' or 'n', DLAMCH := t - = 'R' or 'r', DLAMCH := rnd - = 'M' or 'm', DLAMCH := emin - = 'U' or 'u', DLAMCH := rmin - = 'L' or 'l', DLAMCH := emax - = 'O' or 'o', DLAMCH := rmax - - where - - eps = relative machine precision - sfmin = safe minimum, such that 1/sfmin does not overflow - base = base of the machine - prec = eps*base - t = number of (base) digits in the mantissa - rnd = 1.0 when rounding occurs in addition, 0.0 otherwise - emin = minimum exponent before (gradual) underflow - rmin = underflow threshold - base**(emin-1) - emax = largest exponent before overflow - rmax = overflow threshold - (base**emax)*(1-eps) - - ===================================================================== -*/ -/* >>Start of File<< - Initialized data */ - static logical first = TRUE_; - /* System generated locals */ - integer i__1; - doublereal ret_val; - /* Builtin functions */ - double pow_di(doublereal *, integer *); - /* Local variables */ - static doublereal base; - static integer beta; - static doublereal emin, prec, emax; - static integer imin, imax; - static logical lrnd; - static doublereal rmin, rmax, t, rmach; - extern logical lsame_(char *, char *); - static doublereal small, sfmin; - extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *, - doublereal *, integer *, doublereal *, integer *, doublereal *); - static integer it; - static doublereal rnd, eps; - - - - if (first) { - first = FALSE_; - dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax); - base = (doublereal) beta; - t = (doublereal) it; - if (lrnd) { - rnd = 1.; - i__1 = 1 - it; - eps = pow_di(&base, &i__1) / 2; - } else { - rnd = 0.; - i__1 = 1 - it; - eps = pow_di(&base, &i__1); - } - prec = eps * base; - emin = (doublereal) imin; - emax = (doublereal) imax; - sfmin = rmin; - small = 1. / rmax; - if (small >= sfmin) { - -/* Use SMALL plus a bit, to avoid the possibility of rou -nding - causing overflow when computing 1/sfmin. */ - - sfmin = small * (eps + 1.); - } - } - - if (lsame_(cmach, "E")) { - rmach = eps; - } else if (lsame_(cmach, "S")) { - rmach = sfmin; - } else if (lsame_(cmach, "B")) { - rmach = base; - } else if (lsame_(cmach, "P")) { - rmach = prec; - } else if (lsame_(cmach, "N")) { - rmach = t; - } else if (lsame_(cmach, "R")) { - rmach = rnd; - } else if (lsame_(cmach, "M")) { - rmach = emin; - } else if (lsame_(cmach, "U")) { - rmach = rmin; - } else if (lsame_(cmach, "L")) { - rmach = emax; - } else if (lsame_(cmach, "O")) { - rmach = rmax; - } - - ret_val = rmach; - return ret_val; - -/* End of DLAMCH */ - -} /* dlamch_ */ - - -/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical - *ieee1) -{ -/* -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMC1 determines the machine parameters given by BETA, T, RND, and - IEEE1. - - Arguments - ========= - - BETA (output) INTEGER - The base of the machine. - - T (output) INTEGER - The number of ( BETA ) digits in the mantissa. - - RND (output) LOGICAL - Specifies whether proper rounding ( RND = .TRUE. ) or - chopping ( RND = .FALSE. ) occurs in addition. This may not - - be a reliable guide to the way in which the machine performs - - its arithmetic. - - IEEE1 (output) LOGICAL - Specifies whether rounding appears to be done in the IEEE - 'round to nearest' style. - - Further Details - =============== - - The routine is based on the routine ENVRON by Malcolm and - incorporates suggestions by Gentleman and Marovich. See - - Malcolm M. A. (1972) Algorithms to reveal properties of - floating-point arithmetic. Comms. of the ACM, 15, 949-951. - - Gentleman W. M. and Marovich S. B. (1974) More on algorithms - that reveal properties of floating point arithmetic units. - Comms. of the ACM, 17, 276-277. - - ===================================================================== -*/ - /* Initialized data */ - static logical first = TRUE_; - /* System generated locals */ - doublereal d__1, d__2; - /* Local variables */ - static logical lrnd; - static doublereal a, b, c, f; - static integer lbeta; - static doublereal savec; - extern doublereal dlamc3_(doublereal *, doublereal *); - static logical lieee1; - static doublereal t1, t2; - static integer lt; - static doublereal one, qtr; - - - - if (first) { - first = FALSE_; - one = 1.; - -/* LBETA, LIEEE1, LT and LRND are the local values of BE -TA, - IEEE1, T and RND. - - Throughout this routine we use the function DLAMC3 to ens -ure - that relevant values are stored and not held in registers, - or - are not affected by optimizers. - - Compute a = 2.0**m with the smallest positive integer m s -uch - that - - fl( a + 1.0 ) = a. */ - - a = 1.; - c = 1.; - -/* + WHILE( C.EQ.ONE )LOOP */ -L10: - if (c == one) { - a *= 2; - c = dlamc3_(&a, &one); - d__1 = -a; - c = dlamc3_(&c, &d__1); - goto L10; - } -/* + END WHILE - - Now compute b = 2.0**m with the smallest positive integer -m - such that - - fl( a + b ) .gt. a. */ - - b = 1.; - c = dlamc3_(&a, &b); - -/* + WHILE( C.EQ.A )LOOP */ -L20: - if (c == a) { - b *= 2; - c = dlamc3_(&a, &b); - goto L20; - } -/* + END WHILE - - Now compute the base. a and c are neighbouring floating po -int - numbers in the interval ( beta**t, beta**( t + 1 ) ) and - so - their difference is beta. Adding 0.25 to c is to ensure that - it - is truncated to beta and not ( beta - 1 ). */ - - qtr = one / 4; - savec = c; - d__1 = -a; - c = dlamc3_(&c, &d__1); - lbeta = (integer) (c + qtr); - -/* Now determine whether rounding or chopping occurs, by addin -g a - bit less than beta/2 and a bit more than beta/2 to - a. */ - - b = (doublereal) lbeta; - d__1 = b / 2; - d__2 = -b / 100; - f = dlamc3_(&d__1, &d__2); - c = dlamc3_(&f, &a); - if (c == a) { - lrnd = TRUE_; - } else { - lrnd = FALSE_; - } - d__1 = b / 2; - d__2 = b / 100; - f = dlamc3_(&d__1, &d__2); - c = dlamc3_(&f, &a); - if (lrnd && c == a) { - lrnd = FALSE_; - } - -/* Try and decide whether rounding is done in the IEEE 'round - to - nearest' style. B/2 is half a unit in the last place of the -two - numbers A and SAVEC. Furthermore, A is even, i.e. has last -bit - zero, and SAVEC is odd. Thus adding B/2 to A should not cha -nge - A, but adding B/2 to SAVEC should change SAVEC. */ - - d__1 = b / 2; - t1 = dlamc3_(&d__1, &a); - d__1 = b / 2; - t2 = dlamc3_(&d__1, &savec); - lieee1 = t1 == a && t2 > savec && lrnd; - -/* Now find the mantissa, t. It should be the integer part - of - log to the base beta of a, however it is safer to determine - t - by powering. So we find t as the smallest positive integer -for - which - - fl( beta**t + 1.0 ) = 1.0. */ - - lt = 0; - a = 1.; - c = 1.; - -/* + WHILE( C.EQ.ONE )LOOP */ -L30: - if (c == one) { - ++lt; - a *= lbeta; - c = dlamc3_(&a, &one); - d__1 = -a; - c = dlamc3_(&c, &d__1); - goto L30; - } -/* + END WHILE */ - - } - - *beta = lbeta; - *t = lt; - *rnd = lrnd; - *ieee1 = lieee1; - return 0; - -/* End of DLAMC1 */ - -} /* dlamc1_ */ - - -/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd, - doublereal *eps, integer *emin, doublereal *rmin, integer *emax, - doublereal *rmax) -{ -/* -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMC2 determines the machine parameters specified in its argument - list. - - Arguments - ========= - - BETA (output) INTEGER - The base of the machine. - - T (output) INTEGER - The number of ( BETA ) digits in the mantissa. - - RND (output) LOGICAL - Specifies whether proper rounding ( RND = .TRUE. ) or - chopping ( RND = .FALSE. ) occurs in addition. This may not - - be a reliable guide to the way in which the machine performs - - its arithmetic. - - EPS (output) DOUBLE PRECISION - The smallest positive number such that - - fl( 1.0 - EPS ) .LT. 1.0, - - where fl denotes the computed value. - - EMIN (output) INTEGER - The minimum exponent before (gradual) underflow occurs. - - RMIN (output) DOUBLE PRECISION - The smallest normalized number for the machine, given by - BASE**( EMIN - 1 ), where BASE is the floating point value - - of BETA. - - EMAX (output) INTEGER - The maximum exponent before overflow occurs. - - RMAX (output) DOUBLE PRECISION - The largest positive number for the machine, given by - BASE**EMAX * ( 1 - EPS ), where BASE is the floating point - - value of BETA. - - Further Details - =============== - - The computation of EPS is based on a routine PARANOIA by - W. Kahan of the University of California at Berkeley. - - ===================================================================== -*/ - - /* Initialized data */ - static logical first = TRUE_; - static logical iwarn = FALSE_; - /* System generated locals */ - integer i__1; - doublereal d__1, d__2, d__3, d__4, d__5; - /* Builtin functions */ - double pow_di(doublereal *, integer *); - /* Local variables */ - static logical ieee; - static doublereal half; - static logical lrnd; - static doublereal leps, zero, a, b, c; - static integer i, lbeta; - static doublereal rbase; - static integer lemin, lemax, gnmin; - static doublereal small; - static integer gpmin; - static doublereal third, lrmin, lrmax, sixth; - extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *, - logical *); - extern doublereal dlamc3_(doublereal *, doublereal *); - static logical lieee1; - extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *), - dlamc5_(integer *, integer *, integer *, logical *, integer *, - doublereal *); - static integer lt, ngnmin, ngpmin; - static doublereal one, two; - - - - if (first) { - first = FALSE_; - zero = 0.; - one = 1.; - two = 2.; - -/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values - of - BETA, T, RND, EPS, EMIN and RMIN. - - Throughout this routine we use the function DLAMC3 to ens -ure - that relevant values are stored and not held in registers, - or - are not affected by optimizers. - - DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. -*/ - - dlamc1_(&lbeta, <, &lrnd, &lieee1); - -/* Start to find EPS. */ - - b = (doublereal) lbeta; - i__1 = -lt; - a = pow_di(&b, &i__1); - leps = a; - -/* Try some tricks to see whether or not this is the correct E -PS. */ - - b = two / 3; - half = one / 2; - d__1 = -half; - sixth = dlamc3_(&b, &d__1); - third = dlamc3_(&sixth, &sixth); - d__1 = -half; - b = dlamc3_(&third, &d__1); - b = dlamc3_(&b, &sixth); - b = abs(b); - if (b < leps) { - b = leps; - } - - leps = 1.; - -/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */ -L10: - if (leps > b && b > zero) { - leps = b; - d__1 = half * leps; -/* Computing 5th power */ - d__3 = two, d__4 = d__3, d__3 *= d__3; -/* Computing 2nd power */ - d__5 = leps; - d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5); - c = dlamc3_(&d__1, &d__2); - d__1 = -c; - c = dlamc3_(&half, &d__1); - b = dlamc3_(&half, &c); - d__1 = -b; - c = dlamc3_(&half, &d__1); - b = dlamc3_(&half, &c); - goto L10; - } -/* + END WHILE */ - - if (a < leps) { - leps = a; - } - -/* Computation of EPS complete. - - Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3 -)). - Keep dividing A by BETA until (gradual) underflow occurs. T -his - is detected when we cannot recover the previous A. */ - - rbase = one / lbeta; - small = one; - for (i = 1; i <= 3; ++i) { - d__1 = small * rbase; - small = dlamc3_(&d__1, &zero); -/* L20: */ - } - a = dlamc3_(&one, &small); - dlamc4_(&ngpmin, &one, &lbeta); - d__1 = -one; - dlamc4_(&ngnmin, &d__1, &lbeta); - dlamc4_(&gpmin, &a, &lbeta); - d__1 = -a; - dlamc4_(&gnmin, &d__1, &lbeta); - ieee = FALSE_; - - if (ngpmin == ngnmin && gpmin == gnmin) { - if (ngpmin == gpmin) { - lemin = ngpmin; -/* ( Non twos-complement machines, no gradual under -flow; - e.g., VAX ) */ - } else if (gpmin - ngpmin == 3) { - lemin = ngpmin - 1 + lt; - ieee = TRUE_; -/* ( Non twos-complement machines, with gradual und -erflow; - e.g., IEEE standard followers ) */ - } else { - lemin = min(ngpmin,gpmin); -/* ( A guess; no known machine ) */ - iwarn = TRUE_; - } - - } else if (ngpmin == gpmin && ngnmin == gnmin) { - if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) { - lemin = max(ngpmin,ngnmin); -/* ( Twos-complement machines, no gradual underflow -; - e.g., CYBER 205 ) */ - } else { - lemin = min(ngpmin,ngnmin); -/* ( A guess; no known machine ) */ - iwarn = TRUE_; - } - - } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin) - { - if (gpmin - min(ngpmin,ngnmin) == 3) { - lemin = max(ngpmin,ngnmin) - 1 + lt; -/* ( Twos-complement machines with gradual underflo -w; - no known machine ) */ - } else { - lemin = min(ngpmin,ngnmin); -/* ( A guess; no known machine ) */ - iwarn = TRUE_; - } - - } else { -/* Computing MIN */ - i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin); - lemin = min(i__1,gnmin); -/* ( A guess; no known machine ) */ - iwarn = TRUE_; - } -/* ** - Comment out this if block if EMIN is ok */ - if (iwarn) { - first = TRUE_; - printf("\n\n WARNING. The value EMIN may be incorrect:- "); - printf("EMIN = %8i\n",lemin); - printf("If, after inspection, the value EMIN looks acceptable"); - printf("please comment out \n the IF block as marked within the"); - printf("code of routine DLAMC2, \n otherwise supply EMIN"); - printf("explicitly.\n"); - } -/* ** - - Assume IEEE arithmetic if we found denormalised numbers abo -ve, - or if arithmetic seems to round in the IEEE style, determi -ned - in routine DLAMC1. A true IEEE machine should have both thi -ngs - true; however, faulty machines may have one or the other. */ - - ieee = ieee || lieee1; - -/* Compute RMIN by successive division by BETA. We could comp -ute - RMIN as BASE**( EMIN - 1 ), but some machines underflow dur -ing - this computation. */ - - lrmin = 1.; - i__1 = 1 - lemin; - for (i = 1; i <= 1-lemin; ++i) { - d__1 = lrmin * rbase; - lrmin = dlamc3_(&d__1, &zero); -/* L30: */ - } - -/* Finally, call DLAMC5 to compute EMAX and RMAX. */ - - dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax); - } - - *beta = lbeta; - *t = lt; - *rnd = lrnd; - *eps = leps; - *emin = lemin; - *rmin = lrmin; - *emax = lemax; - *rmax = lrmax; - - return 0; - - -/* End of DLAMC2 */ - -} /* dlamc2_ */ -#endif - - -doublereal dlamc3_(doublereal *a, doublereal *b) -{ -/* -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMC3 is intended to force A and B to be stored prior to doing - - the addition of A and B , for use in situations where optimizers - - might hold one of these in a register. - - Arguments - ========= - - A, B (input) DOUBLE PRECISION - The values A and B. - - ===================================================================== -*/ -/* >>Start of File<< - System generated locals */ - doublereal ret_val; - - - - ret_val = *a + *b; - - return ret_val; - -/* End of DLAMC3 */ - -} /* dlamc3_ */ - - -#ifndef HAVE_CONFIG -/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base) -{ -/* -- LAPACK auxiliary routine (version 2.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMC4 is a service routine for DLAMC2. - - Arguments - ========= - - EMIN (output) EMIN - The minimum exponent before (gradual) underflow, computed by - - setting A = START and dividing by BASE until the previous A - can not be recovered. - - START (input) DOUBLE PRECISION - The starting point for determining EMIN. - - BASE (input) INTEGER - The base of the machine. - - ===================================================================== -*/ - /* System generated locals */ - integer i__1; - doublereal d__1; - /* Local variables */ - static doublereal zero, a; - static integer i; - static doublereal rbase, b1, b2, c1, c2, d1, d2; - extern doublereal dlamc3_(doublereal *, doublereal *); - static doublereal one; - - - - a = *start; - one = 1.; - rbase = one / *base; - zero = 0.; - *emin = 1; - d__1 = a * rbase; - b1 = dlamc3_(&d__1, &zero); - c1 = a; - c2 = a; - d1 = a; - d2 = a; -/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. - $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */ -L10: - if (c1 == a && c2 == a && d1 == a && d2 == a) { - --(*emin); - a = b1; - d__1 = a / *base; - b1 = dlamc3_(&d__1, &zero); - d__1 = b1 * *base; - c1 = dlamc3_(&d__1, &zero); - d1 = zero; - i__1 = *base; - for (i = 1; i <= *base; ++i) { - d1 += b1; -/* L20: */ - } - d__1 = a * rbase; - b2 = dlamc3_(&d__1, &zero); - d__1 = b2 / rbase; - c2 = dlamc3_(&d__1, &zero); - d2 = zero; - i__1 = *base; - for (i = 1; i <= *base; ++i) { - d2 += b2; -/* L30: */ - } - goto L10; - } -/* + END WHILE */ - - return 0; - -/* End of DLAMC4 */ - -} /* dlamc4_ */ - - -/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin, - logical *ieee, integer *emax, doublereal *rmax) -{ -/* -- LAPACK auxiliary routine (version 3.0) -- - Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., - Courant Institute, Argonne National Lab, and Rice University - October 31, 1992 - - - Purpose - ======= - - DLAMC5 attempts to compute RMAX, the largest machine floating-point - number, without overflow. It assumes that EMAX + abs(EMIN) sum - approximately to a power of 2. It will fail on machines where this - assumption does not hold, for example, the Cyber 205 (EMIN = -28625, - - EMAX = 28718). It will also fail if the value supplied for EMIN is - too large (i.e. too close to zero), probably with overflow. - - Arguments - ========= - - BETA (input) INTEGER - The base of floating-point arithmetic. - - P (input) INTEGER - The number of base BETA digits in the mantissa of a - floating-point value. - - EMIN (input) INTEGER - The minimum exponent before (gradual) underflow. - - IEEE (input) LOGICAL - A logical flag specifying whether or not the arithmetic - system is thought to comply with the IEEE standard. - - EMAX (output) INTEGER - The largest exponent before overflow - - RMAX (output) DOUBLE PRECISION - The largest machine floating-point number. - - ===================================================================== - - - - First compute LEXP and UEXP, two powers of 2 that bound - abs(EMIN). We then assume that EMAX + abs(EMIN) will sum - approximately to the bound that is closest to abs(EMIN). - (EMAX is the exponent of the required number RMAX). */ - /* Table of constant values */ - static doublereal c_b5 = 0.; - - /* System generated locals */ - integer i__1; - doublereal d__1; - /* Local variables */ - static integer lexp; - static doublereal oldy; - static integer uexp, i; - static doublereal y, z; - static integer nbits; - extern doublereal dlamc3_(doublereal *, doublereal *); - static doublereal recbas; - static integer exbits, expsum, try__; - - - - lexp = 1; - exbits = 1; -L10: - try__ = lexp << 1; - if (try__ <= -(*emin)) { - lexp = try__; - ++exbits; - goto L10; - } - if (lexp == -(*emin)) { - uexp = lexp; - } else { - uexp = try__; - ++exbits; - } - -/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater - than or equal to EMIN. EXBITS is the number of bits needed to - store the exponent. */ - - if (uexp + *emin > -lexp - *emin) { - expsum = lexp << 1; - } else { - expsum = uexp << 1; - } - -/* EXPSUM is the exponent range, approximately equal to - EMAX - EMIN + 1 . */ - - *emax = expsum + *emin - 1; - nbits = exbits + 1 + *p; - -/* NBITS is the total number of bits needed to store a - floating-point number. */ - - if (nbits % 2 == 1 && *beta == 2) { - -/* Either there are an odd number of bits used to store a - floating-point number, which is unlikely, or some bits are - - not used in the representation of numbers, which is possible -, - (e.g. Cray machines) or the mantissa has an implicit bit, - (e.g. IEEE machines, Dec Vax machines), which is perhaps the - - most likely. We have to assume the last alternative. - If this is true, then we need to reduce EMAX by one because - - there must be some way of representing zero in an implicit-b -it - system. On machines like Cray, we are reducing EMAX by one - - unnecessarily. */ - - --(*emax); - } - - if (*ieee) { - -/* Assume we are on an IEEE machine which reserves one exponent - - for infinity and NaN. */ - - --(*emax); - } - -/* Now create RMAX, the largest machine number, which should - be equal to (1.0 - BETA**(-P)) * BETA**EMAX . - - First compute 1.0 - BETA**(-P), being careful that the - result is less than 1.0 . */ - - recbas = 1. / *beta; - z = *beta - 1.; - y = 0.; - i__1 = *p; - for (i = 1; i <= *p; ++i) { - z *= recbas; - if (y < 1.) { - oldy = y; - } - y = dlamc3_(&y, &z); -/* L20: */ - } - if (y >= 1.) { - y = oldy; - } - -/* Now multiply by BETA**EMAX to get RMAX. */ - - i__1 = *emax; - for (i = 1; i <= *emax; ++i) { - d__1 = y * *beta; - y = dlamc3_(&d__1, &c_b5); -/* L30: */ - } - - *rmax = y; - return 0; - -/* End of DLAMC5 */ - -} /* dlamc5_ */ -#endif |