summaryrefslogtreecommitdiff
path: root/numpy/linalg/dlamch.c
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/dlamch.c')
-rw-r--r--numpy/linalg/dlamch.c951
1 files changed, 951 insertions, 0 deletions
diff --git a/numpy/linalg/dlamch.c b/numpy/linalg/dlamch.c
new file mode 100644
index 000000000..dda3f36e2
--- /dev/null
+++ b/numpy/linalg/dlamch.c
@@ -0,0 +1,951 @@
+#include <stdio.h>
+#include "f2c.h"
+
+/* If config.h is available, we only need dlamc3 */
+#ifndef HAVE_CONFIG
+doublereal dlamch_(char *cmach)
+{
+/* -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMCH determines double precision machine parameters.
+
+ Arguments
+ =========
+
+ CMACH (input) CHARACTER*1
+ Specifies the value to be returned by DLAMCH:
+ = 'E' or 'e', DLAMCH := eps
+ = 'S' or 's , DLAMCH := sfmin
+ = 'B' or 'b', DLAMCH := base
+ = 'P' or 'p', DLAMCH := eps*base
+ = 'N' or 'n', DLAMCH := t
+ = 'R' or 'r', DLAMCH := rnd
+ = 'M' or 'm', DLAMCH := emin
+ = 'U' or 'u', DLAMCH := rmin
+ = 'L' or 'l', DLAMCH := emax
+ = 'O' or 'o', DLAMCH := rmax
+
+ where
+
+ eps = relative machine precision
+ sfmin = safe minimum, such that 1/sfmin does not overflow
+ base = base of the machine
+ prec = eps*base
+ t = number of (base) digits in the mantissa
+ rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
+ emin = minimum exponent before (gradual) underflow
+ rmin = underflow threshold - base**(emin-1)
+ emax = largest exponent before overflow
+ rmax = overflow threshold - (base**emax)*(1-eps)
+
+ =====================================================================
+*/
+/* >>Start of File<<
+ Initialized data */
+ static logical first = TRUE_;
+ /* System generated locals */
+ integer i__1;
+ doublereal ret_val;
+ /* Builtin functions */
+ double pow_di(doublereal *, integer *);
+ /* Local variables */
+ static doublereal base;
+ static integer beta;
+ static doublereal emin, prec, emax;
+ static integer imin, imax;
+ static logical lrnd;
+ static doublereal rmin, rmax, t, rmach;
+ extern logical lsame_(char *, char *);
+ static doublereal small, sfmin;
+ extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *);
+ static integer it;
+ static doublereal rnd, eps;
+
+
+
+ if (first) {
+ first = FALSE_;
+ dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
+ base = (doublereal) beta;
+ t = (doublereal) it;
+ if (lrnd) {
+ rnd = 1.;
+ i__1 = 1 - it;
+ eps = pow_di(&base, &i__1) / 2;
+ } else {
+ rnd = 0.;
+ i__1 = 1 - it;
+ eps = pow_di(&base, &i__1);
+ }
+ prec = eps * base;
+ emin = (doublereal) imin;
+ emax = (doublereal) imax;
+ sfmin = rmin;
+ small = 1. / rmax;
+ if (small >= sfmin) {
+
+/* Use SMALL plus a bit, to avoid the possibility of rou
+nding
+ causing overflow when computing 1/sfmin. */
+
+ sfmin = small * (eps + 1.);
+ }
+ }
+
+ if (lsame_(cmach, "E")) {
+ rmach = eps;
+ } else if (lsame_(cmach, "S")) {
+ rmach = sfmin;
+ } else if (lsame_(cmach, "B")) {
+ rmach = base;
+ } else if (lsame_(cmach, "P")) {
+ rmach = prec;
+ } else if (lsame_(cmach, "N")) {
+ rmach = t;
+ } else if (lsame_(cmach, "R")) {
+ rmach = rnd;
+ } else if (lsame_(cmach, "M")) {
+ rmach = emin;
+ } else if (lsame_(cmach, "U")) {
+ rmach = rmin;
+ } else if (lsame_(cmach, "L")) {
+ rmach = emax;
+ } else if (lsame_(cmach, "O")) {
+ rmach = rmax;
+ }
+
+ ret_val = rmach;
+ return ret_val;
+
+/* End of DLAMCH */
+
+} /* dlamch_ */
+
+
+/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical
+ *ieee1)
+{
+/* -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMC1 determines the machine parameters given by BETA, T, RND, and
+ IEEE1.
+
+ Arguments
+ =========
+
+ BETA (output) INTEGER
+ The base of the machine.
+
+ T (output) INTEGER
+ The number of ( BETA ) digits in the mantissa.
+
+ RND (output) LOGICAL
+ Specifies whether proper rounding ( RND = .TRUE. ) or
+ chopping ( RND = .FALSE. ) occurs in addition. This may not
+
+ be a reliable guide to the way in which the machine performs
+
+ its arithmetic.
+
+ IEEE1 (output) LOGICAL
+ Specifies whether rounding appears to be done in the IEEE
+ 'round to nearest' style.
+
+ Further Details
+ ===============
+
+ The routine is based on the routine ENVRON by Malcolm and
+ incorporates suggestions by Gentleman and Marovich. See
+
+ Malcolm M. A. (1972) Algorithms to reveal properties of
+ floating-point arithmetic. Comms. of the ACM, 15, 949-951.
+
+ Gentleman W. M. and Marovich S. B. (1974) More on algorithms
+ that reveal properties of floating point arithmetic units.
+ Comms. of the ACM, 17, 276-277.
+
+ =====================================================================
+*/
+ /* Initialized data */
+ static logical first = TRUE_;
+ /* System generated locals */
+ doublereal d__1, d__2;
+ /* Local variables */
+ static logical lrnd;
+ static doublereal a, b, c, f;
+ static integer lbeta;
+ static doublereal savec;
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ static logical lieee1;
+ static doublereal t1, t2;
+ static integer lt;
+ static doublereal one, qtr;
+
+
+
+ if (first) {
+ first = FALSE_;
+ one = 1.;
+
+/* LBETA, LIEEE1, LT and LRND are the local values of BE
+TA,
+ IEEE1, T and RND.
+
+ Throughout this routine we use the function DLAMC3 to ens
+ure
+ that relevant values are stored and not held in registers,
+ or
+ are not affected by optimizers.
+
+ Compute a = 2.0**m with the smallest positive integer m s
+uch
+ that
+
+ fl( a + 1.0 ) = a. */
+
+ a = 1.;
+ c = 1.;
+
+/* + WHILE( C.EQ.ONE )LOOP */
+L10:
+ if (c == one) {
+ a *= 2;
+ c = dlamc3_(&a, &one);
+ d__1 = -a;
+ c = dlamc3_(&c, &d__1);
+ goto L10;
+ }
+/* + END WHILE
+
+ Now compute b = 2.0**m with the smallest positive integer
+m
+ such that
+
+ fl( a + b ) .gt. a. */
+
+ b = 1.;
+ c = dlamc3_(&a, &b);
+
+/* + WHILE( C.EQ.A )LOOP */
+L20:
+ if (c == a) {
+ b *= 2;
+ c = dlamc3_(&a, &b);
+ goto L20;
+ }
+/* + END WHILE
+
+ Now compute the base. a and c are neighbouring floating po
+int
+ numbers in the interval ( beta**t, beta**( t + 1 ) ) and
+ so
+ their difference is beta. Adding 0.25 to c is to ensure that
+ it
+ is truncated to beta and not ( beta - 1 ). */
+
+ qtr = one / 4;
+ savec = c;
+ d__1 = -a;
+ c = dlamc3_(&c, &d__1);
+ lbeta = (integer) (c + qtr);
+
+/* Now determine whether rounding or chopping occurs, by addin
+g a
+ bit less than beta/2 and a bit more than beta/2 to
+ a. */
+
+ b = (doublereal) lbeta;
+ d__1 = b / 2;
+ d__2 = -b / 100;
+ f = dlamc3_(&d__1, &d__2);
+ c = dlamc3_(&f, &a);
+ if (c == a) {
+ lrnd = TRUE_;
+ } else {
+ lrnd = FALSE_;
+ }
+ d__1 = b / 2;
+ d__2 = b / 100;
+ f = dlamc3_(&d__1, &d__2);
+ c = dlamc3_(&f, &a);
+ if (lrnd && c == a) {
+ lrnd = FALSE_;
+ }
+
+/* Try and decide whether rounding is done in the IEEE 'round
+ to
+ nearest' style. B/2 is half a unit in the last place of the
+two
+ numbers A and SAVEC. Furthermore, A is even, i.e. has last
+bit
+ zero, and SAVEC is odd. Thus adding B/2 to A should not cha
+nge
+ A, but adding B/2 to SAVEC should change SAVEC. */
+
+ d__1 = b / 2;
+ t1 = dlamc3_(&d__1, &a);
+ d__1 = b / 2;
+ t2 = dlamc3_(&d__1, &savec);
+ lieee1 = t1 == a && t2 > savec && lrnd;
+
+/* Now find the mantissa, t. It should be the integer part
+ of
+ log to the base beta of a, however it is safer to determine
+ t
+ by powering. So we find t as the smallest positive integer
+for
+ which
+
+ fl( beta**t + 1.0 ) = 1.0. */
+
+ lt = 0;
+ a = 1.;
+ c = 1.;
+
+/* + WHILE( C.EQ.ONE )LOOP */
+L30:
+ if (c == one) {
+ ++lt;
+ a *= lbeta;
+ c = dlamc3_(&a, &one);
+ d__1 = -a;
+ c = dlamc3_(&c, &d__1);
+ goto L30;
+ }
+/* + END WHILE */
+
+ }
+
+ *beta = lbeta;
+ *t = lt;
+ *rnd = lrnd;
+ *ieee1 = lieee1;
+ return 0;
+
+/* End of DLAMC1 */
+
+} /* dlamc1_ */
+
+
+/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd,
+ doublereal *eps, integer *emin, doublereal *rmin, integer *emax,
+ doublereal *rmax)
+{
+/* -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMC2 determines the machine parameters specified in its argument
+ list.
+
+ Arguments
+ =========
+
+ BETA (output) INTEGER
+ The base of the machine.
+
+ T (output) INTEGER
+ The number of ( BETA ) digits in the mantissa.
+
+ RND (output) LOGICAL
+ Specifies whether proper rounding ( RND = .TRUE. ) or
+ chopping ( RND = .FALSE. ) occurs in addition. This may not
+
+ be a reliable guide to the way in which the machine performs
+
+ its arithmetic.
+
+ EPS (output) DOUBLE PRECISION
+ The smallest positive number such that
+
+ fl( 1.0 - EPS ) .LT. 1.0,
+
+ where fl denotes the computed value.
+
+ EMIN (output) INTEGER
+ The minimum exponent before (gradual) underflow occurs.
+
+ RMIN (output) DOUBLE PRECISION
+ The smallest normalized number for the machine, given by
+ BASE**( EMIN - 1 ), where BASE is the floating point value
+
+ of BETA.
+
+ EMAX (output) INTEGER
+ The maximum exponent before overflow occurs.
+
+ RMAX (output) DOUBLE PRECISION
+ The largest positive number for the machine, given by
+ BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
+
+ value of BETA.
+
+ Further Details
+ ===============
+
+ The computation of EPS is based on a routine PARANOIA by
+ W. Kahan of the University of California at Berkeley.
+
+ =====================================================================
+*/
+
+ /* Initialized data */
+ static logical first = TRUE_;
+ static logical iwarn = FALSE_;
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2, d__3, d__4, d__5;
+ /* Builtin functions */
+ double pow_di(doublereal *, integer *);
+ /* Local variables */
+ static logical ieee;
+ static doublereal half;
+ static logical lrnd;
+ static doublereal leps, zero, a, b, c;
+ static integer i, lbeta;
+ static doublereal rbase;
+ static integer lemin, lemax, gnmin;
+ static doublereal small;
+ static integer gpmin;
+ static doublereal third, lrmin, lrmax, sixth;
+ extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *,
+ logical *);
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ static logical lieee1;
+ extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *),
+ dlamc5_(integer *, integer *, integer *, logical *, integer *,
+ doublereal *);
+ static integer lt, ngnmin, ngpmin;
+ static doublereal one, two;
+
+
+
+ if (first) {
+ first = FALSE_;
+ zero = 0.;
+ one = 1.;
+ two = 2.;
+
+/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values
+ of
+ BETA, T, RND, EPS, EMIN and RMIN.
+
+ Throughout this routine we use the function DLAMC3 to ens
+ure
+ that relevant values are stored and not held in registers,
+ or
+ are not affected by optimizers.
+
+ DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
+*/
+
+ dlamc1_(&lbeta, &lt, &lrnd, &lieee1);
+
+/* Start to find EPS. */
+
+ b = (doublereal) lbeta;
+ i__1 = -lt;
+ a = pow_di(&b, &i__1);
+ leps = a;
+
+/* Try some tricks to see whether or not this is the correct E
+PS. */
+
+ b = two / 3;
+ half = one / 2;
+ d__1 = -half;
+ sixth = dlamc3_(&b, &d__1);
+ third = dlamc3_(&sixth, &sixth);
+ d__1 = -half;
+ b = dlamc3_(&third, &d__1);
+ b = dlamc3_(&b, &sixth);
+ b = abs(b);
+ if (b < leps) {
+ b = leps;
+ }
+
+ leps = 1.;
+
+/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
+L10:
+ if (leps > b && b > zero) {
+ leps = b;
+ d__1 = half * leps;
+/* Computing 5th power */
+ d__3 = two, d__4 = d__3, d__3 *= d__3;
+/* Computing 2nd power */
+ d__5 = leps;
+ d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5);
+ c = dlamc3_(&d__1, &d__2);
+ d__1 = -c;
+ c = dlamc3_(&half, &d__1);
+ b = dlamc3_(&half, &c);
+ d__1 = -b;
+ c = dlamc3_(&half, &d__1);
+ b = dlamc3_(&half, &c);
+ goto L10;
+ }
+/* + END WHILE */
+
+ if (a < leps) {
+ leps = a;
+ }
+
+/* Computation of EPS complete.
+
+ Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3
+)).
+ Keep dividing A by BETA until (gradual) underflow occurs. T
+his
+ is detected when we cannot recover the previous A. */
+
+ rbase = one / lbeta;
+ small = one;
+ for (i = 1; i <= 3; ++i) {
+ d__1 = small * rbase;
+ small = dlamc3_(&d__1, &zero);
+/* L20: */
+ }
+ a = dlamc3_(&one, &small);
+ dlamc4_(&ngpmin, &one, &lbeta);
+ d__1 = -one;
+ dlamc4_(&ngnmin, &d__1, &lbeta);
+ dlamc4_(&gpmin, &a, &lbeta);
+ d__1 = -a;
+ dlamc4_(&gnmin, &d__1, &lbeta);
+ ieee = FALSE_;
+
+ if (ngpmin == ngnmin && gpmin == gnmin) {
+ if (ngpmin == gpmin) {
+ lemin = ngpmin;
+/* ( Non twos-complement machines, no gradual under
+flow;
+ e.g., VAX ) */
+ } else if (gpmin - ngpmin == 3) {
+ lemin = ngpmin - 1 + lt;
+ ieee = TRUE_;
+/* ( Non twos-complement machines, with gradual und
+erflow;
+ e.g., IEEE standard followers ) */
+ } else {
+ lemin = min(ngpmin,gpmin);
+/* ( A guess; no known machine ) */
+ iwarn = TRUE_;
+ }
+
+ } else if (ngpmin == gpmin && ngnmin == gnmin) {
+ if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
+ lemin = max(ngpmin,ngnmin);
+/* ( Twos-complement machines, no gradual underflow
+;
+ e.g., CYBER 205 ) */
+ } else {
+ lemin = min(ngpmin,ngnmin);
+/* ( A guess; no known machine ) */
+ iwarn = TRUE_;
+ }
+
+ } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
+ {
+ if (gpmin - min(ngpmin,ngnmin) == 3) {
+ lemin = max(ngpmin,ngnmin) - 1 + lt;
+/* ( Twos-complement machines with gradual underflo
+w;
+ no known machine ) */
+ } else {
+ lemin = min(ngpmin,ngnmin);
+/* ( A guess; no known machine ) */
+ iwarn = TRUE_;
+ }
+
+ } else {
+/* Computing MIN */
+ i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin);
+ lemin = min(i__1,gnmin);
+/* ( A guess; no known machine ) */
+ iwarn = TRUE_;
+ }
+/* **
+ Comment out this if block if EMIN is ok */
+ if (iwarn) {
+ first = TRUE_;
+ printf("\n\n WARNING. The value EMIN may be incorrect:- ");
+ printf("EMIN = %8i\n",lemin);
+ printf("If, after inspection, the value EMIN looks acceptable");
+ printf("please comment out \n the IF block as marked within the");
+ printf("code of routine DLAMC2, \n otherwise supply EMIN");
+ printf("explicitly.\n");
+ }
+/* **
+
+ Assume IEEE arithmetic if we found denormalised numbers abo
+ve,
+ or if arithmetic seems to round in the IEEE style, determi
+ned
+ in routine DLAMC1. A true IEEE machine should have both thi
+ngs
+ true; however, faulty machines may have one or the other. */
+
+ ieee = ieee || lieee1;
+
+/* Compute RMIN by successive division by BETA. We could comp
+ute
+ RMIN as BASE**( EMIN - 1 ), but some machines underflow dur
+ing
+ this computation. */
+
+ lrmin = 1.;
+ i__1 = 1 - lemin;
+ for (i = 1; i <= 1-lemin; ++i) {
+ d__1 = lrmin * rbase;
+ lrmin = dlamc3_(&d__1, &zero);
+/* L30: */
+ }
+
+/* Finally, call DLAMC5 to compute EMAX and RMAX. */
+
+ dlamc5_(&lbeta, &lt, &lemin, &ieee, &lemax, &lrmax);
+ }
+
+ *beta = lbeta;
+ *t = lt;
+ *rnd = lrnd;
+ *eps = leps;
+ *emin = lemin;
+ *rmin = lrmin;
+ *emax = lemax;
+ *rmax = lrmax;
+
+ return 0;
+
+
+/* End of DLAMC2 */
+
+} /* dlamc2_ */
+#endif
+
+
+doublereal dlamc3_(doublereal *a, doublereal *b)
+{
+/* -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMC3 is intended to force A and B to be stored prior to doing
+
+ the addition of A and B , for use in situations where optimizers
+
+ might hold one of these in a register.
+
+ Arguments
+ =========
+
+ A, B (input) DOUBLE PRECISION
+ The values A and B.
+
+ =====================================================================
+*/
+/* >>Start of File<<
+ System generated locals */
+ doublereal ret_val;
+
+
+
+ ret_val = *a + *b;
+
+ return ret_val;
+
+/* End of DLAMC3 */
+
+} /* dlamc3_ */
+
+
+#ifndef HAVE_CONFIG
+/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base)
+{
+/* -- LAPACK auxiliary routine (version 2.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMC4 is a service routine for DLAMC2.
+
+ Arguments
+ =========
+
+ EMIN (output) EMIN
+ The minimum exponent before (gradual) underflow, computed by
+
+ setting A = START and dividing by BASE until the previous A
+ can not be recovered.
+
+ START (input) DOUBLE PRECISION
+ The starting point for determining EMIN.
+
+ BASE (input) INTEGER
+ The base of the machine.
+
+ =====================================================================
+*/
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+ /* Local variables */
+ static doublereal zero, a;
+ static integer i;
+ static doublereal rbase, b1, b2, c1, c2, d1, d2;
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ static doublereal one;
+
+
+
+ a = *start;
+ one = 1.;
+ rbase = one / *base;
+ zero = 0.;
+ *emin = 1;
+ d__1 = a * rbase;
+ b1 = dlamc3_(&d__1, &zero);
+ c1 = a;
+ c2 = a;
+ d1 = a;
+ d2 = a;
+/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
+ $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
+L10:
+ if (c1 == a && c2 == a && d1 == a && d2 == a) {
+ --(*emin);
+ a = b1;
+ d__1 = a / *base;
+ b1 = dlamc3_(&d__1, &zero);
+ d__1 = b1 * *base;
+ c1 = dlamc3_(&d__1, &zero);
+ d1 = zero;
+ i__1 = *base;
+ for (i = 1; i <= *base; ++i) {
+ d1 += b1;
+/* L20: */
+ }
+ d__1 = a * rbase;
+ b2 = dlamc3_(&d__1, &zero);
+ d__1 = b2 / rbase;
+ c2 = dlamc3_(&d__1, &zero);
+ d2 = zero;
+ i__1 = *base;
+ for (i = 1; i <= *base; ++i) {
+ d2 += b2;
+/* L30: */
+ }
+ goto L10;
+ }
+/* + END WHILE */
+
+ return 0;
+
+/* End of DLAMC4 */
+
+} /* dlamc4_ */
+
+
+/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin,
+ logical *ieee, integer *emax, doublereal *rmax)
+{
+/* -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAMC5 attempts to compute RMAX, the largest machine floating-point
+ number, without overflow. It assumes that EMAX + abs(EMIN) sum
+ approximately to a power of 2. It will fail on machines where this
+ assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
+
+ EMAX = 28718). It will also fail if the value supplied for EMIN is
+ too large (i.e. too close to zero), probably with overflow.
+
+ Arguments
+ =========
+
+ BETA (input) INTEGER
+ The base of floating-point arithmetic.
+
+ P (input) INTEGER
+ The number of base BETA digits in the mantissa of a
+ floating-point value.
+
+ EMIN (input) INTEGER
+ The minimum exponent before (gradual) underflow.
+
+ IEEE (input) LOGICAL
+ A logical flag specifying whether or not the arithmetic
+ system is thought to comply with the IEEE standard.
+
+ EMAX (output) INTEGER
+ The largest exponent before overflow
+
+ RMAX (output) DOUBLE PRECISION
+ The largest machine floating-point number.
+
+ =====================================================================
+
+
+
+ First compute LEXP and UEXP, two powers of 2 that bound
+ abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
+ approximately to the bound that is closest to abs(EMIN).
+ (EMAX is the exponent of the required number RMAX). */
+ /* Table of constant values */
+ static doublereal c_b5 = 0.;
+
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+ /* Local variables */
+ static integer lexp;
+ static doublereal oldy;
+ static integer uexp, i;
+ static doublereal y, z;
+ static integer nbits;
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ static doublereal recbas;
+ static integer exbits, expsum, try__;
+
+
+
+ lexp = 1;
+ exbits = 1;
+L10:
+ try__ = lexp << 1;
+ if (try__ <= -(*emin)) {
+ lexp = try__;
+ ++exbits;
+ goto L10;
+ }
+ if (lexp == -(*emin)) {
+ uexp = lexp;
+ } else {
+ uexp = try__;
+ ++exbits;
+ }
+
+/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
+ than or equal to EMIN. EXBITS is the number of bits needed to
+ store the exponent. */
+
+ if (uexp + *emin > -lexp - *emin) {
+ expsum = lexp << 1;
+ } else {
+ expsum = uexp << 1;
+ }
+
+/* EXPSUM is the exponent range, approximately equal to
+ EMAX - EMIN + 1 . */
+
+ *emax = expsum + *emin - 1;
+ nbits = exbits + 1 + *p;
+
+/* NBITS is the total number of bits needed to store a
+ floating-point number. */
+
+ if (nbits % 2 == 1 && *beta == 2) {
+
+/* Either there are an odd number of bits used to store a
+ floating-point number, which is unlikely, or some bits are
+
+ not used in the representation of numbers, which is possible
+,
+ (e.g. Cray machines) or the mantissa has an implicit bit,
+ (e.g. IEEE machines, Dec Vax machines), which is perhaps the
+
+ most likely. We have to assume the last alternative.
+ If this is true, then we need to reduce EMAX by one because
+
+ there must be some way of representing zero in an implicit-b
+it
+ system. On machines like Cray, we are reducing EMAX by one
+
+ unnecessarily. */
+
+ --(*emax);
+ }
+
+ if (*ieee) {
+
+/* Assume we are on an IEEE machine which reserves one exponent
+
+ for infinity and NaN. */
+
+ --(*emax);
+ }
+
+/* Now create RMAX, the largest machine number, which should
+ be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
+
+ First compute 1.0 - BETA**(-P), being careful that the
+ result is less than 1.0 . */
+
+ recbas = 1. / *beta;
+ z = *beta - 1.;
+ y = 0.;
+ i__1 = *p;
+ for (i = 1; i <= *p; ++i) {
+ z *= recbas;
+ if (y < 1.) {
+ oldy = y;
+ }
+ y = dlamc3_(&y, &z);
+/* L20: */
+ }
+ if (y >= 1.) {
+ y = oldy;
+ }
+
+/* Now multiply by BETA**EMAX to get RMAX. */
+
+ i__1 = *emax;
+ for (i = 1; i <= *emax; ++i) {
+ d__1 = y * *beta;
+ y = dlamc3_(&d__1, &c_b5);
+/* L30: */
+ }
+
+ *rmax = y;
+ return 0;
+
+/* End of DLAMC5 */
+
+} /* dlamc5_ */
+#endif