summaryrefslogtreecommitdiff
path: root/numpy/linalg/dlapack_lite.c
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/dlapack_lite.c')
-rw-r--r--numpy/linalg/dlapack_lite.c36005
1 files changed, 36005 insertions, 0 deletions
diff --git a/numpy/linalg/dlapack_lite.c b/numpy/linalg/dlapack_lite.c
new file mode 100644
index 000000000..e6634491f
--- /dev/null
+++ b/numpy/linalg/dlapack_lite.c
@@ -0,0 +1,36005 @@
+/*
+NOTE: This is generated code. Look in Misc/lapack_lite for information on
+ remaking this file.
+*/
+#include "f2c.h"
+
+#ifdef HAVE_CONFIG
+#include "config.h"
+#else
+extern doublereal dlamch_(char *);
+#define EPSILON dlamch_("Epsilon")
+#define SAFEMINIMUM dlamch_("Safe minimum")
+#define PRECISION dlamch_("Precision")
+#define BASE dlamch_("Base")
+#endif
+
+extern doublereal dlapy2_(doublereal *x, doublereal *y);
+
+
+
+/* Table of constant values */
+
+static integer c__9 = 9;
+static integer c__0 = 0;
+static doublereal c_b15 = 1.;
+static integer c__1 = 1;
+static doublereal c_b29 = 0.;
+static doublereal c_b94 = -.125;
+static doublereal c_b151 = -1.;
+static integer c_n1 = -1;
+static integer c__3 = 3;
+static integer c__2 = 2;
+static integer c__8 = 8;
+static integer c__4 = 4;
+static integer c__65 = 65;
+static integer c__6 = 6;
+static integer c__15 = 15;
+static logical c_false = FALSE_;
+static integer c__10 = 10;
+static integer c__11 = 11;
+static doublereal c_b2804 = 2.;
+static logical c_true = TRUE_;
+static real c_b3825 = 0.f;
+static real c_b3826 = 1.f;
+
+/* Subroutine */ int dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
+ d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
+ integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
+ iwork, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double d_sign(doublereal *, doublereal *), log(doublereal);
+
+ /* Local variables */
+ static integer i__, j, k;
+ static doublereal p, r__;
+ static integer z__, ic, ii, kk;
+ static doublereal cs;
+ static integer is, iu;
+ static doublereal sn;
+ static integer nm1;
+ static doublereal eps;
+ static integer ivt, difl, difr, ierr, perm, mlvl, sqre;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
+ , doublereal *, integer *), dswap_(integer *, doublereal *,
+ integer *, doublereal *, integer *);
+ static integer poles, iuplo, nsize, start;
+ extern /* Subroutine */ int dlasd0_(integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ integer *, integer *, doublereal *, integer *);
+
+ extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *), dlascl_(char *, integer *, integer *, doublereal *,
+ doublereal *, integer *, integer *, doublereal *, integer *,
+ integer *), dlasdq_(char *, integer *, integer *, integer
+ *, integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlaset_(char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static integer givcol;
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ static integer icompq;
+ static doublereal orgnrm;
+ static integer givnum, givptr, qstart, smlsiz, wstart, smlszp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ December 1, 1999
+
+
+ Purpose
+ =======
+
+ DBDSDC computes the singular value decomposition (SVD) of a real
+ N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
+ using a divide and conquer method, where S is a diagonal matrix
+ with non-negative diagonal elements (the singular values of B), and
+ U and VT are orthogonal matrices of left and right singular vectors,
+ respectively. DBDSDC can be used to compute all singular values,
+ and optionally, singular vectors or singular vectors in compact form.
+
+ This code makes very mild assumptions about floating point
+ arithmetic. It will work on machines with a guard digit in
+ add/subtract, or on those binary machines without guard digits
+ which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
+ It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none. See DLASD3 for details.
+
+ The code currently call DLASDQ if singular values only are desired.
+ However, it can be slightly modified to compute singular values
+ using the divide and conquer method.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': B is upper bidiagonal.
+ = 'L': B is lower bidiagonal.
+
+ COMPQ (input) CHARACTER*1
+ Specifies whether singular vectors are to be computed
+ as follows:
+ = 'N': Compute singular values only;
+ = 'P': Compute singular values and compute singular
+ vectors in compact form;
+ = 'I': Compute singular values and singular vectors.
+
+ N (input) INTEGER
+ The order of the matrix B. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the n diagonal elements of the bidiagonal matrix B.
+ On exit, if INFO=0, the singular values of B.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the elements of E contain the offdiagonal
+ elements of the bidiagonal matrix whose SVD is desired.
+ On exit, E has been destroyed.
+
+ U (output) DOUBLE PRECISION array, dimension (LDU,N)
+ If COMPQ = 'I', then:
+ On exit, if INFO = 0, U contains the left singular vectors
+ of the bidiagonal matrix.
+ For other values of COMPQ, U is not referenced.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= 1.
+ If singular vectors are desired, then LDU >= max( 1, N ).
+
+ VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
+ If COMPQ = 'I', then:
+ On exit, if INFO = 0, VT' contains the right singular
+ vectors of the bidiagonal matrix.
+ For other values of COMPQ, VT is not referenced.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT. LDVT >= 1.
+ If singular vectors are desired, then LDVT >= max( 1, N ).
+
+ Q (output) DOUBLE PRECISION array, dimension (LDQ)
+ If COMPQ = 'P', then:
+ On exit, if INFO = 0, Q and IQ contain the left
+ and right singular vectors in a compact form,
+ requiring O(N log N) space instead of 2*N**2.
+ In particular, Q contains all the DOUBLE PRECISION data in
+ LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
+ words of memory, where SMLSIZ is returned by ILAENV and
+ is equal to the maximum size of the subproblems at the
+ bottom of the computation tree (usually about 25).
+ For other values of COMPQ, Q is not referenced.
+
+ IQ (output) INTEGER array, dimension (LDIQ)
+ If COMPQ = 'P', then:
+ On exit, if INFO = 0, Q and IQ contain the left
+ and right singular vectors in a compact form,
+ requiring O(N log N) space instead of 2*N**2.
+ In particular, IQ contains all INTEGER data in
+ LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
+ words of memory, where SMLSIZ is returned by ILAENV and
+ is equal to the maximum size of the subproblems at the
+ bottom of the computation tree (usually about 25).
+ For other values of COMPQ, IQ is not referenced.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
+ If COMPQ = 'N' then LWORK >= (4 * N).
+ If COMPQ = 'P' then LWORK >= (6 * N).
+ If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
+
+ IWORK (workspace) INTEGER array, dimension (8*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: The algorithm failed to compute an singular value.
+ The update process of divide and conquer failed.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ --q;
+ --iq;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ iuplo = 0;
+ if (lsame_(uplo, "U")) {
+ iuplo = 1;
+ }
+ if (lsame_(uplo, "L")) {
+ iuplo = 2;
+ }
+ if (lsame_(compq, "N")) {
+ icompq = 0;
+ } else if (lsame_(compq, "P")) {
+ icompq = 1;
+ } else if (lsame_(compq, "I")) {
+ icompq = 2;
+ } else {
+ icompq = -1;
+ }
+ if (iuplo == 0) {
+ *info = -1;
+ } else if (icompq < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ldu < 1 || (icompq == 2 && *ldu < *n)) {
+ *info = -7;
+ } else if (*ldvt < 1 || (icompq == 2 && *ldvt < *n)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DBDSDC", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+ smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
+ ftnlen)6, (ftnlen)1);
+ if (*n == 1) {
+ if (icompq == 1) {
+ q[1] = d_sign(&c_b15, &d__[1]);
+ q[smlsiz * *n + 1] = 1.;
+ } else if (icompq == 2) {
+ u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
+ vt[vt_dim1 + 1] = 1.;
+ }
+ d__[1] = abs(d__[1]);
+ return 0;
+ }
+ nm1 = *n - 1;
+
+/*
+ If matrix lower bidiagonal, rotate to be upper bidiagonal
+ by applying Givens rotations on the left
+*/
+
+ wstart = 1;
+ qstart = 3;
+ if (icompq == 1) {
+ dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
+ i__1 = *n - 1;
+ dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
+ }
+ if (iuplo == 2) {
+ qstart = 5;
+ wstart = ((*n) << (1)) - 1;
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (icompq == 1) {
+ q[i__ + ((*n) << (1))] = cs;
+ q[i__ + *n * 3] = sn;
+ } else if (icompq == 2) {
+ work[i__] = cs;
+ work[nm1 + i__] = -sn;
+ }
+/* L10: */
+ }
+ }
+
+/* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
+
+ if (icompq == 0) {
+ dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
+ vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
+ wstart], info);
+ goto L40;
+ }
+
+/*
+ If N is smaller than the minimum divide size SMLSIZ, then solve
+ the problem with another solver.
+*/
+
+ if (*n <= smlsiz) {
+ if (icompq == 2) {
+ dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
+ dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
+ dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
+ , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
+ wstart], info);
+ } else if (icompq == 1) {
+ iu = 1;
+ ivt = iu + *n;
+ dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
+ dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
+ dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
+ qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
+ iu + (qstart - 1) * *n], n, &work[wstart], info);
+ }
+ goto L40;
+ }
+
+ if (icompq == 2) {
+ dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
+ dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
+ }
+
+/* Scale. */
+
+ orgnrm = dlanst_("M", n, &d__[1], &e[1]);
+ if (orgnrm == 0.) {
+ return 0;
+ }
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
+ ierr);
+
+ eps = EPSILON;
+
+ mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
+ log(2.)) + 1;
+ smlszp = smlsiz + 1;
+
+ if (icompq == 1) {
+ iu = 1;
+ ivt = smlsiz + 1;
+ difl = ivt + smlszp;
+ difr = difl + mlvl;
+ z__ = difr + ((mlvl) << (1));
+ ic = z__ + mlvl;
+ is = ic + 1;
+ poles = is + 1;
+ givnum = poles + ((mlvl) << (1));
+
+ k = 1;
+ givptr = 2;
+ perm = 3;
+ givcol = perm + mlvl;
+ }
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) < eps) {
+ d__[i__] = d_sign(&eps, &d__[i__]);
+ }
+/* L20: */
+ }
+
+ start = 1;
+ sqre = 0;
+
+ i__1 = nm1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
+
+/*
+ Subproblem found. First determine its size and then
+ apply divide and conquer on it.
+*/
+
+ if (i__ < nm1) {
+
+/* A subproblem with E(I) small for I < NM1. */
+
+ nsize = i__ - start + 1;
+ } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
+
+/* A subproblem with E(NM1) not too small but I = NM1. */
+
+ nsize = *n - start + 1;
+ } else {
+
+/*
+ A subproblem with E(NM1) small. This implies an
+ 1-by-1 subproblem at D(N). Solve this 1-by-1 problem
+ first.
+*/
+
+ nsize = i__ - start + 1;
+ if (icompq == 2) {
+ u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
+ vt[*n + *n * vt_dim1] = 1.;
+ } else if (icompq == 1) {
+ q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
+ q[*n + (smlsiz + qstart - 1) * *n] = 1.;
+ }
+ d__[*n] = (d__1 = d__[*n], abs(d__1));
+ }
+ if (icompq == 2) {
+ dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
+ start * u_dim1], ldu, &vt[start + start * vt_dim1],
+ ldvt, &smlsiz, &iwork[1], &work[wstart], info);
+ } else {
+ dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
+ start], &q[start + (iu + qstart - 2) * *n], n, &q[
+ start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
+ &q[start + (difl + qstart - 2) * *n], &q[start + (
+ difr + qstart - 2) * *n], &q[start + (z__ + qstart -
+ 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
+ start + givptr * *n], &iq[start + givcol * *n], n, &
+ iq[start + perm * *n], &q[start + (givnum + qstart -
+ 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
+ start + (is + qstart - 2) * *n], &work[wstart], &
+ iwork[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+ }
+ start = i__ + 1;
+ }
+/* L30: */
+ }
+
+/* Unscale */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
+L40:
+
+/* Use Selection Sort to minimize swaps of singular vectors */
+
+ i__1 = *n;
+ for (ii = 2; ii <= i__1; ++ii) {
+ i__ = ii - 1;
+ kk = i__;
+ p = d__[i__];
+ i__2 = *n;
+ for (j = ii; j <= i__2; ++j) {
+ if (d__[j] > p) {
+ kk = j;
+ p = d__[j];
+ }
+/* L50: */
+ }
+ if (kk != i__) {
+ d__[kk] = d__[i__];
+ d__[i__] = p;
+ if (icompq == 1) {
+ iq[i__] = kk;
+ } else if (icompq == 2) {
+ dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
+ c__1);
+ dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
+ }
+ } else if (icompq == 1) {
+ iq[i__] = i__;
+ }
+/* L60: */
+ }
+
+/* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
+
+ if (icompq == 1) {
+ if (iuplo == 1) {
+ iq[*n] = 1;
+ } else {
+ iq[*n] = 0;
+ }
+ }
+
+/*
+ If B is lower bidiagonal, update U by those Givens rotations
+ which rotated B to be upper bidiagonal
+*/
+
+ if ((iuplo == 2 && icompq == 2)) {
+ dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
+ }
+
+ return 0;
+
+/* End of DBDSDC */
+
+} /* dbdsdc_ */
+
+/* Subroutine */ int dbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
+ nru, integer *ncc, doublereal *d__, doublereal *e, doublereal *vt,
+ integer *ldvt, doublereal *u, integer *ldu, doublereal *c__, integer *
+ ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
+ i__2;
+ doublereal d__1, d__2, d__3, d__4;
+
+ /* Builtin functions */
+ double pow_dd(doublereal *, doublereal *), sqrt(doublereal), d_sign(
+ doublereal *, doublereal *);
+
+ /* Local variables */
+ static doublereal f, g, h__;
+ static integer i__, j, m;
+ static doublereal r__, cs;
+ static integer ll;
+ static doublereal sn, mu;
+ static integer nm1, nm12, nm13, lll;
+ static doublereal eps, sll, tol, abse;
+ static integer idir;
+ static doublereal abss;
+ static integer oldm;
+ static doublereal cosl;
+ static integer isub, iter;
+ static doublereal unfl, sinl, cosr, smin, smax, sinr;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *), dlas2_(
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ static doublereal oldcs;
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *);
+ static integer oldll;
+ static doublereal shift, sigmn, oldsn;
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer maxit;
+ static doublereal sminl, sigmx;
+ static logical lower;
+ extern /* Subroutine */ int dlasq1_(integer *, doublereal *, doublereal *,
+ doublereal *, integer *), dlasv2_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *);
+
+ extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *), xerbla_(char *,
+ integer *);
+ static doublereal sminoa, thresh;
+ static logical rotate;
+ static doublereal sminlo, tolmul;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DBDSQR computes the singular value decomposition (SVD) of a real
+ N-by-N (upper or lower) bidiagonal matrix B: B = Q * S * P' (P'
+ denotes the transpose of P), where S is a diagonal matrix with
+ non-negative diagonal elements (the singular values of B), and Q
+ and P are orthogonal matrices.
+
+ The routine computes S, and optionally computes U * Q, P' * VT,
+ or Q' * C, for given real input matrices U, VT, and C.
+
+ See "Computing Small Singular Values of Bidiagonal Matrices With
+ Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
+ LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
+ no. 5, pp. 873-912, Sept 1990) and
+ "Accurate singular values and differential qd algorithms," by
+ B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
+ Department, University of California at Berkeley, July 1992
+ for a detailed description of the algorithm.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': B is upper bidiagonal;
+ = 'L': B is lower bidiagonal.
+
+ N (input) INTEGER
+ The order of the matrix B. N >= 0.
+
+ NCVT (input) INTEGER
+ The number of columns of the matrix VT. NCVT >= 0.
+
+ NRU (input) INTEGER
+ The number of rows of the matrix U. NRU >= 0.
+
+ NCC (input) INTEGER
+ The number of columns of the matrix C. NCC >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the n diagonal elements of the bidiagonal matrix B.
+ On exit, if INFO=0, the singular values of B in decreasing
+ order.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the elements of E contain the
+ offdiagonal elements of the bidiagonal matrix whose SVD
+ is desired. On normal exit (INFO = 0), E is destroyed.
+ If the algorithm does not converge (INFO > 0), D and E
+ will contain the diagonal and superdiagonal elements of a
+ bidiagonal matrix orthogonally equivalent to the one given
+ as input. E(N) is used for workspace.
+
+ VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
+ On entry, an N-by-NCVT matrix VT.
+ On exit, VT is overwritten by P' * VT.
+ VT is not referenced if NCVT = 0.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT.
+ LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
+
+ U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
+ On entry, an NRU-by-N matrix U.
+ On exit, U is overwritten by U * Q.
+ U is not referenced if NRU = 0.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= max(1,NRU).
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
+ On entry, an N-by-NCC matrix C.
+ On exit, C is overwritten by Q' * C.
+ C is not referenced if NCC = 0.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C.
+ LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: If INFO = -i, the i-th argument had an illegal value
+ > 0: the algorithm did not converge; D and E contain the
+ elements of a bidiagonal matrix which is orthogonally
+ similar to the input matrix B; if INFO = i, i
+ elements of E have not converged to zero.
+
+ Internal Parameters
+ ===================
+
+ TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
+ TOLMUL controls the convergence criterion of the QR loop.
+ If it is positive, TOLMUL*EPS is the desired relative
+ precision in the computed singular values.
+ If it is negative, abs(TOLMUL*EPS*sigma_max) is the
+ desired absolute accuracy in the computed singular
+ values (corresponds to relative accuracy
+ abs(TOLMUL*EPS) in the largest singular value.
+ abs(TOLMUL) should be between 1 and 1/EPS, and preferably
+ between 10 (for fast convergence) and .1/EPS
+ (for there to be some accuracy in the results).
+ Default is to lose at either one eighth or 2 of the
+ available decimal digits in each computed singular value
+ (whichever is smaller).
+
+ MAXITR INTEGER, default = 6
+ MAXITR controls the maximum number of passes of the
+ algorithm through its inner loop. The algorithms stops
+ (and so fails to converge) if the number of passes
+ through the inner loop exceeds MAXITR*N**2.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ lower = lsame_(uplo, "L");
+ if ((! lsame_(uplo, "U") && ! lower)) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ncvt < 0) {
+ *info = -3;
+ } else if (*nru < 0) {
+ *info = -4;
+ } else if (*ncc < 0) {
+ *info = -5;
+ } else if ((*ncvt == 0 && *ldvt < 1) || (*ncvt > 0 && *ldvt < max(1,*n)))
+ {
+ *info = -9;
+ } else if (*ldu < max(1,*nru)) {
+ *info = -11;
+ } else if ((*ncc == 0 && *ldc < 1) || (*ncc > 0 && *ldc < max(1,*n))) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DBDSQR", &i__1);
+ return 0;
+ }
+ if (*n == 0) {
+ return 0;
+ }
+ if (*n == 1) {
+ goto L160;
+ }
+
+/* ROTATE is true if any singular vectors desired, false otherwise */
+
+ rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
+
+/* If no singular vectors desired, use qd algorithm */
+
+ if (! rotate) {
+ dlasq1_(n, &d__[1], &e[1], &work[1], info);
+ return 0;
+ }
+
+ nm1 = *n - 1;
+ nm12 = nm1 + nm1;
+ nm13 = nm12 + nm1;
+ idir = 0;
+
+/* Get machine constants */
+
+ eps = EPSILON;
+ unfl = SAFEMINIMUM;
+
+/*
+ If matrix lower bidiagonal, rotate to be upper bidiagonal
+ by applying Givens rotations on the left
+*/
+
+ if (lower) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ work[i__] = cs;
+ work[nm1 + i__] = sn;
+/* L10: */
+ }
+
+/* Update singular vectors if desired */
+
+ if (*nru > 0) {
+ dlasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
+ ldu);
+ }
+ if (*ncc > 0) {
+ dlasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
+ ldc);
+ }
+ }
+
+/*
+ Compute singular values to relative accuracy TOL
+ (By setting TOL to be negative, algorithm will compute
+ singular values to absolute accuracy ABS(TOL)*norm(input matrix))
+
+ Computing MAX
+ Computing MIN
+*/
+ d__3 = 100., d__4 = pow_dd(&eps, &c_b94);
+ d__1 = 10., d__2 = min(d__3,d__4);
+ tolmul = max(d__1,d__2);
+ tol = tolmul * eps;
+
+/* Compute approximate maximum, minimum singular values */
+
+ smax = 0.;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
+ smax = max(d__2,d__3);
+/* L20: */
+ }
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
+ smax = max(d__2,d__3);
+/* L30: */
+ }
+ sminl = 0.;
+ if (tol >= 0.) {
+
+/* Relative accuracy desired */
+
+ sminoa = abs(d__[1]);
+ if (sminoa == 0.) {
+ goto L50;
+ }
+ mu = sminoa;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
+ , abs(d__1))));
+ sminoa = min(sminoa,mu);
+ if (sminoa == 0.) {
+ goto L50;
+ }
+/* L40: */
+ }
+L50:
+ sminoa /= sqrt((doublereal) (*n));
+/* Computing MAX */
+ d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
+ thresh = max(d__1,d__2);
+ } else {
+
+/*
+ Absolute accuracy desired
+
+ Computing MAX
+*/
+ d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
+ thresh = max(d__1,d__2);
+ }
+
+/*
+ Prepare for main iteration loop for the singular values
+ (MAXIT is the maximum number of passes through the inner
+ loop permitted before nonconvergence signalled.)
+*/
+
+ maxit = *n * 6 * *n;
+ iter = 0;
+ oldll = -1;
+ oldm = -1;
+
+/* M points to last element of unconverged part of matrix */
+
+ m = *n;
+
+/* Begin main iteration loop */
+
+L60:
+
+/* Check for convergence or exceeding iteration count */
+
+ if (m <= 1) {
+ goto L160;
+ }
+ if (iter > maxit) {
+ goto L200;
+ }
+
+/* Find diagonal block of matrix to work on */
+
+ if ((tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh)) {
+ d__[m] = 0.;
+ }
+ smax = (d__1 = d__[m], abs(d__1));
+ smin = smax;
+ i__1 = m - 1;
+ for (lll = 1; lll <= i__1; ++lll) {
+ ll = m - lll;
+ abss = (d__1 = d__[ll], abs(d__1));
+ abse = (d__1 = e[ll], abs(d__1));
+ if ((tol < 0. && abss <= thresh)) {
+ d__[ll] = 0.;
+ }
+ if (abse <= thresh) {
+ goto L80;
+ }
+ smin = min(smin,abss);
+/* Computing MAX */
+ d__1 = max(smax,abss);
+ smax = max(d__1,abse);
+/* L70: */
+ }
+ ll = 0;
+ goto L90;
+L80:
+ e[ll] = 0.;
+
+/* Matrix splits since E(LL) = 0 */
+
+ if (ll == m - 1) {
+
+/* Convergence of bottom singular value, return to top of loop */
+
+ --m;
+ goto L60;
+ }
+L90:
+ ++ll;
+
+/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
+
+ if (ll == m - 1) {
+
+/* 2 by 2 block, handle separately */
+
+ dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
+ &sinl, &cosl);
+ d__[m - 1] = sigmx;
+ e[m - 1] = 0.;
+ d__[m] = sigmn;
+
+/* Compute singular vectors, if desired */
+
+ if (*ncvt > 0) {
+ drot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
+ cosr, &sinr);
+ }
+ if (*nru > 0) {
+ drot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
+ c__1, &cosl, &sinl);
+ }
+ if (*ncc > 0) {
+ drot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
+ cosl, &sinl);
+ }
+ m += -2;
+ goto L60;
+ }
+
+/*
+ If working on new submatrix, choose shift direction
+ (from larger end diagonal element towards smaller)
+*/
+
+ if (ll > oldm || m < oldll) {
+ if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
+
+/* Chase bulge from top (big end) to bottom (small end) */
+
+ idir = 1;
+ } else {
+
+/* Chase bulge from bottom (big end) to top (small end) */
+
+ idir = 2;
+ }
+ }
+
+/* Apply convergence tests */
+
+ if (idir == 1) {
+
+/*
+ Run convergence test in forward direction
+ First apply standard test to bottom of matrix
+*/
+
+ if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
+ d__1)) || (tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
+ ) {
+ e[m - 1] = 0.;
+ goto L60;
+ }
+
+ if (tol >= 0.) {
+
+/*
+ If relative accuracy desired,
+ apply convergence criterion forward
+*/
+
+ mu = (d__1 = d__[ll], abs(d__1));
+ sminl = mu;
+ i__1 = m - 1;
+ for (lll = ll; lll <= i__1; ++lll) {
+ if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
+ e[lll] = 0.;
+ goto L60;
+ }
+ sminlo = sminl;
+ mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
+ lll], abs(d__1))));
+ sminl = min(sminl,mu);
+/* L100: */
+ }
+ }
+
+ } else {
+
+/*
+ Run convergence test in backward direction
+ First apply standard test to top of matrix
+*/
+
+ if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
+ ) || (tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh)) {
+ e[ll] = 0.;
+ goto L60;
+ }
+
+ if (tol >= 0.) {
+
+/*
+ If relative accuracy desired,
+ apply convergence criterion backward
+*/
+
+ mu = (d__1 = d__[m], abs(d__1));
+ sminl = mu;
+ i__1 = ll;
+ for (lll = m - 1; lll >= i__1; --lll) {
+ if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
+ e[lll] = 0.;
+ goto L60;
+ }
+ sminlo = sminl;
+ mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
+ , abs(d__1))));
+ sminl = min(sminl,mu);
+/* L110: */
+ }
+ }
+ }
+ oldll = ll;
+ oldm = m;
+
+/*
+ Compute shift. First, test if shifting would ruin relative
+ accuracy, and if so set the shift to zero.
+
+ Computing MAX
+*/
+ d__1 = eps, d__2 = tol * .01;
+ if ((tol >= 0. && *n * tol * (sminl / smax) <= max(d__1,d__2))) {
+
+/* Use a zero shift to avoid loss of relative accuracy */
+
+ shift = 0.;
+ } else {
+
+/* Compute the shift from 2-by-2 block at end of matrix */
+
+ if (idir == 1) {
+ sll = (d__1 = d__[ll], abs(d__1));
+ dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
+ } else {
+ sll = (d__1 = d__[m], abs(d__1));
+ dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
+ }
+
+/* Test if shift negligible, and if so set to zero */
+
+ if (sll > 0.) {
+/* Computing 2nd power */
+ d__1 = shift / sll;
+ if (d__1 * d__1 < eps) {
+ shift = 0.;
+ }
+ }
+ }
+
+/* Increment iteration count */
+
+ iter = iter + m - ll;
+
+/* If SHIFT = 0, do simplified QR iteration */
+
+ if (shift == 0.) {
+ if (idir == 1) {
+
+/*
+ Chase bulge from top to bottom
+ Save cosines and sines for later singular vector updates
+*/
+
+ cs = 1.;
+ oldcs = 1.;
+ i__1 = m - 1;
+ for (i__ = ll; i__ <= i__1; ++i__) {
+ d__1 = d__[i__] * cs;
+ dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
+ if (i__ > ll) {
+ e[i__ - 1] = oldsn * r__;
+ }
+ d__1 = oldcs * r__;
+ d__2 = d__[i__ + 1] * sn;
+ dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
+ work[i__ - ll + 1] = cs;
+ work[i__ - ll + 1 + nm1] = sn;
+ work[i__ - ll + 1 + nm12] = oldcs;
+ work[i__ - ll + 1 + nm13] = oldsn;
+/* L120: */
+ }
+ h__ = d__[m] * cs;
+ d__[m] = h__ * oldcs;
+ e[m - 1] = h__ * oldsn;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
+ ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ + 1], &u[ll * u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ + 1], &c__[ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
+ e[m - 1] = 0.;
+ }
+
+ } else {
+
+/*
+ Chase bulge from bottom to top
+ Save cosines and sines for later singular vector updates
+*/
+
+ cs = 1.;
+ oldcs = 1.;
+ i__1 = ll + 1;
+ for (i__ = m; i__ >= i__1; --i__) {
+ d__1 = d__[i__] * cs;
+ dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
+ if (i__ < m) {
+ e[i__] = oldsn * r__;
+ }
+ d__1 = oldcs * r__;
+ d__2 = d__[i__ - 1] * sn;
+ dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
+ work[i__ - ll] = cs;
+ work[i__ - ll + nm1] = -sn;
+ work[i__ - ll + nm12] = oldcs;
+ work[i__ - ll + nm13] = -oldsn;
+/* L130: */
+ }
+ h__ = d__[ll] * cs;
+ d__[ll] = h__ * oldcs;
+ e[ll] = h__ * oldsn;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
+ nm13 + 1], &vt[ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
+ u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
+ ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[ll], abs(d__1)) <= thresh) {
+ e[ll] = 0.;
+ }
+ }
+ } else {
+
+/* Use nonzero shift */
+
+ if (idir == 1) {
+
+/*
+ Chase bulge from top to bottom
+ Save cosines and sines for later singular vector updates
+*/
+
+ f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b15, &d__[
+ ll]) + shift / d__[ll]);
+ g = e[ll];
+ i__1 = m - 1;
+ for (i__ = ll; i__ <= i__1; ++i__) {
+ dlartg_(&f, &g, &cosr, &sinr, &r__);
+ if (i__ > ll) {
+ e[i__ - 1] = r__;
+ }
+ f = cosr * d__[i__] + sinr * e[i__];
+ e[i__] = cosr * e[i__] - sinr * d__[i__];
+ g = sinr * d__[i__ + 1];
+ d__[i__ + 1] = cosr * d__[i__ + 1];
+ dlartg_(&f, &g, &cosl, &sinl, &r__);
+ d__[i__] = r__;
+ f = cosl * e[i__] + sinl * d__[i__ + 1];
+ d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
+ if (i__ < m - 1) {
+ g = sinl * e[i__ + 1];
+ e[i__ + 1] = cosl * e[i__ + 1];
+ }
+ work[i__ - ll + 1] = cosr;
+ work[i__ - ll + 1 + nm1] = sinr;
+ work[i__ - ll + 1 + nm12] = cosl;
+ work[i__ - ll + 1 + nm13] = sinl;
+/* L140: */
+ }
+ e[m - 1] = f;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
+ ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ + 1], &u[ll * u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ + 1], &c__[ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
+ e[m - 1] = 0.;
+ }
+
+ } else {
+
+/*
+ Chase bulge from bottom to top
+ Save cosines and sines for later singular vector updates
+*/
+
+ f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b15, &d__[m]
+ ) + shift / d__[m]);
+ g = e[m - 1];
+ i__1 = ll + 1;
+ for (i__ = m; i__ >= i__1; --i__) {
+ dlartg_(&f, &g, &cosr, &sinr, &r__);
+ if (i__ < m) {
+ e[i__] = r__;
+ }
+ f = cosr * d__[i__] + sinr * e[i__ - 1];
+ e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
+ g = sinr * d__[i__ - 1];
+ d__[i__ - 1] = cosr * d__[i__ - 1];
+ dlartg_(&f, &g, &cosl, &sinl, &r__);
+ d__[i__] = r__;
+ f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
+ d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
+ if (i__ > ll + 1) {
+ g = sinl * e[i__ - 2];
+ e[i__ - 2] = cosl * e[i__ - 2];
+ }
+ work[i__ - ll] = cosr;
+ work[i__ - ll + nm1] = -sinr;
+ work[i__ - ll + nm12] = cosl;
+ work[i__ - ll + nm13] = -sinl;
+/* L150: */
+ }
+ e[ll] = f;
+
+/* Test convergence */
+
+ if ((d__1 = e[ll], abs(d__1)) <= thresh) {
+ e[ll] = 0.;
+ }
+
+/* Update singular vectors if desired */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
+ nm13 + 1], &vt[ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
+ u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
+ ll + c_dim1], ldc);
+ }
+ }
+ }
+
+/* QR iteration finished, go back and check convergence */
+
+ goto L60;
+
+/* All singular values converged, so make them positive */
+
+L160:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (d__[i__] < 0.) {
+ d__[i__] = -d__[i__];
+
+/* Change sign of singular vectors, if desired */
+
+ if (*ncvt > 0) {
+ dscal_(ncvt, &c_b151, &vt[i__ + vt_dim1], ldvt);
+ }
+ }
+/* L170: */
+ }
+
+/*
+ Sort the singular values into decreasing order (insertion sort on
+ singular values, but only one transposition per singular vector)
+*/
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Scan for smallest D(I) */
+
+ isub = 1;
+ smin = d__[1];
+ i__2 = *n + 1 - i__;
+ for (j = 2; j <= i__2; ++j) {
+ if (d__[j] <= smin) {
+ isub = j;
+ smin = d__[j];
+ }
+/* L180: */
+ }
+ if (isub != *n + 1 - i__) {
+
+/* Swap singular values and vectors */
+
+ d__[isub] = d__[*n + 1 - i__];
+ d__[*n + 1 - i__] = smin;
+ if (*ncvt > 0) {
+ dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
+ vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
+ u_dim1 + 1], &c__1);
+ }
+ if (*ncc > 0) {
+ dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
+ c_dim1], ldc);
+ }
+ }
+/* L190: */
+ }
+ goto L220;
+
+/* Maximum number of iterations exceeded, failure to converge */
+
+L200:
+ *info = 0;
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (e[i__] != 0.) {
+ ++(*info);
+ }
+/* L210: */
+ }
+L220:
+ return 0;
+
+/* End of DBDSQR */
+
+} /* dbdsqr_ */
+
+/* Subroutine */ int dgebak_(char *job, char *side, integer *n, integer *ilo,
+ integer *ihi, doublereal *scale, integer *m, doublereal *v, integer *
+ ldv, integer *info)
+{
+ /* System generated locals */
+ integer v_dim1, v_offset, i__1;
+
+ /* Local variables */
+ static integer i__, k;
+ static doublereal s;
+ static integer ii;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static logical leftv;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical rightv;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DGEBAK forms the right or left eigenvectors of a real general matrix
+ by backward transformation on the computed eigenvectors of the
+ balanced matrix output by DGEBAL.
+
+ Arguments
+ =========
+
+ JOB (input) CHARACTER*1
+ Specifies the type of backward transformation required:
+ = 'N', do nothing, return immediately;
+ = 'P', do backward transformation for permutation only;
+ = 'S', do backward transformation for scaling only;
+ = 'B', do backward transformations for both permutation and
+ scaling.
+ JOB must be the same as the argument JOB supplied to DGEBAL.
+
+ SIDE (input) CHARACTER*1
+ = 'R': V contains right eigenvectors;
+ = 'L': V contains left eigenvectors.
+
+ N (input) INTEGER
+ The number of rows of the matrix V. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ The integers ILO and IHI determined by DGEBAL.
+ 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+
+ SCALE (input) DOUBLE PRECISION array, dimension (N)
+ Details of the permutation and scaling factors, as returned
+ by DGEBAL.
+
+ M (input) INTEGER
+ The number of columns of the matrix V. M >= 0.
+
+ V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
+ On entry, the matrix of right or left eigenvectors to be
+ transformed, as returned by DHSEIN or DTREVC.
+ On exit, V is overwritten by the transformed eigenvectors.
+
+ LDV (input) INTEGER
+ The leading dimension of the array V. LDV >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ =====================================================================
+
+
+ Decode and Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ --scale;
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1 * 1;
+ v -= v_offset;
+
+ /* Function Body */
+ rightv = lsame_(side, "R");
+ leftv = lsame_(side, "L");
+
+ *info = 0;
+ if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
+ && ! lsame_(job, "B"))) {
+ *info = -1;
+ } else if ((! rightv && ! leftv)) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ilo < 1 || *ilo > max(1,*n)) {
+ *info = -4;
+ } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
+ *info = -5;
+ } else if (*m < 0) {
+ *info = -7;
+ } else if (*ldv < max(1,*n)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEBAK", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+ if (*m == 0) {
+ return 0;
+ }
+ if (lsame_(job, "N")) {
+ return 0;
+ }
+
+ if (*ilo == *ihi) {
+ goto L30;
+ }
+
+/* Backward balance */
+
+ if (lsame_(job, "S") || lsame_(job, "B")) {
+
+ if (rightv) {
+ i__1 = *ihi;
+ for (i__ = *ilo; i__ <= i__1; ++i__) {
+ s = scale[i__];
+ dscal_(m, &s, &v[i__ + v_dim1], ldv);
+/* L10: */
+ }
+ }
+
+ if (leftv) {
+ i__1 = *ihi;
+ for (i__ = *ilo; i__ <= i__1; ++i__) {
+ s = 1. / scale[i__];
+ dscal_(m, &s, &v[i__ + v_dim1], ldv);
+/* L20: */
+ }
+ }
+
+ }
+
+/*
+ Backward permutation
+
+ For I = ILO-1 step -1 until 1,
+ IHI+1 step 1 until N do --
+*/
+
+L30:
+ if (lsame_(job, "P") || lsame_(job, "B")) {
+ if (rightv) {
+ i__1 = *n;
+ for (ii = 1; ii <= i__1; ++ii) {
+ i__ = ii;
+ if ((i__ >= *ilo && i__ <= *ihi)) {
+ goto L40;
+ }
+ if (i__ < *ilo) {
+ i__ = *ilo - ii;
+ }
+ k = (integer) scale[i__];
+ if (k == i__) {
+ goto L40;
+ }
+ dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
+L40:
+ ;
+ }
+ }
+
+ if (leftv) {
+ i__1 = *n;
+ for (ii = 1; ii <= i__1; ++ii) {
+ i__ = ii;
+ if ((i__ >= *ilo && i__ <= *ihi)) {
+ goto L50;
+ }
+ if (i__ < *ilo) {
+ i__ = *ilo - ii;
+ }
+ k = (integer) scale[i__];
+ if (k == i__) {
+ goto L50;
+ }
+ dswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
+L50:
+ ;
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DGEBAK */
+
+} /* dgebak_ */
+
+/* Subroutine */ int dgebal_(char *job, integer *n, doublereal *a, integer *
+ lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static doublereal c__, f, g;
+ static integer i__, j, k, l, m;
+ static doublereal r__, s, ca, ra;
+ static integer ica, ira, iexc;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static doublereal sfmin1, sfmin2, sfmax1, sfmax2;
+
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical noconv;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DGEBAL balances a general real matrix A. This involves, first,
+ permuting A by a similarity transformation to isolate eigenvalues
+ in the first 1 to ILO-1 and last IHI+1 to N elements on the
+ diagonal; and second, applying a diagonal similarity transformation
+ to rows and columns ILO to IHI to make the rows and columns as
+ close in norm as possible. Both steps are optional.
+
+ Balancing may reduce the 1-norm of the matrix, and improve the
+ accuracy of the computed eigenvalues and/or eigenvectors.
+
+ Arguments
+ =========
+
+ JOB (input) CHARACTER*1
+ Specifies the operations to be performed on A:
+ = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
+ for i = 1,...,N;
+ = 'P': permute only;
+ = 'S': scale only;
+ = 'B': both permute and scale.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the input matrix A.
+ On exit, A is overwritten by the balanced matrix.
+ If JOB = 'N', A is not referenced.
+ See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ ILO (output) INTEGER
+ IHI (output) INTEGER
+ ILO and IHI are set to integers such that on exit
+ A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
+ If JOB = 'N' or 'S', ILO = 1 and IHI = N.
+
+ SCALE (output) DOUBLE PRECISION array, dimension (N)
+ Details of the permutations and scaling factors applied to
+ A. If P(j) is the index of the row and column interchanged
+ with row and column j and D(j) is the scaling factor
+ applied to row and column j, then
+ SCALE(j) = P(j) for j = 1,...,ILO-1
+ = D(j) for j = ILO,...,IHI
+ = P(j) for j = IHI+1,...,N.
+ The order in which the interchanges are made is N to IHI+1,
+ then 1 to ILO-1.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The permutations consist of row and column interchanges which put
+ the matrix in the form
+
+ ( T1 X Y )
+ P A P = ( 0 B Z )
+ ( 0 0 T2 )
+
+ where T1 and T2 are upper triangular matrices whose eigenvalues lie
+ along the diagonal. The column indices ILO and IHI mark the starting
+ and ending columns of the submatrix B. Balancing consists of applying
+ a diagonal similarity transformation inv(D) * B * D to make the
+ 1-norms of each row of B and its corresponding column nearly equal.
+ The output matrix is
+
+ ( T1 X*D Y )
+ ( 0 inv(D)*B*D inv(D)*Z ).
+ ( 0 0 T2 )
+
+ Information about the permutations P and the diagonal matrix D is
+ returned in the vector SCALE.
+
+ This subroutine is based on the EISPACK routine BALANC.
+
+ Modified by Tzu-Yi Chen, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --scale;
+
+ /* Function Body */
+ *info = 0;
+ if ((((! lsame_(job, "N") && ! lsame_(job, "P")) && ! lsame_(job, "S"))
+ && ! lsame_(job, "B"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEBAL", &i__1);
+ return 0;
+ }
+
+ k = 1;
+ l = *n;
+
+ if (*n == 0) {
+ goto L210;
+ }
+
+ if (lsame_(job, "N")) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ scale[i__] = 1.;
+/* L10: */
+ }
+ goto L210;
+ }
+
+ if (lsame_(job, "S")) {
+ goto L120;
+ }
+
+/* Permutation to isolate eigenvalues if possible */
+
+ goto L50;
+
+/* Row and column exchange. */
+
+L20:
+ scale[m] = (doublereal) j;
+ if (j == m) {
+ goto L30;
+ }
+
+ dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
+ i__1 = *n - k + 1;
+ dswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
+
+L30:
+ switch (iexc) {
+ case 1: goto L40;
+ case 2: goto L80;
+ }
+
+/* Search for rows isolating an eigenvalue and push them down. */
+
+L40:
+ if (l == 1) {
+ goto L210;
+ }
+ --l;
+
+L50:
+ for (j = l; j >= 1; --j) {
+
+ i__1 = l;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (i__ == j) {
+ goto L60;
+ }
+ if (a[j + i__ * a_dim1] != 0.) {
+ goto L70;
+ }
+L60:
+ ;
+ }
+
+ m = l;
+ iexc = 1;
+ goto L20;
+L70:
+ ;
+ }
+
+ goto L90;
+
+/* Search for columns isolating an eigenvalue and push them left. */
+
+L80:
+ ++k;
+
+L90:
+ i__1 = l;
+ for (j = k; j <= i__1; ++j) {
+
+ i__2 = l;
+ for (i__ = k; i__ <= i__2; ++i__) {
+ if (i__ == j) {
+ goto L100;
+ }
+ if (a[i__ + j * a_dim1] != 0.) {
+ goto L110;
+ }
+L100:
+ ;
+ }
+
+ m = k;
+ iexc = 2;
+ goto L20;
+L110:
+ ;
+ }
+
+L120:
+ i__1 = l;
+ for (i__ = k; i__ <= i__1; ++i__) {
+ scale[i__] = 1.;
+/* L130: */
+ }
+
+ if (lsame_(job, "P")) {
+ goto L210;
+ }
+
+/*
+ Balance the submatrix in rows K to L.
+
+ Iterative loop for norm reduction
+*/
+
+ sfmin1 = SAFEMINIMUM / PRECISION;
+ sfmax1 = 1. / sfmin1;
+ sfmin2 = sfmin1 * 8.;
+ sfmax2 = 1. / sfmin2;
+L140:
+ noconv = FALSE_;
+
+ i__1 = l;
+ for (i__ = k; i__ <= i__1; ++i__) {
+ c__ = 0.;
+ r__ = 0.;
+
+ i__2 = l;
+ for (j = k; j <= i__2; ++j) {
+ if (j == i__) {
+ goto L150;
+ }
+ c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
+ r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+L150:
+ ;
+ }
+ ica = idamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
+ ca = (d__1 = a[ica + i__ * a_dim1], abs(d__1));
+ i__2 = *n - k + 1;
+ ira = idamax_(&i__2, &a[i__ + k * a_dim1], lda);
+ ra = (d__1 = a[i__ + (ira + k - 1) * a_dim1], abs(d__1));
+
+/* Guard against zero C or R due to underflow. */
+
+ if (c__ == 0. || r__ == 0.) {
+ goto L200;
+ }
+ g = r__ / 8.;
+ f = 1.;
+ s = c__ + r__;
+L160:
+/* Computing MAX */
+ d__1 = max(f,c__);
+/* Computing MIN */
+ d__2 = min(r__,g);
+ if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
+ goto L170;
+ }
+ f *= 8.;
+ c__ *= 8.;
+ ca *= 8.;
+ r__ /= 8.;
+ g /= 8.;
+ ra /= 8.;
+ goto L160;
+
+L170:
+ g = c__ / 8.;
+L180:
+/* Computing MIN */
+ d__1 = min(f,c__), d__1 = min(d__1,g);
+ if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
+ goto L190;
+ }
+ f /= 8.;
+ c__ /= 8.;
+ g /= 8.;
+ ca /= 8.;
+ r__ *= 8.;
+ ra *= 8.;
+ goto L180;
+
+/* Now balance. */
+
+L190:
+ if (c__ + r__ >= s * .95) {
+ goto L200;
+ }
+ if ((f < 1. && scale[i__] < 1.)) {
+ if (f * scale[i__] <= sfmin1) {
+ goto L200;
+ }
+ }
+ if ((f > 1. && scale[i__] > 1.)) {
+ if (scale[i__] >= sfmax1 / f) {
+ goto L200;
+ }
+ }
+ g = 1. / f;
+ scale[i__] *= f;
+ noconv = TRUE_;
+
+ i__2 = *n - k + 1;
+ dscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
+ dscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
+
+L200:
+ ;
+ }
+
+ if (noconv) {
+ goto L140;
+ }
+
+L210:
+ *ilo = k;
+ *ihi = l;
+
+ return 0;
+
+/* End of DGEBAL */
+
+} /* dgebal_ */
+
+/* Subroutine */ int dgebd2_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
+ taup, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DGEBD2 reduces a real general m by n matrix A to upper or lower
+ bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
+
+ If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows in the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns in the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the m by n general matrix to be reduced.
+ On exit,
+ if m >= n, the diagonal and the first superdiagonal are
+ overwritten with the upper bidiagonal matrix B; the
+ elements below the diagonal, with the array TAUQ, represent
+ the orthogonal matrix Q as a product of elementary
+ reflectors, and the elements above the first superdiagonal,
+ with the array TAUP, represent the orthogonal matrix P as
+ a product of elementary reflectors;
+ if m < n, the diagonal and the first subdiagonal are
+ overwritten with the lower bidiagonal matrix B; the
+ elements below the first subdiagonal, with the array TAUQ,
+ represent the orthogonal matrix Q as a product of
+ elementary reflectors, and the elements above the diagonal,
+ with the array TAUP, represent the orthogonal matrix P as
+ a product of elementary reflectors.
+ See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ D (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The diagonal elements of the bidiagonal matrix B:
+ D(i) = A(i,i).
+
+ E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
+ The off-diagonal elements of the bidiagonal matrix B:
+ if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
+ if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
+
+ TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix Q. See Further Details.
+
+ TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix P. See Further Details.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The matrices Q and P are represented as products of elementary
+ reflectors:
+
+ If m >= n,
+
+ Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
+
+ Each H(i) and G(i) has the form:
+
+ H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
+
+ where tauq and taup are real scalars, and v and u are real vectors;
+ v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
+ u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
+ tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ If m < n,
+
+ Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
+
+ Each H(i) and G(i) has the form:
+
+ H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
+
+ where tauq and taup are real scalars, and v and u are real vectors;
+ v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
+ u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
+ tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ The contents of A on exit are illustrated by the following examples:
+
+ m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
+
+ ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
+ ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
+ ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
+ ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
+ ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
+ ( v1 v2 v3 v4 v5 )
+
+ where d and e denote diagonal and off-diagonal elements of B, vi
+ denotes an element of the vector defining H(i), and ui an element of
+ the vector defining G(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --d__;
+ --e;
+ --tauq;
+ --taup;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info < 0) {
+ i__1 = -(*info);
+ xerbla_("DGEBD2", &i__1);
+ return 0;
+ }
+
+ if (*m >= *n) {
+
+/* Reduce to upper bidiagonal form */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
+
+ i__2 = *m - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ *
+ a_dim1], &c__1, &tauq[i__]);
+ d__[i__] = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+
+/* Apply H(i) to A(i:m,i+1:n) from the left */
+
+ i__2 = *m - i__ + 1;
+ i__3 = *n - i__;
+ dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tauq[
+ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
+ a[i__ + i__ * a_dim1] = d__[i__];
+
+ if (i__ < *n) {
+
+/*
+ Generate elementary reflector G(i) to annihilate
+ A(i,i+2:n)
+*/
+
+ i__2 = *n - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
+ i__3,*n) * a_dim1], lda, &taup[i__]);
+ e[i__] = a[i__ + (i__ + 1) * a_dim1];
+ a[i__ + (i__ + 1) * a_dim1] = 1.;
+
+/* Apply G(i) to A(i+1:m,i+1:n) from the right */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__;
+ dlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],
+ lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
+ lda, &work[1]);
+ a[i__ + (i__ + 1) * a_dim1] = e[i__];
+ } else {
+ taup[i__] = 0.;
+ }
+/* L10: */
+ }
+ } else {
+
+/* Reduce to lower bidiagonal form */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */
+
+ i__2 = *n - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) *
+ a_dim1], lda, &taup[i__]);
+ d__[i__] = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+
+/* Apply G(i) to A(i+1:m,i:n) from the right */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__ + 1;
+/* Computing MIN */
+ i__4 = i__ + 1;
+ dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &taup[
+ i__], &a[min(i__4,*m) + i__ * a_dim1], lda, &work[1]);
+ a[i__ + i__ * a_dim1] = d__[i__];
+
+ if (i__ < *m) {
+
+/*
+ Generate elementary reflector H(i) to annihilate
+ A(i+2:m,i)
+*/
+
+ i__2 = *m - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) +
+ i__ * a_dim1], &c__1, &tauq[i__]);
+ e[i__] = a[i__ + 1 + i__ * a_dim1];
+ a[i__ + 1 + i__ * a_dim1] = 1.;
+
+/* Apply H(i) to A(i+1:m,i+1:n) from the left */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__;
+ dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
+ c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
+ lda, &work[1]);
+ a[i__ + 1 + i__ * a_dim1] = e[i__];
+ } else {
+ tauq[i__] = 0.;
+ }
+/* L20: */
+ }
+ }
+ return 0;
+
+/* End of DGEBD2 */
+
+} /* dgebd2_ */
+
+/* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
+ taup, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__, j, nb, nx;
+ static doublereal ws;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer nbmin, iinfo, minmn;
+ extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *), dlabrd_(integer *, integer *, integer *
+ , doublereal *, integer *, doublereal *, doublereal *, doublereal
+ *, doublereal *, doublereal *, integer *, doublereal *, integer *)
+ , xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwrkx, ldwrky, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DGEBRD reduces a general real M-by-N matrix A to upper or lower
+ bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
+
+ If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows in the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns in the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N general matrix to be reduced.
+ On exit,
+ if m >= n, the diagonal and the first superdiagonal are
+ overwritten with the upper bidiagonal matrix B; the
+ elements below the diagonal, with the array TAUQ, represent
+ the orthogonal matrix Q as a product of elementary
+ reflectors, and the elements above the first superdiagonal,
+ with the array TAUP, represent the orthogonal matrix P as
+ a product of elementary reflectors;
+ if m < n, the diagonal and the first subdiagonal are
+ overwritten with the lower bidiagonal matrix B; the
+ elements below the first subdiagonal, with the array TAUQ,
+ represent the orthogonal matrix Q as a product of
+ elementary reflectors, and the elements above the diagonal,
+ with the array TAUP, represent the orthogonal matrix P as
+ a product of elementary reflectors.
+ See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ D (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The diagonal elements of the bidiagonal matrix B:
+ D(i) = A(i,i).
+
+ E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
+ The off-diagonal elements of the bidiagonal matrix B:
+ if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
+ if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
+
+ TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix Q. See Further Details.
+
+ TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix P. See Further Details.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The length of the array WORK. LWORK >= max(1,M,N).
+ For optimum performance LWORK >= (M+N)*NB, where NB
+ is the optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The matrices Q and P are represented as products of elementary
+ reflectors:
+
+ If m >= n,
+
+ Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
+
+ Each H(i) and G(i) has the form:
+
+ H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
+
+ where tauq and taup are real scalars, and v and u are real vectors;
+ v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
+ u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
+ tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ If m < n,
+
+ Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
+
+ Each H(i) and G(i) has the form:
+
+ H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
+
+ where tauq and taup are real scalars, and v and u are real vectors;
+ v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
+ u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
+ tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ The contents of A on exit are illustrated by the following examples:
+
+ m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
+
+ ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
+ ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
+ ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
+ ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
+ ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
+ ( v1 v2 v3 v4 v5 )
+
+ where d and e denote diagonal and off-diagonal elements of B, vi
+ denotes an element of the vector defining H(i), and ui an element of
+ the vector defining G(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --d__;
+ --e;
+ --tauq;
+ --taup;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+/* Computing MAX */
+ i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nb = max(i__1,i__2);
+ lwkopt = (*m + *n) * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = max(1,*m);
+ if ((*lwork < max(i__1,*n) && ! lquery)) {
+ *info = -10;
+ }
+ }
+ if (*info < 0) {
+ i__1 = -(*info);
+ xerbla_("DGEBRD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ minmn = min(*m,*n);
+ if (minmn == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ ws = (doublereal) max(*m,*n);
+ ldwrkx = *m;
+ ldwrky = *n;
+
+ if ((nb > 1 && nb < minmn)) {
+
+/*
+ Set the crossover point NX.
+
+ Computing MAX
+*/
+ i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+
+/* Determine when to switch from blocked to unblocked code. */
+
+ if (nx < minmn) {
+ ws = (doublereal) ((*m + *n) * nb);
+ if ((doublereal) (*lwork) < ws) {
+
+/*
+ Not enough work space for the optimal NB, consider using
+ a smaller block size.
+*/
+
+ nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ if (*lwork >= (*m + *n) * nbmin) {
+ nb = *lwork / (*m + *n);
+ } else {
+ nb = 1;
+ nx = minmn;
+ }
+ }
+ }
+ } else {
+ nx = minmn;
+ }
+
+ i__1 = minmn - nx;
+ i__2 = nb;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+
+/*
+ Reduce rows and columns i:i+nb-1 to bidiagonal form and return
+ the matrices X and Y which are needed to update the unreduced
+ part of the matrix
+*/
+
+ i__3 = *m - i__ + 1;
+ i__4 = *n - i__ + 1;
+ dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
+ i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
+ * nb + 1], &ldwrky);
+
+/*
+ Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
+ of the form A := A - V*Y' - X*U'
+*/
+
+ i__3 = *m - i__ - nb + 1;
+ i__4 = *n - i__ - nb + 1;
+ dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b151, &a[
+ i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
+ ldwrky, &c_b15, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
+ i__3 = *m - i__ - nb + 1;
+ i__4 = *n - i__ - nb + 1;
+ dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b151, &
+ work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
+ c_b15, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
+
+/* Copy diagonal and off-diagonal elements of B back into A */
+
+ if (*m >= *n) {
+ i__3 = i__ + nb - 1;
+ for (j = i__; j <= i__3; ++j) {
+ a[j + j * a_dim1] = d__[j];
+ a[j + (j + 1) * a_dim1] = e[j];
+/* L10: */
+ }
+ } else {
+ i__3 = i__ + nb - 1;
+ for (j = i__; j <= i__3; ++j) {
+ a[j + j * a_dim1] = d__[j];
+ a[j + 1 + j * a_dim1] = e[j];
+/* L20: */
+ }
+ }
+/* L30: */
+ }
+
+/* Use unblocked code to reduce the remainder of the matrix */
+
+ i__2 = *m - i__ + 1;
+ i__1 = *n - i__ + 1;
+ dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
+ tauq[i__], &taup[i__], &work[1], &iinfo);
+ work[1] = ws;
+ return 0;
+
+/* End of DGEBRD */
+
+} /* dgebrd_ */
+
+/* Subroutine */ int dgeev_(char *jobvl, char *jobvr, integer *n, doublereal *
+ a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl,
+ integer *ldvl, doublereal *vr, integer *ldvr, doublereal *work,
+ integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
+ i__2, i__3, i__4;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, k;
+ static doublereal r__, cs, sn;
+ static integer ihi;
+ static doublereal scl;
+ static integer ilo;
+ static doublereal dum[1], eps;
+ static integer ibal;
+ static char side[1];
+ static integer maxb;
+ static doublereal anrm;
+ static integer ierr, itau;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer iwrk, nout;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern doublereal dlapy2_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(
+ char *, char *, integer *, integer *, integer *, doublereal *,
+ integer *, doublereal *, integer *, integer *),
+ dgebal_(char *, integer *, doublereal *, integer *, integer *,
+ integer *, doublereal *, integer *);
+ static logical scalea;
+
+ static doublereal cscale;
+ extern doublereal dlange_(char *, integer *, integer *, doublereal *,
+ integer *, doublereal *);
+ extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ integer *), dlascl_(char *, integer *, integer *, doublereal *,
+ doublereal *, integer *, integer *, doublereal *, integer *,
+ integer *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), xerbla_(char *, integer *);
+ static logical select[1];
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static doublereal bignum;
+ extern /* Subroutine */ int dorghr_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ integer *), dhseqr_(char *, char *, integer *, integer *, integer
+ *, doublereal *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, integer *), dtrevc_(char *, char *, logical *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, doublereal *, integer *);
+ static integer minwrk, maxwrk;
+ static logical wantvl;
+ static doublereal smlnum;
+ static integer hswork;
+ static logical lquery, wantvr;
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ December 8, 1999
+
+
+ Purpose
+ =======
+
+ DGEEV computes for an N-by-N real nonsymmetric matrix A, the
+ eigenvalues and, optionally, the left and/or right eigenvectors.
+
+ The right eigenvector v(j) of A satisfies
+ A * v(j) = lambda(j) * v(j)
+ where lambda(j) is its eigenvalue.
+ The left eigenvector u(j) of A satisfies
+ u(j)**H * A = lambda(j) * u(j)**H
+ where u(j)**H denotes the conjugate transpose of u(j).
+
+ The computed eigenvectors are normalized to have Euclidean norm
+ equal to 1 and largest component real.
+
+ Arguments
+ =========
+
+ JOBVL (input) CHARACTER*1
+ = 'N': left eigenvectors of A are not computed;
+ = 'V': left eigenvectors of A are computed.
+
+ JOBVR (input) CHARACTER*1
+ = 'N': right eigenvectors of A are not computed;
+ = 'V': right eigenvectors of A are computed.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the N-by-N matrix A.
+ On exit, A has been overwritten.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ WR (output) DOUBLE PRECISION array, dimension (N)
+ WI (output) DOUBLE PRECISION array, dimension (N)
+ WR and WI contain the real and imaginary parts,
+ respectively, of the computed eigenvalues. Complex
+ conjugate pairs of eigenvalues appear consecutively
+ with the eigenvalue having the positive imaginary part
+ first.
+
+ VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
+ If JOBVL = 'V', the left eigenvectors u(j) are stored one
+ after another in the columns of VL, in the same order
+ as their eigenvalues.
+ If JOBVL = 'N', VL is not referenced.
+ If the j-th eigenvalue is real, then u(j) = VL(:,j),
+ the j-th column of VL.
+ If the j-th and (j+1)-st eigenvalues form a complex
+ conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
+ u(j+1) = VL(:,j) - i*VL(:,j+1).
+
+ LDVL (input) INTEGER
+ The leading dimension of the array VL. LDVL >= 1; if
+ JOBVL = 'V', LDVL >= N.
+
+ VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
+ If JOBVR = 'V', the right eigenvectors v(j) are stored one
+ after another in the columns of VR, in the same order
+ as their eigenvalues.
+ If JOBVR = 'N', VR is not referenced.
+ If the j-th eigenvalue is real, then v(j) = VR(:,j),
+ the j-th column of VR.
+ If the j-th and (j+1)-st eigenvalues form a complex
+ conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
+ v(j+1) = VR(:,j) - i*VR(:,j+1).
+
+ LDVR (input) INTEGER
+ The leading dimension of the array VR. LDVR >= 1; if
+ JOBVR = 'V', LDVR >= N.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,3*N), and
+ if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
+ performance, LWORK must generally be larger.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = i, the QR algorithm failed to compute all the
+ eigenvalues, and no eigenvectors have been computed;
+ elements i+1:N of WR and WI contain eigenvalues which
+ have converged.
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --wr;
+ --wi;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1 * 1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1 * 1;
+ vr -= vr_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1;
+ wantvl = lsame_(jobvl, "V");
+ wantvr = lsame_(jobvr, "V");
+ if ((! wantvl && ! lsame_(jobvl, "N"))) {
+ *info = -1;
+ } else if ((! wantvr && ! lsame_(jobvr, "N"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldvl < 1 || (wantvl && *ldvl < *n)) {
+ *info = -9;
+ } else if (*ldvr < 1 || (wantvr && *ldvr < *n)) {
+ *info = -11;
+ }
+
+/*
+ Compute workspace
+ (Note: Comments in the code beginning "Workspace:" describe the
+ minimal amount of workspace needed at that point in the code,
+ as well as the preferred amount for good performance.
+ NB refers to the optimal block size for the immediately
+ following subroutine, as returned by ILAENV.
+ HSWORK refers to the workspace preferred by DHSEQR, as
+ calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
+ the worst case.)
+*/
+
+ minwrk = 1;
+ if ((*info == 0 && (*lwork >= 1 || lquery))) {
+ maxwrk = ((*n) << (1)) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
+ n, &c__0, (ftnlen)6, (ftnlen)1);
+ if ((! wantvl && ! wantvr)) {
+/* Computing MAX */
+ i__1 = 1, i__2 = *n * 3;
+ minwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = ilaenv_(&c__8, "DHSEQR", "EN", n, &c__1, n, &c_n1, (ftnlen)
+ 6, (ftnlen)2);
+ maxb = max(i__1,2);
+/*
+ Computing MIN
+ Computing MAX
+*/
+ i__3 = 2, i__4 = ilaenv_(&c__4, "DHSEQR", "EN", n, &c__1, n, &
+ c_n1, (ftnlen)6, (ftnlen)2);
+ i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
+ k = min(i__1,i__2);
+/* Computing MAX */
+ i__1 = k * (k + 2), i__2 = (*n) << (1);
+ hswork = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *n +
+ hswork;
+ maxwrk = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = 1, i__2 = (*n) << (2);
+ minwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = ((*n) << (1)) + (*n - 1) * ilaenv_(&c__1,
+ "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = ilaenv_(&c__8, "DHSEQR", "SV", n, &c__1, n, &c_n1, (ftnlen)
+ 6, (ftnlen)2);
+ maxb = max(i__1,2);
+/*
+ Computing MIN
+ Computing MAX
+*/
+ i__3 = 2, i__4 = ilaenv_(&c__4, "DHSEQR", "SV", n, &c__1, n, &
+ c_n1, (ftnlen)6, (ftnlen)2);
+ i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
+ k = min(i__1,i__2);
+/* Computing MAX */
+ i__1 = k * (k + 2), i__2 = (*n) << (1);
+ hswork = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *n +
+ hswork;
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n) << (2);
+ maxwrk = max(i__1,i__2);
+ }
+ work[1] = (doublereal) maxwrk;
+ }
+ if ((*lwork < minwrk && ! lquery)) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEEV ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = PRECISION;
+ smlnum = SAFEMINIMUM;
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+ smlnum = sqrt(smlnum) / eps;
+ bignum = 1. / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
+ scalea = FALSE_;
+ if ((anrm > 0. && anrm < smlnum)) {
+ scalea = TRUE_;
+ cscale = smlnum;
+ } else if (anrm > bignum) {
+ scalea = TRUE_;
+ cscale = bignum;
+ }
+ if (scalea) {
+ dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/*
+ Balance the matrix
+ (Workspace: need N)
+*/
+
+ ibal = 1;
+ dgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
+
+/*
+ Reduce to upper Hessenberg form
+ (Workspace: need 3*N, prefer 2*N+N*NB)
+*/
+
+ itau = ibal + *n;
+ iwrk = itau + *n;
+ i__1 = *lwork - iwrk + 1;
+ dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
+ &ierr);
+
+ if (wantvl) {
+
+/*
+ Want left eigenvectors
+ Copy Householder vectors to VL
+*/
+
+ *(unsigned char *)side = 'L';
+ dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
+ ;
+
+/*
+ Generate orthogonal matrix in VL
+ (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
+*/
+
+ i__1 = *lwork - iwrk + 1;
+ dorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
+ &i__1, &ierr);
+
+/*
+ Perform QR iteration, accumulating Schur vectors in VL
+ (Workspace: need N+1, prefer N+HSWORK (see comments) )
+*/
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
+ vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
+
+ if (wantvr) {
+
+/*
+ Want left and right eigenvectors
+ Copy Schur vectors to VR
+*/
+
+ *(unsigned char *)side = 'B';
+ dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
+ }
+
+ } else if (wantvr) {
+
+/*
+ Want right eigenvectors
+ Copy Householder vectors to VR
+*/
+
+ *(unsigned char *)side = 'R';
+ dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
+ ;
+
+/*
+ Generate orthogonal matrix in VR
+ (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
+*/
+
+ i__1 = *lwork - iwrk + 1;
+ dorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
+ &i__1, &ierr);
+
+/*
+ Perform QR iteration, accumulating Schur vectors in VR
+ (Workspace: need N+1, prefer N+HSWORK (see comments) )
+*/
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
+ vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
+
+ } else {
+
+/*
+ Compute eigenvalues only
+ (Workspace: need N+1, prefer N+HSWORK (see comments) )
+*/
+
+ iwrk = itau;
+ i__1 = *lwork - iwrk + 1;
+ dhseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
+ vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
+ }
+
+/* If INFO > 0 from DHSEQR, then quit */
+
+ if (*info > 0) {
+ goto L50;
+ }
+
+ if (wantvl || wantvr) {
+
+/*
+ Compute left and/or right eigenvectors
+ (Workspace: need 4*N)
+*/
+
+ dtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
+ &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
+ }
+
+ if (wantvl) {
+
+/*
+ Undo balancing of left eigenvectors
+ (Workspace: need N)
+*/
+
+ dgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
+ &ierr);
+
+/* Normalize left eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (wi[i__] == 0.) {
+ scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
+ dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
+ } else if (wi[i__] > 0.) {
+ d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
+ d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
+ scl = 1. / dlapy2_(&d__1, &d__2);
+ dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
+ dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing 2nd power */
+ d__1 = vl[k + i__ * vl_dim1];
+/* Computing 2nd power */
+ d__2 = vl[k + (i__ + 1) * vl_dim1];
+ work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
+/* L10: */
+ }
+ k = idamax_(n, &work[iwrk], &c__1);
+ dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
+ &cs, &sn, &r__);
+ drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
+ vl_dim1 + 1], &c__1, &cs, &sn);
+ vl[k + (i__ + 1) * vl_dim1] = 0.;
+ }
+/* L20: */
+ }
+ }
+
+ if (wantvr) {
+
+/*
+ Undo balancing of right eigenvectors
+ (Workspace: need N)
+*/
+
+ dgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
+ &ierr);
+
+/* Normalize right eigenvectors and make largest component real */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (wi[i__] == 0.) {
+ scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
+ dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
+ } else if (wi[i__] > 0.) {
+ d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
+ d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
+ scl = 1. / dlapy2_(&d__1, &d__2);
+ dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
+ dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing 2nd power */
+ d__1 = vr[k + i__ * vr_dim1];
+/* Computing 2nd power */
+ d__2 = vr[k + (i__ + 1) * vr_dim1];
+ work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
+/* L30: */
+ }
+ k = idamax_(n, &work[iwrk], &c__1);
+ dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
+ &cs, &sn, &r__);
+ drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
+ vr_dim1 + 1], &c__1, &cs, &sn);
+ vr[k + (i__ + 1) * vr_dim1] = 0.;
+ }
+/* L40: */
+ }
+ }
+
+/* Undo scaling if necessary */
+
+L50:
+ if (scalea) {
+ i__1 = *n - *info;
+/* Computing MAX */
+ i__3 = *n - *info;
+ i__2 = max(i__3,1);
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
+ 1], &i__2, &ierr);
+ i__1 = *n - *info;
+/* Computing MAX */
+ i__3 = *n - *info;
+ i__2 = max(i__3,1);
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
+ 1], &i__2, &ierr);
+ if (*info > 0) {
+ i__1 = ilo - 1;
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
+ n, &ierr);
+ i__1 = ilo - 1;
+ dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
+ n, &ierr);
+ }
+ }
+
+ work[1] = (doublereal) maxwrk;
+ return 0;
+
+/* End of DGEEV */
+
+} /* dgeev_ */
+
+/* Subroutine */ int dgehd2_(integer *n, integer *ilo, integer *ihi,
+ doublereal *a, integer *lda, doublereal *tau, doublereal *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__;
+ static doublereal aii;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
+ an orthogonal similarity transformation: Q' * A * Q = H .
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ It is assumed that A is already upper triangular in rows
+ and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+ set by a previous call to DGEBAL; otherwise they should be
+ set to 1 and N respectively. See Further Details.
+ 1 <= ILO <= IHI <= max(1,N).
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the n by n general matrix to be reduced.
+ On exit, the upper triangle and the first subdiagonal of A
+ are overwritten with the upper Hessenberg matrix H, and the
+ elements below the first subdiagonal, with the array TAU,
+ represent the orthogonal matrix Q as a product of elementary
+ reflectors. See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ TAU (output) DOUBLE PRECISION array, dimension (N-1)
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of (ihi-ilo) elementary
+ reflectors
+
+ Q = H(ilo) H(ilo+1) . . . H(ihi-1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
+ exit in A(i+2:ihi,i), and tau in TAU(i).
+
+ The contents of A are illustrated by the following example, with
+ n = 7, ilo = 2 and ihi = 6:
+
+ on entry, on exit,
+
+ ( a a a a a a a ) ( a a h h h h a )
+ ( a a a a a a ) ( a h h h h a )
+ ( a a a a a a ) ( h h h h h h )
+ ( a a a a a a ) ( v2 h h h h h )
+ ( a a a a a a ) ( v2 v3 h h h h )
+ ( a a a a a a ) ( v2 v3 v4 h h h )
+ ( a ) ( a )
+
+ where a denotes an element of the original matrix A, h denotes a
+ modified element of the upper Hessenberg matrix H, and vi denotes an
+ element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*ilo < 1 || *ilo > max(1,*n)) {
+ *info = -2;
+ } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEHD2", &i__1);
+ return 0;
+ }
+
+ i__1 = *ihi - 1;
+ for (i__ = *ilo; i__ <= i__1; ++i__) {
+
+/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
+
+ i__2 = *ihi - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ *
+ a_dim1], &c__1, &tau[i__]);
+ aii = a[i__ + 1 + i__ * a_dim1];
+ a[i__ + 1 + i__ * a_dim1] = 1.;
+
+/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
+
+ i__2 = *ihi - i__;
+ dlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
+ i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
+
+/* Apply H(i) to A(i+1:ihi,i+1:n) from the left */
+
+ i__2 = *ihi - i__;
+ i__3 = *n - i__;
+ dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
+ i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
+
+ a[i__ + 1 + i__ * a_dim1] = aii;
+/* L10: */
+ }
+
+ return 0;
+
+/* End of DGEHD2 */
+
+} /* dgehd2_ */
+
+/* Subroutine */ int dgehrd_(integer *n, integer *ilo, integer *ihi,
+ doublereal *a, integer *lda, doublereal *tau, doublereal *work,
+ integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__;
+ static doublereal t[4160] /* was [65][64] */;
+ static integer ib;
+ static doublereal ei;
+ static integer nb, nh, nx, iws;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer nbmin, iinfo;
+ extern /* Subroutine */ int dgehd2_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dlarfb_(char *, char *, char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *), dlahrd_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DGEHRD reduces a real general matrix A to upper Hessenberg form H by
+ an orthogonal similarity transformation: Q' * A * Q = H .
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ It is assumed that A is already upper triangular in rows
+ and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+ set by a previous call to DGEBAL; otherwise they should be
+ set to 1 and N respectively. See Further Details.
+ 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the N-by-N general matrix to be reduced.
+ On exit, the upper triangle and the first subdiagonal of A
+ are overwritten with the upper Hessenberg matrix H, and the
+ elements below the first subdiagonal, with the array TAU,
+ represent the orthogonal matrix Q as a product of elementary
+ reflectors. See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ TAU (output) DOUBLE PRECISION array, dimension (N-1)
+ The scalar factors of the elementary reflectors (see Further
+ Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
+ zero.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The length of the array WORK. LWORK >= max(1,N).
+ For optimum performance LWORK >= N*NB, where NB is the
+ optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of (ihi-ilo) elementary
+ reflectors
+
+ Q = H(ilo) H(ilo+1) . . . H(ihi-1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
+ exit in A(i+2:ihi,i), and tau in TAU(i).
+
+ The contents of A are illustrated by the following example, with
+ n = 7, ilo = 2 and ihi = 6:
+
+ on entry, on exit,
+
+ ( a a a a a a a ) ( a a h h h h a )
+ ( a a a a a a ) ( a h h h h a )
+ ( a a a a a a ) ( h h h h h h )
+ ( a a a a a a ) ( v2 h h h h h )
+ ( a a a a a a ) ( v2 v3 h h h h )
+ ( a a a a a a ) ( v2 v3 v4 h h h )
+ ( a ) ( a )
+
+ where a denotes an element of the original matrix A, h denotes a
+ modified element of the upper Hessenberg matrix H, and vi denotes an
+ element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+/* Computing MIN */
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nb = min(i__1,i__2);
+ lwkopt = *n * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*ilo < 1 || *ilo > max(1,*n)) {
+ *info = -2;
+ } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if ((*lwork < max(1,*n) && ! lquery)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEHRD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
+
+ i__1 = *ilo - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ tau[i__] = 0.;
+/* L10: */
+ }
+ i__1 = *n - 1;
+ for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
+ tau[i__] = 0.;
+/* L20: */
+ }
+
+/* Quick return if possible */
+
+ nh = *ihi - *ilo + 1;
+ if (nh <= 1) {
+ work[1] = 1.;
+ return 0;
+ }
+
+/*
+ Determine the block size.
+
+ Computing MIN
+*/
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nb = min(i__1,i__2);
+ nbmin = 2;
+ iws = 1;
+ if ((nb > 1 && nb < nh)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code
+ (last block is always handled by unblocked code).
+
+ Computing MAX
+*/
+ i__1 = nb, i__2 = ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < nh) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ iws = *n * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: determine the
+ minimum value of NB, and reduce NB or force use of
+ unblocked code.
+
+ Computing MAX
+*/
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &
+ c_n1, (ftnlen)6, (ftnlen)1);
+ nbmin = max(i__1,i__2);
+ if (*lwork >= *n * nbmin) {
+ nb = *lwork / *n;
+ } else {
+ nb = 1;
+ }
+ }
+ }
+ }
+ ldwork = *n;
+
+ if (nb < nbmin || nb >= nh) {
+
+/* Use unblocked code below */
+
+ i__ = *ilo;
+
+ } else {
+
+/* Use blocked code */
+
+ i__1 = *ihi - 1 - nx;
+ i__2 = nb;
+ for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__3 = nb, i__4 = *ihi - i__;
+ ib = min(i__3,i__4);
+
+/*
+ Reduce columns i:i+ib-1 to Hessenberg form, returning the
+ matrices V and T of the block reflector H = I - V*T*V'
+ which performs the reduction, and also the matrix Y = A*V*T
+*/
+
+ dlahrd_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
+ c__65, &work[1], &ldwork);
+
+/*
+ Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
+ right, computing A := A - Y * V'. V(i+ib,ib-1) must be set
+ to 1.
+*/
+
+ ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];
+ a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;
+ i__3 = *ihi - i__ - ib + 1;
+ dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b151, &
+ work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &
+ c_b15, &a[(i__ + ib) * a_dim1 + 1], lda);
+ a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;
+
+/*
+ Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
+ left
+*/
+
+ i__3 = *ihi - i__;
+ i__4 = *n - i__ - ib + 1;
+ dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
+ i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[
+ i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork);
+/* L30: */
+ }
+ }
+
+/* Use unblocked code to reduce the rest of the matrix */
+
+ dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
+ work[1] = (doublereal) iws;
+
+ return 0;
+
+/* End of DGEHRD */
+
+} /* dgehrd_ */
+
+/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *tau, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, k;
+ static doublereal aii;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DGELQ2 computes an LQ factorization of a real m by n matrix A:
+ A = L * Q.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the m by n matrix A.
+ On exit, the elements on and below the diagonal of the array
+ contain the m by min(m,n) lower trapezoidal matrix L (L is
+ lower triangular if m <= n); the elements above the diagonal,
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of elementary reflectors (see Further Details).
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (M)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of elementary reflectors
+
+ Q = H(k) . . . H(2) H(1), where k = min(m,n).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
+ and tau in TAU(i).
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGELQ2", &i__1);
+ return 0;
+ }
+
+ k = min(*m,*n);
+
+ i__1 = k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Generate elementary reflector H(i) to annihilate A(i,i+1:n) */
+
+ i__2 = *n - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) * a_dim1]
+ , lda, &tau[i__]);
+ if (i__ < *m) {
+
+/* Apply H(i) to A(i+1:m,i:n) from the right */
+
+ aii = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+ i__2 = *m - i__;
+ i__3 = *n - i__ + 1;
+ dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[
+ i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
+ a[i__ + i__ * a_dim1] = aii;
+ }
+/* L10: */
+ }
+ return 0;
+
+/* End of DGELQ2 */
+
+} /* dgelq2_ */
+
+/* Subroutine */ int dgelqf_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
+ extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *), dlarfb_(char *,
+ char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DGELQF computes an LQ factorization of a real M-by-N matrix A:
+ A = L * Q.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N matrix A.
+ On exit, the elements on and below the diagonal of the array
+ contain the m-by-min(m,n) lower trapezoidal matrix L (L is
+ lower triangular if m <= n); the elements above the diagonal,
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of elementary reflectors (see Further Details).
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,M).
+ For optimum performance LWORK >= M*NB, where NB is the
+ optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of elementary reflectors
+
+ Q = H(k) . . . H(2) H(1), where k = min(m,n).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
+ and tau in TAU(i).
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
+ 1);
+ lwkopt = *m * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ } else if ((*lwork < max(1,*m) && ! lquery)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGELQF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ k = min(*m,*n);
+ if (k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ nx = 0;
+ iws = *m;
+ if ((nb > 1 && nb < k)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code.
+
+ Computing MAX
+*/
+ i__1 = 0, i__2 = ilaenv_(&c__3, "DGELQF", " ", m, n, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < k) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *m;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: reduce NB and
+ determine the minimum value of NB.
+*/
+
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DGELQF", " ", m, n, &c_n1, &
+ c_n1, (ftnlen)6, (ftnlen)1);
+ nbmin = max(i__1,i__2);
+ }
+ }
+ }
+
+ if (((nb >= nbmin && nb < k) && nx < k)) {
+
+/* Use blocked code initially */
+
+ i__1 = k - nx;
+ i__2 = nb;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__3 = k - i__ + 1;
+ ib = min(i__3,nb);
+
+/*
+ Compute the LQ factorization of the current block
+ A(i:i+ib-1,i:n)
+*/
+
+ i__3 = *n - i__ + 1;
+ dgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
+ 1], &iinfo);
+ if (i__ + ib <= *m) {
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__3 = *n - i__ + 1;
+ dlarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
+ a_dim1], lda, &tau[i__], &work[1], &ldwork);
+
+/* Apply H to A(i+ib:m,i:n) from the right */
+
+ i__3 = *m - i__ - ib + 1;
+ i__4 = *n - i__ + 1;
+ dlarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
+ &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
+ ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
+ 1], &ldwork);
+ }
+/* L10: */
+ }
+ } else {
+ i__ = 1;
+ }
+
+/* Use unblocked code to factor the last or only block. */
+
+ if (i__ <= k) {
+ i__2 = *m - i__ + 1;
+ i__1 = *n - i__ + 1;
+ dgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
+ , &iinfo);
+ }
+
+ work[1] = (doublereal) iws;
+ return 0;
+
+/* End of DGELQF */
+
+} /* dgelqf_ */
+
+/* Subroutine */ int dgelsd_(integer *m, integer *n, integer *nrhs,
+ doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
+ s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork,
+ integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
+
+ /* Builtin functions */
+ double log(doublereal);
+
+ /* Local variables */
+ static integer ie, il, mm;
+ static doublereal eps, anrm, bnrm;
+ static integer itau, nlvl, iascl, ibscl;
+ static doublereal sfmin;
+ static integer minmn, maxmn, itaup, itauq, mnthr, nwork;
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebrd_(
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *);
+ extern doublereal dlamch_(char *), dlange_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *);
+ extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, integer *),
+ dlalsd_(char *, integer *, integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, integer *), dlascl_(char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ integer *, doublereal *, integer *, integer *), dgeqrf_(
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, integer *), dlacpy_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *), xerbla_(char *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static doublereal bignum;
+ extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, integer *);
+ static integer wlalsd;
+ extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ static integer ldwork;
+ extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ static integer minwrk, maxwrk;
+ static doublereal smlnum;
+ static logical lquery;
+ static integer smlsiz;
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DGELSD computes the minimum-norm solution to a real linear least
+ squares problem:
+ minimize 2-norm(| b - A*x |)
+ using the singular value decomposition (SVD) of A. A is an M-by-N
+ matrix which may be rank-deficient.
+
+ Several right hand side vectors b and solution vectors x can be
+ handled in a single call; they are stored as the columns of the
+ M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+ matrix X.
+
+ The problem is solved in three steps:
+ (1) Reduce the coefficient matrix A to bidiagonal form with
+ Householder transformations, reducing the original problem
+ into a "bidiagonal least squares problem" (BLS)
+ (2) Solve the BLS using a divide and conquer approach.
+ (3) Apply back all the Householder tranformations to solve
+ the original least squares problem.
+
+ The effective rank of A is determined by treating as zero those
+ singular values which are less than RCOND times the largest singular
+ value.
+
+ The divide and conquer algorithm makes very mild assumptions about
+ floating point arithmetic. It will work on machines with a guard
+ digit in add/subtract, or on those binary machines without guard
+ digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+ Cray-2. It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of A. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of right hand sides, i.e., the number of columns
+ of the matrices B and X. NRHS >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N matrix A.
+ On exit, A has been destroyed.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+ On entry, the M-by-NRHS right hand side matrix B.
+ On exit, B is overwritten by the N-by-NRHS solution
+ matrix X. If m >= n and RANK = n, the residual
+ sum-of-squares for the solution in the i-th column is given
+ by the sum of squares of elements n+1:m in that column.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,max(M,N)).
+
+ S (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The singular values of A in decreasing order.
+ The condition number of A in the 2-norm = S(1)/S(min(m,n)).
+
+ RCOND (input) DOUBLE PRECISION
+ RCOND is used to determine the effective rank of A.
+ Singular values S(i) <= RCOND*S(1) are treated as zero.
+ If RCOND < 0, machine precision is used instead.
+
+ RANK (output) INTEGER
+ The effective rank of A, i.e., the number of singular values
+ which are greater than RCOND*S(1).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK must be at least 1.
+ The exact minimum amount of workspace needed depends on M,
+ N and NRHS. As long as LWORK is at least
+ 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
+ if M is greater than or equal to N or
+ 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
+ if M is less than N, the code will execute correctly.
+ SMLSIZ is returned by ILAENV and is equal to the maximum
+ size of the subproblems at the bottom of the computation
+ tree (usually about 25), and
+ NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
+ For good performance, LWORK should generally be larger.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ IWORK (workspace) INTEGER array, dimension (LIWORK)
+ LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
+ where MINMN = MIN( M,N ).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: the algorithm for computing the SVD failed to converge;
+ if INFO = i, i off-diagonal elements of an intermediate
+ bidiagonal form did not converge to zero.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Ren-Cang Li, Computer Science Division, University of
+ California at Berkeley, USA
+ Osni Marques, LBNL/NERSC, USA
+
+ =====================================================================
+
+
+ Test the input arguments.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+ --s;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ minmn = min(*m,*n);
+ maxmn = max(*m,*n);
+ mnthr = ilaenv_(&c__6, "DGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,maxmn)) {
+ *info = -7;
+ }
+
+ smlsiz = ilaenv_(&c__9, "DGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
+ ftnlen)6, (ftnlen)1);
+
+/*
+ Compute workspace.
+ (Note: Comments in the code beginning "Workspace:" describe the
+ minimal amount of workspace needed at that point in the code,
+ as well as the preferred amount for good performance.
+ NB refers to the optimal block size for the immediately
+ following subroutine, as returned by ILAENV.)
+*/
+
+ minwrk = 1;
+ minmn = max(1,minmn);
+/* Computing MAX */
+ i__1 = (integer) (log((doublereal) minmn / (doublereal) (smlsiz + 1)) /
+ log(2.)) + 1;
+ nlvl = max(i__1,0);
+
+ if (*info == 0) {
+ maxwrk = 0;
+ mm = *m;
+ if ((*m >= *n && *m >= mnthr)) {
+
+/* Path 1a - overdetermined, with many more rows than columns. */
+
+ mm = *n;
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m,
+ n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "DORMQR", "LT",
+ m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
+ maxwrk = max(i__1,i__2);
+ }
+ if (*m >= *n) {
+
+/*
+ Path 1 - overdetermined or exactly determined.
+
+ Computing MAX
+*/
+ i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "DGEBRD"
+ , " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "DORMBR",
+ "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "DORMBR",
+ "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+/* Computing 2nd power */
+ i__1 = smlsiz + 1;
+ wlalsd = *n * 9 + ((*n) << (1)) * smlsiz + ((*n) << (3)) * nlvl +
+ *n * *nrhs + i__1 * i__1;
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2),
+ i__2 = *n * 3 + wlalsd;
+ minwrk = max(i__1,i__2);
+ }
+ if (*n > *m) {
+/* Computing 2nd power */
+ i__1 = smlsiz + 1;
+ wlalsd = *m * 9 + ((*m) << (1)) * smlsiz + ((*m) << (3)) * nlvl +
+ *m * *nrhs + i__1 * i__1;
+ if (*n >= mnthr) {
+
+/*
+ Path 2a - underdetermined, with many more columns
+ than rows.
+*/
+
+ maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1,
+ &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + ((*m) << (1))
+ * ilaenv_(&c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + *nrhs *
+ ilaenv_(&c__1, "DORMBR", "QLT", m, nrhs, m, &c_n1, (
+ ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + (*m - 1) *
+ ilaenv_(&c__1, "DORMBR", "PLN", m, nrhs, m, &c_n1, (
+ ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+ if (*nrhs > 1) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
+ maxwrk = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + ((*m) << (1));
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "DORMLQ",
+ "LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + ((*m) << (2)) + wlalsd;
+ maxwrk = max(i__1,i__2);
+ } else {
+
+/* Path 2 - remaining underdetermined cases. */
+
+ maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "DGEBRD", " ", m,
+ n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "DORMBR"
+ , "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR",
+ "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2),
+ i__2 = *m * 3 + wlalsd;
+ minwrk = max(i__1,i__2);
+ }
+ minwrk = min(minwrk,maxwrk);
+ work[1] = (doublereal) maxwrk;
+ if ((*lwork < minwrk && ! lquery)) {
+ *info = -12;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGELSD", &i__1);
+ return 0;
+ } else if (lquery) {
+ goto L10;
+ }
+
+/* Quick return if possible. */
+
+ if (*m == 0 || *n == 0) {
+ *rank = 0;
+ return 0;
+ }
+
+/* Get machine parameters. */
+
+ eps = PRECISION;
+ sfmin = SAFEMINIMUM;
+ smlnum = sfmin / eps;
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+
+/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
+
+ anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
+ iascl = 0;
+ if ((anrm > 0. && anrm < smlnum)) {
+
+/* Scale matrix norm up to SMLNUM. */
+
+ dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 1;
+ } else if (anrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM. */
+
+ dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 2;
+ } else if (anrm == 0.) {
+
+/* Matrix all zero. Return zero solution. */
+
+ i__1 = max(*m,*n);
+ dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
+ dlaset_("F", &minmn, &c__1, &c_b29, &c_b29, &s[1], &c__1);
+ *rank = 0;
+ goto L10;
+ }
+
+/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
+
+ bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
+ ibscl = 0;
+ if ((bnrm > 0. && bnrm < smlnum)) {
+
+/* Scale matrix norm up to SMLNUM. */
+
+ dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 1;
+ } else if (bnrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM. */
+
+ dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 2;
+ }
+
+/* If M < N make sure certain entries of B are zero. */
+
+ if (*m < *n) {
+ i__1 = *n - *m;
+ dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[*m + 1 + b_dim1], ldb);
+ }
+
+/* Overdetermined case. */
+
+ if (*m >= *n) {
+
+/* Path 1 - overdetermined or exactly determined. */
+
+ mm = *m;
+ if (*m >= mnthr) {
+
+/* Path 1a - overdetermined, with many more rows than columns. */
+
+ mm = *n;
+ itau = 1;
+ nwork = itau + *n;
+
+/*
+ Compute A=Q*R.
+ (Workspace: need 2*N, prefer N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
+ info);
+
+/*
+ Multiply B by transpose(Q).
+ (Workspace: need N+NRHS, prefer N+NRHS*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Zero out below R. */
+
+ if (*n > 1) {
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &a[a_dim1 + 2],
+ lda);
+ }
+ }
+
+ ie = 1;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize R in A.
+ (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
+ work[itaup], &work[nwork], &i__1, info);
+
+/*
+ Multiply B by transpose of left bidiagonalizing vectors of R.
+ (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
+ &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ dlalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb,
+ rcond, rank, &work[nwork], &iwork[1], info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of R. */
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
+ b[b_offset], ldb, &work[nwork], &i__1, info);
+
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = *m, i__2 = ((*m) << (1)) - 4, i__1 = max(i__1,i__2), i__1 =
+ max(i__1,*nrhs), i__2 = *n - *m * 3;
+ if ((*n >= mnthr && *lwork >= ((*m) << (2)) + *m * *m + max(i__1,i__2)
+ )) {
+
+/*
+ Path 2a - underdetermined, with many more columns than rows
+ and sufficient workspace for an efficient algorithm.
+*/
+
+ ldwork = *m;
+/*
+ Computing MAX
+ Computing MAX
+*/
+ i__3 = *m, i__4 = ((*m) << (1)) - 4, i__3 = max(i__3,i__4), i__3 =
+ max(i__3,*nrhs), i__4 = *n - *m * 3;
+ i__1 = ((*m) << (2)) + *m * *lda + max(i__3,i__4), i__2 = *m * *
+ lda + *m + *m * *nrhs;
+ if (*lwork >= max(i__1,i__2)) {
+ ldwork = *lda;
+ }
+ itau = 1;
+ nwork = *m + 1;
+
+/*
+ Compute A=L*Q.
+ (Workspace: need 2*M, prefer M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
+ info);
+ il = nwork;
+
+/* Copy L to WORK(IL), zeroing out above its diagonal. */
+
+ dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &work[il + ldwork], &
+ ldwork);
+ ie = il + ldwork * *m;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize L in WORK(IL).
+ (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
+ &work[itaup], &work[nwork], &i__1, info);
+
+/*
+ Multiply B by transpose of left bidiagonalizing vectors of L.
+ (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
+ itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ dlalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
+ ldb, rcond, rank, &work[nwork], &iwork[1], info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of L. */
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
+ itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Zero out below first M rows of B. */
+
+ i__1 = *n - *m;
+ dlaset_("F", &i__1, nrhs, &c_b29, &c_b29, &b[*m + 1 + b_dim1],
+ ldb);
+ nwork = itau + *m;
+
+/*
+ Multiply transpose(Q) by B.
+ (Workspace: need M+NRHS, prefer M+NRHS*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[nwork], &i__1, info);
+
+ } else {
+
+/* Path 2 - remaining underdetermined cases. */
+
+ ie = 1;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize A.
+ (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
+ work[itaup], &work[nwork], &i__1, info);
+
+/*
+ Multiply B by transpose of left bidiagonalizing vectors.
+ (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
+ , &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ dlalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
+ ldb, rcond, rank, &work[nwork], &iwork[1], info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of A. */
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
+ , &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+ }
+ }
+
+/* Undo scaling. */
+
+ if (iascl == 1) {
+ dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
+ info);
+ dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ } else if (iascl == 2) {
+ dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
+ info);
+ dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ }
+ if (ibscl == 1) {
+ dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ } else if (ibscl == 2) {
+ dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ }
+
+L10:
+ work[1] = (doublereal) maxwrk;
+ return 0;
+
+/* End of DGELSD */
+
+} /* dgelsd_ */
+
+/* Subroutine */ int dgeqr2_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *tau, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, k;
+ static doublereal aii;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DGEQR2 computes a QR factorization of a real m by n matrix A:
+ A = Q * R.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the m by n matrix A.
+ On exit, the elements on and above the diagonal of the array
+ contain the min(m,n) by n upper trapezoidal matrix R (R is
+ upper triangular if m >= n); the elements below the diagonal,
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of elementary reflectors (see Further Details).
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (N)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of elementary reflectors
+
+ Q = H(1) H(2) . . . H(k), where k = min(m,n).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
+ and tau in TAU(i).
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEQR2", &i__1);
+ return 0;
+ }
+
+ k = min(*m,*n);
+
+ i__1 = k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
+
+ i__2 = *m - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
+ , &c__1, &tau[i__]);
+ if (i__ < *n) {
+
+/* Apply H(i) to A(i:m,i+1:n) from the left */
+
+ aii = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+ i__2 = *m - i__ + 1;
+ i__3 = *n - i__;
+ dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
+ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
+ a[i__ + i__ * a_dim1] = aii;
+ }
+/* L10: */
+ }
+ return 0;
+
+/* End of DGEQR2 */
+
+} /* dgeqr2_ */
+
+/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *
+ lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
+ extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *), dlarfb_(char *,
+ char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DGEQRF computes a QR factorization of a real M-by-N matrix A:
+ A = Q * R.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N matrix A.
+ On exit, the elements on and above the diagonal of the array
+ contain the min(M,N)-by-N upper trapezoidal matrix R (R is
+ upper triangular if m >= n); the elements below the diagonal,
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of min(m,n) elementary reflectors (see Further
+ Details).
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,N).
+ For optimum performance LWORK >= N*NB, where NB is
+ the optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of elementary reflectors
+
+ Q = H(1) H(2) . . . H(k), where k = min(m,n).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
+ and tau in TAU(i).
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
+ 1);
+ lwkopt = *n * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ } else if ((*lwork < max(1,*n) && ! lquery)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGEQRF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ k = min(*m,*n);
+ if (k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ nx = 0;
+ iws = *n;
+ if ((nb > 1 && nb < k)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code.
+
+ Computing MAX
+*/
+ i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < k) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *n;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: reduce NB and
+ determine the minimum value of NB.
+*/
+
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &
+ c_n1, (ftnlen)6, (ftnlen)1);
+ nbmin = max(i__1,i__2);
+ }
+ }
+ }
+
+ if (((nb >= nbmin && nb < k) && nx < k)) {
+
+/* Use blocked code initially */
+
+ i__1 = k - nx;
+ i__2 = nb;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__3 = k - i__ + 1;
+ ib = min(i__3,nb);
+
+/*
+ Compute the QR factorization of the current block
+ A(i:m,i:i+ib-1)
+*/
+
+ i__3 = *m - i__ + 1;
+ dgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
+ 1], &iinfo);
+ if (i__ + ib <= *n) {
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__3 = *m - i__ + 1;
+ dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
+ a_dim1], lda, &tau[i__], &work[1], &ldwork);
+
+/* Apply H' to A(i:m,i+ib:n) from the left */
+
+ i__3 = *m - i__ + 1;
+ i__4 = *n - i__ - ib + 1;
+ dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
+ i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
+ ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib
+ + 1], &ldwork);
+ }
+/* L10: */
+ }
+ } else {
+ i__ = 1;
+ }
+
+/* Use unblocked code to factor the last or only block. */
+
+ if (i__ <= k) {
+ i__2 = *m - i__ + 1;
+ i__1 = *n - i__ + 1;
+ dgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
+ , &iinfo);
+ }
+
+ work[1] = (doublereal) iws;
+ return 0;
+
+/* End of DGEQRF */
+
+} /* dgeqrf_ */
+
+/* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal *
+ a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
+ doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
+ integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
+ i__2, i__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, ie, il, ir, iu, blk;
+ static doublereal dum[1], eps;
+ static integer ivt, iscl;
+ static doublereal anrm;
+ static integer idum[1], ierr, itau;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ static integer chunk, minmn, wrkbl, itaup, itauq, mnthr;
+ static logical wntqa;
+ static integer nwork;
+ static logical wntqn, wntqo, wntqs;
+ extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal
+ *, doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *);
+ extern doublereal dlamch_(char *), dlange_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *);
+ static integer bdspac;
+ extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, integer *),
+ dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
+ integer *, integer *, doublereal *, integer *, integer *),
+ dgeqrf_(integer *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ integer *), dlaset_(char *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *),
+ xerbla_(char *, integer *), dorgbr_(char *, integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static doublereal bignum;
+ extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, integer *);
+ static integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
+ static doublereal smlnum;
+ static logical wntqas, lquery;
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DGESDD computes the singular value decomposition (SVD) of a real
+ M-by-N matrix A, optionally computing the left and right singular
+ vectors. If singular vectors are desired, it uses a
+ divide-and-conquer algorithm.
+
+ The SVD is written
+
+ A = U * SIGMA * transpose(V)
+
+ where SIGMA is an M-by-N matrix which is zero except for its
+ min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
+ V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
+ are the singular values of A; they are real and non-negative, and
+ are returned in descending order. The first min(m,n) columns of
+ U and V are the left and right singular vectors of A.
+
+ Note that the routine returns VT = V**T, not V.
+
+ The divide and conquer algorithm makes very mild assumptions about
+ floating point arithmetic. It will work on machines with a guard
+ digit in add/subtract, or on those binary machines without guard
+ digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+ Cray-2. It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ Arguments
+ =========
+
+ JOBZ (input) CHARACTER*1
+ Specifies options for computing all or part of the matrix U:
+ = 'A': all M columns of U and all N rows of V**T are
+ returned in the arrays U and VT;
+ = 'S': the first min(M,N) columns of U and the first
+ min(M,N) rows of V**T are returned in the arrays U
+ and VT;
+ = 'O': If M >= N, the first N columns of U are overwritten
+ on the array A and all rows of V**T are returned in
+ the array VT;
+ otherwise, all columns of U are returned in the
+ array U and the first M rows of V**T are overwritten
+ in the array VT;
+ = 'N': no columns of U or rows of V**T are computed.
+
+ M (input) INTEGER
+ The number of rows of the input matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the input matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N matrix A.
+ On exit,
+ if JOBZ = 'O', A is overwritten with the first N columns
+ of U (the left singular vectors, stored
+ columnwise) if M >= N;
+ A is overwritten with the first M rows
+ of V**T (the right singular vectors, stored
+ rowwise) otherwise.
+ if JOBZ .ne. 'O', the contents of A are destroyed.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ S (output) DOUBLE PRECISION array, dimension (min(M,N))
+ The singular values of A, sorted so that S(i) >= S(i+1).
+
+ U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
+ UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
+ UCOL = min(M,N) if JOBZ = 'S'.
+ If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
+ orthogonal matrix U;
+ if JOBZ = 'S', U contains the first min(M,N) columns of U
+ (the left singular vectors, stored columnwise);
+ if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= 1; if
+ JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
+
+ VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
+ If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
+ N-by-N orthogonal matrix V**T;
+ if JOBZ = 'S', VT contains the first min(M,N) rows of
+ V**T (the right singular vectors, stored rowwise);
+ if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT. LDVT >= 1; if
+ JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
+ if JOBZ = 'S', LDVT >= min(M,N).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= 1.
+ If JOBZ = 'N',
+ LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
+ If JOBZ = 'O',
+ LWORK >= 3*min(M,N)*min(M,N) +
+ max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
+ If JOBZ = 'S' or 'A'
+ LWORK >= 3*min(M,N)*min(M,N) +
+ max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
+ For good performance, LWORK should generally be larger.
+ If LWORK < 0 but other input arguments are legal, WORK(1)
+ returns the optimal LWORK.
+
+ IWORK (workspace) INTEGER array, dimension (8*min(M,N))
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: DBDSDC did not converge, updating process failed.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --s;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ minmn = min(*m,*n);
+ mnthr = (integer) (minmn * 11. / 6.);
+ wntqa = lsame_(jobz, "A");
+ wntqs = lsame_(jobz, "S");
+ wntqas = wntqa || wntqs;
+ wntqo = lsame_(jobz, "O");
+ wntqn = lsame_(jobz, "N");
+ minwrk = 1;
+ maxwrk = 1;
+ lquery = *lwork == -1;
+
+ if (! (wntqa || wntqs || wntqo || wntqn)) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldu < 1 || (wntqas && *ldu < *m) || ((wntqo && *m < *n) && *
+ ldu < *m)) {
+ *info = -8;
+ } else if (*ldvt < 1 || (wntqa && *ldvt < *n) || (wntqs && *ldvt < minmn)
+ || ((wntqo && *m >= *n) && *ldvt < *n)) {
+ *info = -10;
+ }
+
+/*
+ Compute workspace
+ (Note: Comments in the code beginning "Workspace:" describe the
+ minimal amount of workspace needed at that point in the code,
+ as well as the preferred amount for good performance.
+ NB refers to the optimal block size for the immediately
+ following subroutine, as returned by ILAENV.)
+*/
+
+ if (((*info == 0 && *m > 0) && *n > 0)) {
+ if (*m >= *n) {
+
+/* Compute space needed for DBDSDC */
+
+ if (wntqn) {
+ bdspac = *n * 7;
+ } else {
+ bdspac = *n * 3 * *n + ((*n) << (2));
+ }
+ if (*m >= mnthr) {
+ if (wntqn) {
+
+/* Path 1 (M much larger than N, JOBZ='N') */
+
+ wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n;
+ maxwrk = max(i__1,i__2);
+ minwrk = bdspac + *n;
+ } else if (wntqo) {
+
+/* Path 2 (M much larger than N, JOBZ='O') */
+
+ wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
+ " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + ((*n) << (1)) * *n;
+ minwrk = bdspac + ((*n) << (1)) * *n + *n * 3;
+ } else if (wntqs) {
+
+/* Path 3 (M much larger than N, JOBZ='S') */
+
+ wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
+ " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *n * *n;
+ minwrk = bdspac + *n * *n + *n * 3;
+ } else if (wntqa) {
+
+/* Path 4 (M much larger than N, JOBZ='A') */
+
+ wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n + *m * ilaenv_(&c__1, "DORGQR",
+ " ", m, m, n, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + ((*n) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *n * *n;
+ minwrk = bdspac + *n * *n + *n * 3;
+ }
+ } else {
+
+/* Path 5 (M at least N, but not much larger) */
+
+ wrkbl = *n * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m,
+ n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+ if (wntqn) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *n * 3 + max(*m,bdspac);
+ } else if (wntqo) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *m * *n;
+/* Computing MAX */
+ i__1 = *m, i__2 = *n * *n + bdspac;
+ minwrk = *n * 3 + max(i__1,i__2);
+ } else if (wntqs) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *n * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *n * 3 + max(*m,bdspac);
+ } else if (wntqa) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = bdspac + *n * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *n * 3 + max(*m,bdspac);
+ }
+ }
+ } else {
+
+/* Compute space needed for DBDSDC */
+
+ if (wntqn) {
+ bdspac = *m * 7;
+ } else {
+ bdspac = *m * 3 * *m + ((*m) << (2));
+ }
+ if (*n >= mnthr) {
+ if (wntqn) {
+
+/* Path 1t (N much larger than M, JOBZ='N') */
+
+ wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m;
+ maxwrk = max(i__1,i__2);
+ minwrk = bdspac + *m;
+ } else if (wntqo) {
+
+/* Path 2t (N much larger than M, JOBZ='O') */
+
+ wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ",
+ " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + ((*m) << (1)) * *m;
+ minwrk = bdspac + ((*m) << (1)) * *m + *m * 3;
+ } else if (wntqs) {
+
+/* Path 3t (N much larger than M, JOBZ='S') */
+
+ wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m + *m * ilaenv_(&c__1, "DORGLQ",
+ " ", m, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *m * *m;
+ minwrk = bdspac + *m * *m + *m * 3;
+ } else if (wntqa) {
+
+/* Path 4t (N much larger than M, JOBZ='A') */
+
+ wrkbl = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
+ c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m + *n * ilaenv_(&c__1, "DORGLQ",
+ " ", n, n, m, &c_n1, (ftnlen)6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + ((*m) << (1)) * ilaenv_(&
+ c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
+ 6, (ftnlen)1);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", m, m, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *m * *m;
+ minwrk = bdspac + *m * *m + *m * 3;
+ }
+ } else {
+
+/* Path 5t (N greater than M, but not much larger) */
+
+ wrkbl = *m * 3 + (*m + *n) * ilaenv_(&c__1, "DGEBRD", " ", m,
+ n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
+ if (wntqn) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *m * 3 + max(*n,bdspac);
+ } else if (wntqo) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", m, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ wrkbl = max(i__1,i__2);
+ maxwrk = wrkbl + *m * *n;
+/* Computing MAX */
+ i__1 = *n, i__2 = *m * *m + bdspac;
+ minwrk = *m * 3 + max(i__1,i__2);
+ } else if (wntqs) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", m, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *m * 3 + max(*n,bdspac);
+ } else if (wntqa) {
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "QLN", m, m, n, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR"
+ , "PRT", n, n, m, &c_n1, (ftnlen)6, (ftnlen)3);
+ wrkbl = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = wrkbl, i__2 = bdspac + *m * 3;
+ maxwrk = max(i__1,i__2);
+ minwrk = *m * 3 + max(*n,bdspac);
+ }
+ }
+ }
+ work[1] = (doublereal) maxwrk;
+ }
+
+ if ((*lwork < minwrk && ! lquery)) {
+ *info = -12;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGESDD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ if (*lwork >= 1) {
+ work[1] = 1.;
+ }
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = PRECISION;
+ smlnum = sqrt(SAFEMINIMUM) / eps;
+ bignum = 1. / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
+ iscl = 0;
+ if ((anrm > 0. && anrm < smlnum)) {
+ iscl = 1;
+ dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
+ ierr);
+ } else if (anrm > bignum) {
+ iscl = 1;
+ dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+ if (*m >= *n) {
+
+/*
+ A has at least as many rows as columns. If A has sufficiently
+ more rows than columns, first reduce using the QR
+ decomposition (if sufficient workspace available)
+*/
+
+ if (*m >= mnthr) {
+
+ if (wntqn) {
+
+/*
+ Path 1 (M much larger than N, JOBZ='N')
+ No singular vectors to be computed
+*/
+
+ itau = 1;
+ nwork = itau + *n;
+
+/*
+ Compute A=Q*R
+ (Workspace: need 2*N, prefer N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__1, &ierr);
+
+/* Zero out below R */
+
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &a[a_dim1 + 2],
+ lda);
+ ie = 1;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize R in A
+ (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__1, &ierr);
+ nwork = ie + *n;
+
+/*
+ Perform bidiagonal SVD, computing singular values only
+ (Workspace: need N+BDSPAC)
+*/
+
+ dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
+ dum, idum, &work[nwork], &iwork[1], info);
+
+ } else if (wntqo) {
+
+/*
+ Path 2 (M much larger than N, JOBZ = 'O')
+ N left singular vectors to be overwritten on A and
+ N right singular vectors to be computed in VT
+*/
+
+ ir = 1;
+
+/* WORK(IR) is LDWRKR by N */
+
+ if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
+ ldwrkr = *lda;
+ } else {
+ ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
+ }
+ itau = ir + ldwrkr * *n;
+ nwork = itau + *n;
+
+/*
+ Compute A=Q*R
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__1, &ierr);
+
+/* Copy R to WORK(IR), zeroing out below it */
+
+ dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ dlaset_("L", &i__1, &i__2, &c_b29, &c_b29, &work[ir + 1], &
+ ldwrkr);
+
+/*
+ Generate Q in A
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
+ &i__1, &ierr);
+ ie = itau;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize R in VT, copying result to WORK(IR)
+ (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__1, &ierr);
+
+/* WORK(IU) is N by N */
+
+ iu = nwork;
+ nwork = iu + *n * *n;
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in WORK(IU) and computing right
+ singular vectors of bidiagonal matrix in VT
+ (Workspace: need N+N*N+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite WORK(IU) by left singular vectors of R
+ and VT by right singular vectors of R
+ (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
+ itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
+ ierr);
+
+/*
+ Multiply Q in A by left singular vectors of R in
+ WORK(IU), storing result in WORK(IR) and copying to A
+ (Workspace: need 2*N*N, prefer N*N+M*N)
+*/
+
+ i__1 = *m;
+ i__2 = ldwrkr;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *m - i__ + 1;
+ chunk = min(i__3,ldwrkr);
+ dgemm_("N", "N", &chunk, n, n, &c_b15, &a[i__ + a_dim1],
+ lda, &work[iu], n, &c_b29, &work[ir], &ldwrkr);
+ dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
+ a_dim1], lda);
+/* L10: */
+ }
+
+ } else if (wntqs) {
+
+/*
+ Path 3 (M much larger than N, JOBZ='S')
+ N left singular vectors to be computed in U and
+ N right singular vectors to be computed in VT
+*/
+
+ ir = 1;
+
+/* WORK(IR) is N by N */
+
+ ldwrkr = *n;
+ itau = ir + ldwrkr * *n;
+ nwork = itau + *n;
+
+/*
+ Compute A=Q*R
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__2, &ierr);
+
+/* Copy R to WORK(IR), zeroing out below it */
+
+ dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
+ i__2 = *n - 1;
+ i__1 = *n - 1;
+ dlaset_("L", &i__2, &i__1, &c_b29, &c_b29, &work[ir + 1], &
+ ldwrkr);
+
+/*
+ Generate Q in A
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
+ &i__2, &ierr);
+ ie = itau;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize R in WORK(IR)
+ (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__2, &ierr);
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagoal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need N+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite U by left singular vectors of R and VT
+ by right singular vectors of R
+ (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
+ ierr);
+
+/*
+ Multiply Q in A by left singular vectors of R in
+ WORK(IR), storing result in U
+ (Workspace: need N*N)
+*/
+
+ dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
+ dgemm_("N", "N", m, n, n, &c_b15, &a[a_offset], lda, &work[ir]
+ , &ldwrkr, &c_b29, &u[u_offset], ldu);
+
+ } else if (wntqa) {
+
+/*
+ Path 4 (M much larger than N, JOBZ='A')
+ M left singular vectors to be computed in U and
+ N right singular vectors to be computed in VT
+*/
+
+ iu = 1;
+
+/* WORK(IU) is N by N */
+
+ ldwrku = *n;
+ itau = iu + ldwrku * *n;
+ nwork = itau + *n;
+
+/*
+ Compute A=Q*R, copying result to U
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__2, &ierr);
+ dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
+
+/*
+ Generate Q in U
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+ i__2 = *lwork - nwork + 1;
+ dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
+ &i__2, &ierr);
+
+/* Produce R in A, zeroing out other entries */
+
+ i__2 = *n - 1;
+ i__1 = *n - 1;
+ dlaset_("L", &i__2, &i__1, &c_b29, &c_b29, &a[a_dim1 + 2],
+ lda);
+ ie = itau;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize R in A
+ (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__2, &ierr);
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in WORK(IU) and computing right
+ singular vectors of bidiagonal matrix in VT
+ (Workspace: need N+N*N+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite WORK(IU) by left singular vectors of R and VT
+ by right singular vectors of R
+ (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
+ itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
+ ierr);
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
+ ierr);
+
+/*
+ Multiply Q in U by left singular vectors of R in
+ WORK(IU), storing result in A
+ (Workspace: need N*N)
+*/
+
+ dgemm_("N", "N", m, n, n, &c_b15, &u[u_offset], ldu, &work[iu]
+ , &ldwrku, &c_b29, &a[a_offset], lda);
+
+/* Copy left singular vectors of A from A to U */
+
+ dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
+
+ }
+
+ } else {
+
+/*
+ M .LT. MNTHR
+
+ Path 5 (M at least N, but not much larger)
+ Reduce to bidiagonal form without QR decomposition
+*/
+
+ ie = 1;
+ itauq = ie + *n;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+
+/*
+ Bidiagonalize A
+ (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
+ work[itaup], &work[nwork], &i__2, &ierr);
+ if (wntqn) {
+
+/*
+ Perform bidiagonal SVD, only computing singular values
+ (Workspace: need N+BDSPAC)
+*/
+
+ dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
+ dum, idum, &work[nwork], &iwork[1], info);
+ } else if (wntqo) {
+ iu = nwork;
+ if (*lwork >= *m * *n + *n * 3 + bdspac) {
+
+/* WORK( IU ) is M by N */
+
+ ldwrku = *m;
+ nwork = iu + ldwrku * *n;
+ dlaset_("F", m, n, &c_b29, &c_b29, &work[iu], &ldwrku);
+ } else {
+
+/* WORK( IU ) is N by N */
+
+ ldwrku = *n;
+ nwork = iu + ldwrku * *n;
+
+/* WORK(IR) is LDWRKR by N */
+
+ ir = nwork;
+ ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
+ }
+ nwork = iu + ldwrku * *n;
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in WORK(IU) and computing right
+ singular vectors of bidiagonal matrix in VT
+ (Workspace: need N+N*N+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
+ vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
+ 1], info);
+
+/*
+ Overwrite VT by right singular vectors of A
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
+ ierr);
+
+ if (*lwork >= *m * *n + *n * 3 + bdspac) {
+
+/*
+ Overwrite WORK(IU) by left singular vectors of A
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
+ itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
+ ierr);
+
+/* Copy left singular vectors of A from WORK(IU) to A */
+
+ dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
+ } else {
+
+/*
+ Generate Q in A
+ (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
+ work[nwork], &i__2, &ierr);
+
+/*
+ Multiply Q in A by left singular vectors of
+ bidiagonal matrix in WORK(IU), storing result in
+ WORK(IR) and copying to A
+ (Workspace: need 2*N*N, prefer N*N+M*N)
+*/
+
+ i__2 = *m;
+ i__1 = ldwrkr;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
+ i__1) {
+/* Computing MIN */
+ i__3 = *m - i__ + 1;
+ chunk = min(i__3,ldwrkr);
+ dgemm_("N", "N", &chunk, n, n, &c_b15, &a[i__ +
+ a_dim1], lda, &work[iu], &ldwrku, &c_b29, &
+ work[ir], &ldwrkr);
+ dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
+ a_dim1], lda);
+/* L20: */
+ }
+ }
+
+ } else if (wntqs) {
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need N+BDSPAC)
+*/
+
+ dlaset_("F", m, n, &c_b29, &c_b29, &u[u_offset], ldu);
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite U by left singular vectors of A and VT
+ by right singular vectors of A
+ (Workspace: need 3*N, prefer 2*N+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
+ ierr);
+ } else if (wntqa) {
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need N+BDSPAC)
+*/
+
+ dlaset_("F", m, m, &c_b29, &c_b29, &u[u_offset], ldu);
+ dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/* Set the right corner of U to identity matrix */
+
+ i__1 = *m - *n;
+ i__2 = *m - *n;
+ dlaset_("F", &i__1, &i__2, &c_b29, &c_b15, &u[*n + 1 + (*n +
+ 1) * u_dim1], ldu);
+
+/*
+ Overwrite U by left singular vectors of A and VT
+ by right singular vectors of A
+ (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
+ ierr);
+ }
+
+ }
+
+ } else {
+
+/*
+ A has more columns than rows. If A has sufficiently more
+ columns than rows, first reduce using the LQ decomposition (if
+ sufficient workspace available)
+*/
+
+ if (*n >= mnthr) {
+
+ if (wntqn) {
+
+/*
+ Path 1t (N much larger than M, JOBZ='N')
+ No singular vectors to be computed
+*/
+
+ itau = 1;
+ nwork = itau + *m;
+
+/*
+ Compute A=L*Q
+ (Workspace: need 2*M, prefer M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__1, &ierr);
+
+/* Zero out above L */
+
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &a[((a_dim1) << (1)
+ ) + 1], lda);
+ ie = 1;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize L in A
+ (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__1, &ierr);
+ nwork = ie + *m;
+
+/*
+ Perform bidiagonal SVD, computing singular values only
+ (Workspace: need M+BDSPAC)
+*/
+
+ dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
+ dum, idum, &work[nwork], &iwork[1], info);
+
+ } else if (wntqo) {
+
+/*
+ Path 2t (N much larger than M, JOBZ='O')
+ M right singular vectors to be overwritten on A and
+ M left singular vectors to be computed in U
+*/
+
+ ivt = 1;
+
+/* IVT is M by M */
+
+ il = ivt + *m * *m;
+ if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
+
+/* WORK(IL) is M by N */
+
+ ldwrkl = *m;
+ chunk = *n;
+ } else {
+ ldwrkl = *m;
+ chunk = (*lwork - *m * *m) / *m;
+ }
+ itau = il + ldwrkl * *m;
+ nwork = itau + *m;
+
+/*
+ Compute A=L*Q
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__1, &ierr);
+
+/* Copy L to WORK(IL), zeroing about above it */
+
+ dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ dlaset_("U", &i__1, &i__2, &c_b29, &c_b29, &work[il + ldwrkl],
+ &ldwrkl);
+
+/*
+ Generate Q in A
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
+ &i__1, &ierr);
+ ie = itau;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize L in WORK(IL)
+ (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__1, &ierr);
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U, and computing right singular
+ vectors of bidiagonal matrix in WORK(IVT)
+ (Workspace: need M+M*M+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
+ work[ivt], m, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite U by left singular vectors of L and WORK(IVT)
+ by right singular vectors of L
+ (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
+ itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
+
+/*
+ Multiply right singular vectors of L in WORK(IVT) by Q
+ in A, storing result in WORK(IL) and copying to A
+ (Workspace: need 2*M*M, prefer M*M+M*N)
+*/
+
+ i__1 = *n;
+ i__2 = chunk;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *n - i__ + 1;
+ blk = min(i__3,chunk);
+ dgemm_("N", "N", m, &blk, m, &c_b15, &work[ivt], m, &a[
+ i__ * a_dim1 + 1], lda, &c_b29, &work[il], &
+ ldwrkl);
+ dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
+ + 1], lda);
+/* L30: */
+ }
+
+ } else if (wntqs) {
+
+/*
+ Path 3t (N much larger than M, JOBZ='S')
+ M right singular vectors to be computed in VT and
+ M left singular vectors to be computed in U
+*/
+
+ il = 1;
+
+/* WORK(IL) is M by M */
+
+ ldwrkl = *m;
+ itau = il + ldwrkl * *m;
+ nwork = itau + *m;
+
+/*
+ Compute A=L*Q
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__2, &ierr);
+
+/* Copy L to WORK(IL), zeroing out above it */
+
+ dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
+ i__2 = *m - 1;
+ i__1 = *m - 1;
+ dlaset_("U", &i__2, &i__1, &c_b29, &c_b29, &work[il + ldwrkl],
+ &ldwrkl);
+
+/*
+ Generate Q in A
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
+ &i__2, &ierr);
+ ie = itau;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize L in WORK(IU), copying result to U
+ (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__2, &ierr);
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need M+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite U by left singular vectors of L and VT
+ by right singular vectors of L
+ (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
+ ierr);
+
+/*
+ Multiply right singular vectors of L in WORK(IL) by
+ Q in A, storing result in VT
+ (Workspace: need M*M)
+*/
+
+ dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
+ dgemm_("N", "N", m, n, m, &c_b15, &work[il], &ldwrkl, &a[
+ a_offset], lda, &c_b29, &vt[vt_offset], ldvt);
+
+ } else if (wntqa) {
+
+/*
+ Path 4t (N much larger than M, JOBZ='A')
+ N right singular vectors to be computed in VT and
+ M left singular vectors to be computed in U
+*/
+
+ ivt = 1;
+
+/* WORK(IVT) is M by M */
+
+ ldwkvt = *m;
+ itau = ivt + ldwkvt * *m;
+ nwork = itau + *m;
+
+/*
+ Compute A=L*Q, copying result to VT
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
+ i__2, &ierr);
+ dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
+
+/*
+ Generate Q in VT
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
+ nwork], &i__2, &ierr);
+
+/* Produce L in A, zeroing out other entries */
+
+ i__2 = *m - 1;
+ i__1 = *m - 1;
+ dlaset_("U", &i__2, &i__1, &c_b29, &c_b29, &a[((a_dim1) << (1)
+ ) + 1], lda);
+ ie = itau;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize L in A
+ (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
+ itauq], &work[itaup], &work[nwork], &i__2, &ierr);
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in WORK(IVT)
+ (Workspace: need M+M*M+BDSPAC)
+*/
+
+ dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
+ work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
+ , info);
+
+/*
+ Overwrite U by left singular vectors of L and WORK(IVT)
+ by right singular vectors of L
+ (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
+ itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
+ ierr);
+
+/*
+ Multiply right singular vectors of L in WORK(IVT) by
+ Q in VT, storing result in A
+ (Workspace: need M*M)
+*/
+
+ dgemm_("N", "N", m, n, m, &c_b15, &work[ivt], &ldwkvt, &vt[
+ vt_offset], ldvt, &c_b29, &a[a_offset], lda);
+
+/* Copy right singular vectors of A from A to VT */
+
+ dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
+
+ }
+
+ } else {
+
+/*
+ N .LT. MNTHR
+
+ Path 5t (N greater than M, but not much larger)
+ Reduce to bidiagonal form without LQ decomposition
+*/
+
+ ie = 1;
+ itauq = ie + *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+
+/*
+ Bidiagonalize A
+ (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
+ work[itaup], &work[nwork], &i__2, &ierr);
+ if (wntqn) {
+
+/*
+ Perform bidiagonal SVD, only computing singular values
+ (Workspace: need M+BDSPAC)
+*/
+
+ dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
+ dum, idum, &work[nwork], &iwork[1], info);
+ } else if (wntqo) {
+ ldwkvt = *m;
+ ivt = nwork;
+ if (*lwork >= *m * *n + *m * 3 + bdspac) {
+
+/* WORK( IVT ) is M by N */
+
+ dlaset_("F", m, n, &c_b29, &c_b29, &work[ivt], &ldwkvt);
+ nwork = ivt + ldwkvt * *n;
+ } else {
+
+/* WORK( IVT ) is M by M */
+
+ nwork = ivt + ldwkvt * *m;
+ il = nwork;
+
+/* WORK(IL) is M by CHUNK */
+
+ chunk = (*lwork - *m * *m - *m * 3) / *m;
+ }
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in WORK(IVT)
+ (Workspace: need M*M+BDSPAC)
+*/
+
+ dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
+ work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
+ , info);
+
+/*
+ Overwrite U by left singular vectors of A
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
+
+ if (*lwork >= *m * *n + *m * 3 + bdspac) {
+
+/*
+ Overwrite WORK(IVT) by left singular vectors of A
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
+ itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
+ &ierr);
+
+/* Copy right singular vectors of A from WORK(IVT) to A */
+
+ dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
+ } else {
+
+/*
+ Generate P**T in A
+ (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*/
+
+ i__2 = *lwork - nwork + 1;
+ dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
+ work[nwork], &i__2, &ierr);
+
+/*
+ Multiply Q in A by right singular vectors of
+ bidiagonal matrix in WORK(IVT), storing result in
+ WORK(IL) and copying to A
+ (Workspace: need 2*M*M, prefer M*M+M*N)
+*/
+
+ i__2 = *n;
+ i__1 = chunk;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
+ i__1) {
+/* Computing MIN */
+ i__3 = *n - i__ + 1;
+ blk = min(i__3,chunk);
+ dgemm_("N", "N", m, &blk, m, &c_b15, &work[ivt], &
+ ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b29, &
+ work[il], m);
+ dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
+ 1], lda);
+/* L40: */
+ }
+ }
+ } else if (wntqs) {
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need M+BDSPAC)
+*/
+
+ dlaset_("F", m, n, &c_b29, &c_b29, &vt[vt_offset], ldvt);
+ dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/*
+ Overwrite U by left singular vectors of A and VT
+ by right singular vectors of A
+ (Workspace: need 3*M, prefer 2*M+M*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
+ ierr);
+ } else if (wntqa) {
+
+/*
+ Perform bidiagonal SVD, computing left singular vectors
+ of bidiagonal matrix in U and computing right singular
+ vectors of bidiagonal matrix in VT
+ (Workspace: need M+BDSPAC)
+*/
+
+ dlaset_("F", n, n, &c_b29, &c_b29, &vt[vt_offset], ldvt);
+ dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
+ vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
+ info);
+
+/* Set the right corner of VT to identity matrix */
+
+ i__1 = *n - *m;
+ i__2 = *n - *m;
+ dlaset_("F", &i__1, &i__2, &c_b29, &c_b15, &vt[*m + 1 + (*m +
+ 1) * vt_dim1], ldvt);
+
+/*
+ Overwrite U by left singular vectors of A and VT
+ by right singular vectors of A
+ (Workspace: need 2*M+N, prefer 2*M+N*NB)
+*/
+
+ i__1 = *lwork - nwork + 1;
+ dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
+ itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
+ i__1 = *lwork - nwork + 1;
+ dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
+ itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
+ ierr);
+ }
+
+ }
+
+ }
+
+/* Undo scaling if necessary */
+
+ if (iscl == 1) {
+ if (anrm > bignum) {
+ dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, &ierr);
+ }
+ if (anrm < smlnum) {
+ dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, &ierr);
+ }
+ }
+
+/* Return optimal workspace in WORK(1) */
+
+ work[1] = (doublereal) maxwrk;
+
+ return 0;
+
+/* End of DGESDD */
+
+} /* dgesdd_ */
+
+/* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer
+ *lda, integer *ipiv, doublereal *b, integer *ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), xerbla_(char *, integer *), dgetrs_(char *, integer *, integer *, doublereal *,
+ integer *, integer *, doublereal *, integer *, integer *);
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ DGESV computes the solution to a real system of linear equations
+ A * X = B,
+ where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+
+ The LU decomposition with partial pivoting and row interchanges is
+ used to factor A as
+ A = P * L * U,
+ where P is a permutation matrix, L is unit lower triangular, and U is
+ upper triangular. The factored form of A is then used to solve the
+ system of equations A * X = B.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The number of linear equations, i.e., the order of the
+ matrix A. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of right hand sides, i.e., the number of columns
+ of the matrix B. NRHS >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the N-by-N coefficient matrix A.
+ On exit, the factors L and U from the factorization
+ A = P*L*U; the unit diagonal elements of L are not stored.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ IPIV (output) INTEGER array, dimension (N)
+ The pivot indices that define the permutation matrix P;
+ row i of the matrix was interchanged with row IPIV(i).
+
+ B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+ On entry, the N-by-NRHS matrix of right hand side matrix B.
+ On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, U(i,i) is exactly zero. The factorization
+ has been completed, but the factor U is exactly
+ singular, so the solution could not be computed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*nrhs < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGESV ", &i__1);
+ return 0;
+ }
+
+/* Compute the LU factorization of A. */
+
+ dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
+ if (*info == 0) {
+
+/* Solve the system A*X = B, overwriting B with X. */
+
+ dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
+ b_offset], ldb, info);
+ }
+ return 0;
+
+/* End of DGESV */
+
+} /* dgesv_ */
+
+/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
+ lda, integer *ipiv, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer j, jp;
+ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *), dscal_(integer *, doublereal *, doublereal *, integer
+ *), dswap_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1992
+
+
+ Purpose
+ =======
+
+ DGETF2 computes an LU factorization of a general m-by-n matrix A
+ using partial pivoting with row interchanges.
+
+ The factorization has the form
+ A = P * L * U
+ where P is a permutation matrix, L is lower triangular with unit
+ diagonal elements (lower trapezoidal if m > n), and U is upper
+ triangular (upper trapezoidal if m < n).
+
+ This is the right-looking Level 2 BLAS version of the algorithm.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the m by n matrix to be factored.
+ On exit, the factors L and U from the factorization
+ A = P*L*U; the unit diagonal elements of L are not stored.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ IPIV (output) INTEGER array, dimension (min(M,N))
+ The pivot indices; for 1 <= i <= min(M,N), row i of the
+ matrix was interchanged with row IPIV(i).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -k, the k-th argument had an illegal value
+ > 0: if INFO = k, U(k,k) is exactly zero. The factorization
+ has been completed, but the factor U is exactly
+ singular, and division by zero will occur if it is used
+ to solve a system of equations.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --ipiv;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGETF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+ i__1 = min(*m,*n);
+ for (j = 1; j <= i__1; ++j) {
+
+/* Find pivot and test for singularity. */
+
+ i__2 = *m - j + 1;
+ jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
+ ipiv[j] = jp;
+ if (a[jp + j * a_dim1] != 0.) {
+
+/* Apply the interchange to columns 1:N. */
+
+ if (jp != j) {
+ dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
+ }
+
+/* Compute elements J+1:M of J-th column. */
+
+ if (j < *m) {
+ i__2 = *m - j;
+ d__1 = 1. / a[j + j * a_dim1];
+ dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+
+ } else if (*info == 0) {
+
+ *info = j;
+ }
+
+ if (j < min(*m,*n)) {
+
+/* Update trailing submatrix. */
+
+ i__2 = *m - j;
+ i__3 = *n - j;
+ dger_(&i__2, &i__3, &c_b151, &a[j + 1 + j * a_dim1], &c__1, &a[j
+ + (j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1],
+ lda);
+ }
+/* L10: */
+ }
+ return 0;
+
+/* End of DGETF2 */
+
+} /* dgetf2_ */
+
+/* Subroutine */ int dgetrf_(integer *m, integer *n, doublereal *a, integer *
+ lda, integer *ipiv, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+
+ /* Local variables */
+ static integer i__, j, jb, nb;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer iinfo;
+ extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *), dgetf2_(
+ integer *, integer *, doublereal *, integer *, integer *, integer
+ *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *,
+ integer *, integer *, integer *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ DGETRF computes an LU factorization of a general M-by-N matrix A
+ using partial pivoting with row interchanges.
+
+ The factorization has the form
+ A = P * L * U
+ where P is a permutation matrix, L is lower triangular with unit
+ diagonal elements (lower trapezoidal if m > n), and U is upper
+ triangular (upper trapezoidal if m < n).
+
+ This is the right-looking Level 3 BLAS version of the algorithm.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the M-by-N matrix to be factored.
+ On exit, the factors L and U from the factorization
+ A = P*L*U; the unit diagonal elements of L are not stored.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ IPIV (output) INTEGER array, dimension (min(M,N))
+ The pivot indices; for 1 <= i <= min(M,N), row i of the
+ matrix was interchanged with row IPIV(i).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, U(i,i) is exactly zero. The factorization
+ has been completed, but the factor U is exactly
+ singular, and division by zero will occur if it is used
+ to solve a system of equations.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --ipiv;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGETRF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+/* Determine the block size for this environment. */
+
+ nb = ilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
+ 1);
+ if (nb <= 1 || nb >= min(*m,*n)) {
+
+/* Use unblocked code. */
+
+ dgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
+ } else {
+
+/* Use blocked code. */
+
+ i__1 = min(*m,*n);
+ i__2 = nb;
+ for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+/* Computing MIN */
+ i__3 = min(*m,*n) - j + 1;
+ jb = min(i__3,nb);
+
+/*
+ Factor diagonal and subdiagonal blocks and test for exact
+ singularity.
+*/
+
+ i__3 = *m - j + 1;
+ dgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);
+
+/* Adjust INFO and the pivot indices. */
+
+ if ((*info == 0 && iinfo > 0)) {
+ *info = iinfo + j - 1;
+ }
+/* Computing MIN */
+ i__4 = *m, i__5 = j + jb - 1;
+ i__3 = min(i__4,i__5);
+ for (i__ = j; i__ <= i__3; ++i__) {
+ ipiv[i__] = j - 1 + ipiv[i__];
+/* L10: */
+ }
+
+/* Apply interchanges to columns 1:J-1. */
+
+ i__3 = j - 1;
+ i__4 = j + jb - 1;
+ dlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);
+
+ if (j + jb <= *n) {
+
+/* Apply interchanges to columns J+JB:N. */
+
+ i__3 = *n - j - jb + 1;
+ i__4 = j + jb - 1;
+ dlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
+ ipiv[1], &c__1);
+
+/* Compute block row of U. */
+
+ i__3 = *n - j - jb + 1;
+ dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
+ c_b15, &a[j + j * a_dim1], lda, &a[j + (j + jb) *
+ a_dim1], lda);
+ if (j + jb <= *m) {
+
+/* Update trailing submatrix. */
+
+ i__3 = *m - j - jb + 1;
+ i__4 = *n - j - jb + 1;
+ dgemm_("No transpose", "No transpose", &i__3, &i__4, &jb,
+ &c_b151, &a[j + jb + j * a_dim1], lda, &a[j + (j
+ + jb) * a_dim1], lda, &c_b15, &a[j + jb + (j + jb)
+ * a_dim1], lda);
+ }
+ }
+/* L20: */
+ }
+ }
+ return 0;
+
+/* End of DGETRF */
+
+} /* dgetrf_ */
+
+/* Subroutine */ int dgetrs_(char *trans, integer *n, integer *nrhs,
+ doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
+ ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *), xerbla_(
+ char *, integer *), dlaswp_(integer *, doublereal *,
+ integer *, integer *, integer *, integer *, integer *);
+ static logical notran;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ DGETRS solves a system of linear equations
+ A * X = B or A' * X = B
+ with a general N-by-N matrix A using the LU factorization computed
+ by DGETRF.
+
+ Arguments
+ =========
+
+ TRANS (input) CHARACTER*1
+ Specifies the form of the system of equations:
+ = 'N': A * X = B (No transpose)
+ = 'T': A'* X = B (Transpose)
+ = 'C': A'* X = B (Conjugate transpose = Transpose)
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of right hand sides, i.e., the number of columns
+ of the matrix B. NRHS >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ The factors L and U from the factorization A = P*L*U
+ as computed by DGETRF.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ IPIV (input) INTEGER array, dimension (N)
+ The pivot indices from DGETRF; for 1<=i<=N, row i of the
+ matrix was interchanged with row IPIV(i).
+
+ B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+ On entry, the right hand side matrix B.
+ On exit, the solution matrix X.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ notran = lsame_(trans, "N");
+ if (((! notran && ! lsame_(trans, "T")) && ! lsame_(
+ trans, "C"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGETRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (notran) {
+
+/*
+ Solve A * X = B.
+
+ Apply row interchanges to the right hand sides.
+*/
+
+ dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1);
+
+/* Solve L*X = B, overwriting B with X. */
+
+ dtrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b15, &a[
+ a_offset], lda, &b[b_offset], ldb);
+
+/* Solve U*X = B, overwriting B with X. */
+
+ dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b15, &
+ a[a_offset], lda, &b[b_offset], ldb);
+ } else {
+
+/*
+ Solve A' * X = B.
+
+ Solve U'*X = B, overwriting B with X.
+*/
+
+ dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b15, &a[
+ a_offset], lda, &b[b_offset], ldb);
+
+/* Solve L'*X = B, overwriting B with X. */
+
+ dtrsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b15, &a[
+ a_offset], lda, &b[b_offset], ldb);
+
+/* Apply row interchanges to the solution vectors. */
+
+ dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1);
+ }
+
+ return 0;
+
+/* End of DGETRS */
+
+} /* dgetrs_ */
+
+/* Subroutine */ int dhseqr_(char *job, char *compz, integer *n, integer *ilo,
+ integer *ihi, doublereal *h__, integer *ldh, doublereal *wr,
+ doublereal *wi, doublereal *z__, integer *ldz, doublereal *work,
+ integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2], i__4,
+ i__5;
+ doublereal d__1, d__2;
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i__, j, k, l;
+ static doublereal s[225] /* was [15][15] */, v[16];
+ static integer i1, i2, ii, nh, nr, ns, nv;
+ static doublereal vv[16];
+ static integer itn;
+ static doublereal tau;
+ static integer its;
+ static doublereal ulp, tst1;
+ static integer maxb;
+ static doublereal absw;
+ static integer ierr;
+ static doublereal unfl, temp, ovfl;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+ static integer itemp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static logical initz, wantt, wantz;
+ extern doublereal dlapy2_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
+
+ extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
+ doublereal *);
+ extern /* Subroutine */ int dlahqr_(logical *, logical *, integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, integer *, doublereal *, integer *,
+ integer *), dlacpy_(char *, integer *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlaset_(char *,
+ integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *), dlarfx_(
+ char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *);
+ static doublereal smlnum;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DHSEQR computes the eigenvalues of a real upper Hessenberg matrix H
+ and, optionally, the matrices T and Z from the Schur decomposition
+ H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur
+ form), and Z is the orthogonal matrix of Schur vectors.
+
+ Optionally Z may be postmultiplied into an input orthogonal matrix Q,
+ so that this routine can give the Schur factorization of a matrix A
+ which has been reduced to the Hessenberg form H by the orthogonal
+ matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
+
+ Arguments
+ =========
+
+ JOB (input) CHARACTER*1
+ = 'E': compute eigenvalues only;
+ = 'S': compute eigenvalues and the Schur form T.
+
+ COMPZ (input) CHARACTER*1
+ = 'N': no Schur vectors are computed;
+ = 'I': Z is initialized to the unit matrix and the matrix Z
+ of Schur vectors of H is returned;
+ = 'V': Z must contain an orthogonal matrix Q on entry, and
+ the product Q*Z is returned.
+
+ N (input) INTEGER
+ The order of the matrix H. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ It is assumed that H is already upper triangular in rows
+ and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+ set by a previous call to DGEBAL, and then passed to SGEHRD
+ when the matrix output by DGEBAL is reduced to Hessenberg
+ form. Otherwise ILO and IHI should be set to 1 and N
+ respectively.
+ 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+
+ H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
+ On entry, the upper Hessenberg matrix H.
+ On exit, if JOB = 'S', H contains the upper quasi-triangular
+ matrix T from the Schur decomposition (the Schur form);
+ 2-by-2 diagonal blocks (corresponding to complex conjugate
+ pairs of eigenvalues) are returned in standard form, with
+ H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',
+ the contents of H are unspecified on exit.
+
+ LDH (input) INTEGER
+ The leading dimension of the array H. LDH >= max(1,N).
+
+ WR (output) DOUBLE PRECISION array, dimension (N)
+ WI (output) DOUBLE PRECISION array, dimension (N)
+ The real and imaginary parts, respectively, of the computed
+ eigenvalues. If two eigenvalues are computed as a complex
+ conjugate pair, they are stored in consecutive elements of
+ WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
+ WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the
+ same order as on the diagonal of the Schur form returned in
+ H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
+ diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and
+ WI(i+1) = -WI(i).
+
+ Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+ If COMPZ = 'N': Z is not referenced.
+ If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
+ contains the orthogonal matrix Z of the Schur vectors of H.
+ If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
+ which is assumed to be equal to the unit matrix except for
+ the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
+ Normally Q is the orthogonal matrix generated by DORGHR after
+ the call to DGEHRD which formed the Hessenberg matrix H.
+
+ LDZ (input) INTEGER
+ The leading dimension of the array Z.
+ LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,N).
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, DHSEQR failed to compute all of the
+ eigenvalues in a total of 30*(IHI-ILO+1) iterations;
+ elements 1:ilo-1 and i+1:n of WR and WI contain those
+ eigenvalues which have been successfully computed.
+
+ =====================================================================
+
+
+ Decode and test the input parameters
+*/
+
+ /* Parameter adjustments */
+ h_dim1 = *ldh;
+ h_offset = 1 + h_dim1 * 1;
+ h__ -= h_offset;
+ --wr;
+ --wi;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ wantt = lsame_(job, "S");
+ initz = lsame_(compz, "I");
+ wantz = initz || lsame_(compz, "V");
+
+ *info = 0;
+ work[1] = (doublereal) max(1,*n);
+ lquery = *lwork == -1;
+ if ((! lsame_(job, "E") && ! wantt)) {
+ *info = -1;
+ } else if ((! lsame_(compz, "N") && ! wantz)) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ilo < 1 || *ilo > max(1,*n)) {
+ *info = -4;
+ } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
+ *info = -5;
+ } else if (*ldh < max(1,*n)) {
+ *info = -7;
+ } else if (*ldz < 1 || (wantz && *ldz < max(1,*n))) {
+ *info = -11;
+ } else if ((*lwork < max(1,*n) && ! lquery)) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DHSEQR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Initialize Z, if necessary */
+
+ if (initz) {
+ dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
+ }
+
+/* Store the eigenvalues isolated by DGEBAL. */
+
+ i__1 = *ilo - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ wr[i__] = h__[i__ + i__ * h_dim1];
+ wi[i__] = 0.;
+/* L10: */
+ }
+ i__1 = *n;
+ for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
+ wr[i__] = h__[i__ + i__ * h_dim1];
+ wi[i__] = 0.;
+/* L20: */
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+ if (*ilo == *ihi) {
+ wr[*ilo] = h__[*ilo + *ilo * h_dim1];
+ wi[*ilo] = 0.;
+ return 0;
+ }
+
+/*
+ Set rows and columns ILO to IHI to zero below the first
+ subdiagonal.
+*/
+
+ i__1 = *ihi - 2;
+ for (j = *ilo; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j + 2; i__ <= i__2; ++i__) {
+ h__[i__ + j * h_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+ nh = *ihi - *ilo + 1;
+
+/*
+ Determine the order of the multi-shift QR algorithm to be used.
+
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = job;
+ i__3[1] = 1, a__1[1] = compz;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ ns = ilaenv_(&c__4, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
+ ftnlen)2);
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = job;
+ i__3[1] = 1, a__1[1] = compz;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ maxb = ilaenv_(&c__8, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
+ ftnlen)2);
+ if (ns <= 2 || ns > nh || maxb >= nh) {
+
+/* Use the standard double-shift algorithm */
+
+ dlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
+ 1], ilo, ihi, &z__[z_offset], ldz, info);
+ return 0;
+ }
+ maxb = max(3,maxb);
+/* Computing MIN */
+ i__1 = min(ns,maxb);
+ ns = min(i__1,15);
+
+/*
+ Now 2 < NS <= MAXB < NH.
+
+ Set machine-dependent constants for the stopping criterion.
+ If norm(H) <= sqrt(OVFL), overflow should not occur.
+*/
+
+ unfl = SAFEMINIMUM;
+ ovfl = 1. / unfl;
+ dlabad_(&unfl, &ovfl);
+ ulp = PRECISION;
+ smlnum = unfl * (nh / ulp);
+
+/*
+ I1 and I2 are the indices of the first row and last column of H
+ to which transformations must be applied. If eigenvalues only are
+ being computed, I1 and I2 are set inside the main loop.
+*/
+
+ if (wantt) {
+ i1 = 1;
+ i2 = *n;
+ }
+
+/* ITN is the total number of multiple-shift QR iterations allowed. */
+
+ itn = nh * 30;
+
+/*
+ The main loop begins here. I is the loop index and decreases from
+ IHI to ILO in steps of at most MAXB. Each iteration of the loop
+ works with the active submatrix in rows and columns L to I.
+ Eigenvalues I+1 to IHI have already converged. Either L = ILO or
+ H(L,L-1) is negligible so that the matrix splits.
+*/
+
+ i__ = *ihi;
+L50:
+ l = *ilo;
+ if (i__ < *ilo) {
+ goto L170;
+ }
+
+/*
+ Perform multiple-shift QR iterations on rows and columns ILO to I
+ until a submatrix of order at most MAXB splits off at the bottom
+ because a subdiagonal element has become negligible.
+*/
+
+ i__1 = itn;
+ for (its = 0; its <= i__1; ++its) {
+
+/* Look for a single small subdiagonal element. */
+
+ i__2 = l + 1;
+ for (k = i__; k >= i__2; --k) {
+ tst1 = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
+ h__[k + k * h_dim1], abs(d__2));
+ if (tst1 == 0.) {
+ i__4 = i__ - l + 1;
+ tst1 = dlanhs_("1", &i__4, &h__[l + l * h_dim1], ldh, &work[1]
+ );
+ }
+/* Computing MAX */
+ d__2 = ulp * tst1;
+ if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= max(d__2,
+ smlnum)) {
+ goto L70;
+ }
+/* L60: */
+ }
+L70:
+ l = k;
+ if (l > *ilo) {
+
+/* H(L,L-1) is negligible. */
+
+ h__[l + (l - 1) * h_dim1] = 0.;
+ }
+
+/* Exit from loop if a submatrix of order <= MAXB has split off. */
+
+ if (l >= i__ - maxb + 1) {
+ goto L160;
+ }
+
+/*
+ Now the active submatrix is in rows and columns L to I. If
+ eigenvalues only are being computed, only the active submatrix
+ need be transformed.
+*/
+
+ if (! wantt) {
+ i1 = l;
+ i2 = i__;
+ }
+
+ if (its == 20 || its == 30) {
+
+/* Exceptional shifts. */
+
+ i__2 = i__;
+ for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
+ wr[ii] = ((d__1 = h__[ii + (ii - 1) * h_dim1], abs(d__1)) + (
+ d__2 = h__[ii + ii * h_dim1], abs(d__2))) * 1.5;
+ wi[ii] = 0.;
+/* L80: */
+ }
+ } else {
+
+/* Use eigenvalues of trailing submatrix of order NS as shifts. */
+
+ dlacpy_("Full", &ns, &ns, &h__[i__ - ns + 1 + (i__ - ns + 1) *
+ h_dim1], ldh, s, &c__15);
+ dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &wr[i__ -
+ ns + 1], &wi[i__ - ns + 1], &c__1, &ns, &z__[z_offset],
+ ldz, &ierr);
+ if (ierr > 0) {
+
+/*
+ If DLAHQR failed to compute all NS eigenvalues, use the
+ unconverged diagonal elements as the remaining shifts.
+*/
+
+ i__2 = ierr;
+ for (ii = 1; ii <= i__2; ++ii) {
+ wr[i__ - ns + ii] = s[ii + ii * 15 - 16];
+ wi[i__ - ns + ii] = 0.;
+/* L90: */
+ }
+ }
+ }
+
+/*
+ Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
+ where G is the Hessenberg submatrix H(L:I,L:I) and w is
+ the vector of shifts (stored in WR and WI). The result is
+ stored in the local array V.
+*/
+
+ v[0] = 1.;
+ i__2 = ns + 1;
+ for (ii = 2; ii <= i__2; ++ii) {
+ v[ii - 1] = 0.;
+/* L100: */
+ }
+ nv = 1;
+ i__2 = i__;
+ for (j = i__ - ns + 1; j <= i__2; ++j) {
+ if (wi[j] >= 0.) {
+ if (wi[j] == 0.) {
+
+/* real shift */
+
+ i__4 = nv + 1;
+ dcopy_(&i__4, v, &c__1, vv, &c__1);
+ i__4 = nv + 1;
+ d__1 = -wr[j];
+ dgemv_("No transpose", &i__4, &nv, &c_b15, &h__[l + l *
+ h_dim1], ldh, vv, &c__1, &d__1, v, &c__1);
+ ++nv;
+ } else if (wi[j] > 0.) {
+
+/* complex conjugate pair of shifts */
+
+ i__4 = nv + 1;
+ dcopy_(&i__4, v, &c__1, vv, &c__1);
+ i__4 = nv + 1;
+ d__1 = wr[j] * -2.;
+ dgemv_("No transpose", &i__4, &nv, &c_b15, &h__[l + l *
+ h_dim1], ldh, v, &c__1, &d__1, vv, &c__1);
+ i__4 = nv + 1;
+ itemp = idamax_(&i__4, vv, &c__1);
+/* Computing MAX */
+ d__2 = (d__1 = vv[itemp - 1], abs(d__1));
+ temp = 1. / max(d__2,smlnum);
+ i__4 = nv + 1;
+ dscal_(&i__4, &temp, vv, &c__1);
+ absw = dlapy2_(&wr[j], &wi[j]);
+ temp = temp * absw * absw;
+ i__4 = nv + 2;
+ i__5 = nv + 1;
+ dgemv_("No transpose", &i__4, &i__5, &c_b15, &h__[l + l *
+ h_dim1], ldh, vv, &c__1, &temp, v, &c__1);
+ nv += 2;
+ }
+
+/*
+ Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
+ reset it to the unit vector.
+*/
+
+ itemp = idamax_(&nv, v, &c__1);
+ temp = (d__1 = v[itemp - 1], abs(d__1));
+ if (temp == 0.) {
+ v[0] = 1.;
+ i__4 = nv;
+ for (ii = 2; ii <= i__4; ++ii) {
+ v[ii - 1] = 0.;
+/* L110: */
+ }
+ } else {
+ temp = max(temp,smlnum);
+ d__1 = 1. / temp;
+ dscal_(&nv, &d__1, v, &c__1);
+ }
+ }
+/* L120: */
+ }
+
+/* Multiple-shift QR step */
+
+ i__2 = i__ - 1;
+ for (k = l; k <= i__2; ++k) {
+
+/*
+ The first iteration of this loop determines a reflection G
+ from the vector V and applies it from left and right to H,
+ thus creating a nonzero bulge below the subdiagonal.
+
+ Each subsequent iteration determines a reflection G to
+ restore the Hessenberg form in the (K-1)th column, and thus
+ chases the bulge one step toward the bottom of the active
+ submatrix. NR is the order of G.
+
+ Computing MIN
+*/
+ i__4 = ns + 1, i__5 = i__ - k + 1;
+ nr = min(i__4,i__5);
+ if (k > l) {
+ dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
+ }
+ dlarfg_(&nr, v, &v[1], &c__1, &tau);
+ if (k > l) {
+ h__[k + (k - 1) * h_dim1] = v[0];
+ i__4 = i__;
+ for (ii = k + 1; ii <= i__4; ++ii) {
+ h__[ii + (k - 1) * h_dim1] = 0.;
+/* L130: */
+ }
+ }
+ v[0] = 1.;
+
+/*
+ Apply G from the left to transform the rows of the matrix in
+ columns K to I2.
+*/
+
+ i__4 = i2 - k + 1;
+ dlarfx_("Left", &nr, &i__4, v, &tau, &h__[k + k * h_dim1], ldh, &
+ work[1]);
+
+/*
+ Apply G from the right to transform the columns of the
+ matrix in rows I1 to min(K+NR,I).
+
+ Computing MIN
+*/
+ i__5 = k + nr;
+ i__4 = min(i__5,i__) - i1 + 1;
+ dlarfx_("Right", &i__4, &nr, v, &tau, &h__[i1 + k * h_dim1], ldh,
+ &work[1]);
+
+ if (wantz) {
+
+/* Accumulate transformations in the matrix Z */
+
+ dlarfx_("Right", &nh, &nr, v, &tau, &z__[*ilo + k * z_dim1],
+ ldz, &work[1]);
+ }
+/* L140: */
+ }
+
+/* L150: */
+ }
+
+/* Failure to converge in remaining number of iterations */
+
+ *info = i__;
+ return 0;
+
+L160:
+
+/*
+ A submatrix of order <= MAXB in rows and columns L to I has split
+ off. Use the double-shift QR algorithm to handle it.
+*/
+
+ dlahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &wr[1], &wi[1],
+ ilo, ihi, &z__[z_offset], ldz, info);
+ if (*info > 0) {
+ return 0;
+ }
+
+/*
+ Decrement number of remaining iterations, and return to start of
+ the main loop with a new value of I.
+*/
+
+ itn -= its;
+ i__ = l - 1;
+ goto L50;
+
+L170:
+ work[1] = (doublereal) max(1,*n);
+ return 0;
+
+/* End of DHSEQR */
+
+} /* dhseqr_ */
+
+/* Subroutine */ int dlabad_(doublereal *small, doublereal *large)
+{
+ /* Builtin functions */
+ double d_lg10(doublereal *), sqrt(doublereal);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLABAD takes as input the values computed by DLAMCH for underflow and
+ overflow, and returns the square root of each of these values if the
+ log of LARGE is sufficiently large. This subroutine is intended to
+ identify machines with a large exponent range, such as the Crays, and
+ redefine the underflow and overflow limits to be the square roots of
+ the values computed by DLAMCH. This subroutine is needed because
+ DLAMCH does not compensate for poor arithmetic in the upper half of
+ the exponent range, as is found on a Cray.
+
+ Arguments
+ =========
+
+ SMALL (input/output) DOUBLE PRECISION
+ On entry, the underflow threshold as computed by DLAMCH.
+ On exit, if LOG10(LARGE) is sufficiently large, the square
+ root of SMALL, otherwise unchanged.
+
+ LARGE (input/output) DOUBLE PRECISION
+ On entry, the overflow threshold as computed by DLAMCH.
+ On exit, if LOG10(LARGE) is sufficiently large, the square
+ root of LARGE, otherwise unchanged.
+
+ =====================================================================
+
+
+ If it looks like we're on a Cray, take the square root of
+ SMALL and LARGE to avoid overflow and underflow problems.
+*/
+
+ if (d_lg10(large) > 2e3) {
+ *small = sqrt(*small);
+ *large = sqrt(*large);
+ }
+
+ return 0;
+
+/* End of DLABAD */
+
+} /* dlabad_ */
+
+/* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal *
+ a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq,
+ doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer
+ *ldy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
+ i__3;
+
+ /* Local variables */
+ static integer i__;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dgemv_(char *, integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLABRD reduces the first NB rows and columns of a real general
+ m by n matrix A to upper or lower bidiagonal form by an orthogonal
+ transformation Q' * A * P, and returns the matrices X and Y which
+ are needed to apply the transformation to the unreduced part of A.
+
+ If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
+ bidiagonal form.
+
+ This is an auxiliary routine called by DGEBRD
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows in the matrix A.
+
+ N (input) INTEGER
+ The number of columns in the matrix A.
+
+ NB (input) INTEGER
+ The number of leading rows and columns of A to be reduced.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the m by n general matrix to be reduced.
+ On exit, the first NB rows and columns of the matrix are
+ overwritten; the rest of the array is unchanged.
+ If m >= n, elements on and below the diagonal in the first NB
+ columns, with the array TAUQ, represent the orthogonal
+ matrix Q as a product of elementary reflectors; and
+ elements above the diagonal in the first NB rows, with the
+ array TAUP, represent the orthogonal matrix P as a product
+ of elementary reflectors.
+ If m < n, elements below the diagonal in the first NB
+ columns, with the array TAUQ, represent the orthogonal
+ matrix Q as a product of elementary reflectors, and
+ elements on and above the diagonal in the first NB rows,
+ with the array TAUP, represent the orthogonal matrix P as
+ a product of elementary reflectors.
+ See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ D (output) DOUBLE PRECISION array, dimension (NB)
+ The diagonal elements of the first NB rows and columns of
+ the reduced matrix. D(i) = A(i,i).
+
+ E (output) DOUBLE PRECISION array, dimension (NB)
+ The off-diagonal elements of the first NB rows and columns of
+ the reduced matrix.
+
+ TAUQ (output) DOUBLE PRECISION array dimension (NB)
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix Q. See Further Details.
+
+ TAUP (output) DOUBLE PRECISION array, dimension (NB)
+ The scalar factors of the elementary reflectors which
+ represent the orthogonal matrix P. See Further Details.
+
+ X (output) DOUBLE PRECISION array, dimension (LDX,NB)
+ The m-by-nb matrix X required to update the unreduced part
+ of A.
+
+ LDX (input) INTEGER
+ The leading dimension of the array X. LDX >= M.
+
+ Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
+ The n-by-nb matrix Y required to update the unreduced part
+ of A.
+
+ LDY (output) INTEGER
+ The leading dimension of the array Y. LDY >= N.
+
+ Further Details
+ ===============
+
+ The matrices Q and P are represented as products of elementary
+ reflectors:
+
+ Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
+
+ Each H(i) and G(i) has the form:
+
+ H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
+
+ where tauq and taup are real scalars, and v and u are real vectors.
+
+ If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
+ A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
+ A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
+ A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
+ A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
+
+ The elements of the vectors v and u together form the m-by-nb matrix
+ V and the nb-by-n matrix U' which are needed, with X and Y, to apply
+ the transformation to the unreduced part of the matrix, using a block
+ update of the form: A := A - V*Y' - X*U'.
+
+ The contents of A on exit are illustrated by the following examples
+ with nb = 2:
+
+ m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
+
+ ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
+ ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
+ ( v1 v2 a a a ) ( v1 1 a a a a )
+ ( v1 v2 a a a ) ( v1 v2 a a a a )
+ ( v1 v2 a a a ) ( v1 v2 a a a a )
+ ( v1 v2 a a a )
+
+ where a denotes an element of the original matrix which is unchanged,
+ vi denotes an element of the vector defining H(i), and ui an element
+ of the vector defining G(i).
+
+ =====================================================================
+
+
+ Quick return if possible
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --d__;
+ --e;
+ --tauq;
+ --taup;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1 * 1;
+ x -= x_offset;
+ y_dim1 = *ldy;
+ y_offset = 1 + y_dim1 * 1;
+ y -= y_offset;
+
+ /* Function Body */
+ if (*m <= 0 || *n <= 0) {
+ return 0;
+ }
+
+ if (*m >= *n) {
+
+/* Reduce to upper bidiagonal form */
+
+ i__1 = *nb;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Update A(i:m,i) */
+
+ i__2 = *m - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + a_dim1],
+ lda, &y[i__ + y_dim1], ldy, &c_b15, &a[i__ + i__ * a_dim1]
+ , &c__1);
+ i__2 = *m - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + x_dim1],
+ ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b15, &a[i__ + i__ *
+ a_dim1], &c__1);
+
+/* Generate reflection Q(i) to annihilate A(i+1:m,i) */
+
+ i__2 = *m - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ *
+ a_dim1], &c__1, &tauq[i__]);
+ d__[i__] = a[i__ + i__ * a_dim1];
+ if (i__ < *n) {
+ a[i__ + i__ * a_dim1] = 1.;
+
+/* Compute Y(i+1:n,i) */
+
+ i__2 = *m - i__ + 1;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + (i__ + 1) *
+ a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b29,
+ &y[i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *m - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + a_dim1],
+ lda, &a[i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
+ y_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + 1 +
+ y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b15, &y[
+ i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *m - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &x[i__ + x_dim1],
+ ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
+ y_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b15,
+ &y[i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *n - i__;
+ dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
+
+/* Update A(i,i+1:n) */
+
+ i__2 = *n - i__;
+ dgemv_("No transpose", &i__2, &i__, &c_b151, &y[i__ + 1 +
+ y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b15, &a[i__ +
+ (i__ + 1) * a_dim1], lda);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b15, &a[
+ i__ + (i__ + 1) * a_dim1], lda);
+
+/* Generate reflection P(i) to annihilate A(i,i+2:n) */
+
+ i__2 = *n - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
+ i__3,*n) * a_dim1], lda, &taup[i__]);
+ e[i__] = a[i__ + (i__ + 1) * a_dim1];
+ a[i__ + (i__ + 1) * a_dim1] = 1.;
+
+/* Compute X(i+1:m,i) */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__;
+ dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + (
+ i__ + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
+ lda, &c_b29, &x[i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__, &c_b15, &y[i__ + 1 + y_dim1],
+ ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b29, &x[
+ i__ * x_dim1 + 1], &c__1);
+ i__2 = *m - i__;
+ dgemv_("No transpose", &i__2, &i__, &c_b151, &a[i__ + 1 +
+ a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
+ i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
+ c_b29, &x[i__ * x_dim1 + 1], &c__1);
+ i__2 = *m - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + 1 +
+ x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
+ i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = *m - i__;
+ dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Reduce to lower bidiagonal form */
+
+ i__1 = *nb;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Update A(i,i:n) */
+
+ i__2 = *n - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + y_dim1],
+ ldy, &a[i__ + a_dim1], lda, &c_b15, &a[i__ + i__ * a_dim1]
+ , lda);
+ i__2 = i__ - 1;
+ i__3 = *n - i__ + 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[i__ * a_dim1 + 1],
+ lda, &x[i__ + x_dim1], ldx, &c_b15, &a[i__ + i__ * a_dim1]
+ , lda);
+
+/* Generate reflection P(i) to annihilate A(i,i+1:n) */
+
+ i__2 = *n - i__ + 1;
+/* Computing MIN */
+ i__3 = i__ + 1;
+ dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) *
+ a_dim1], lda, &taup[i__]);
+ d__[i__] = a[i__ + i__ * a_dim1];
+ if (i__ < *m) {
+ a[i__ + i__ * a_dim1] = 1.;
+
+/* Compute X(i+1:m,i) */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__ + 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + i__
+ * a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b29, &
+ x[i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = *n - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &y[i__ + y_dim1],
+ ldy, &a[i__ + i__ * a_dim1], lda, &c_b29, &x[i__ *
+ x_dim1 + 1], &c__1);
+ i__2 = *m - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
+ a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
+ i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__ + 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b15, &a[i__ * a_dim1
+ + 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b29, &x[
+ i__ * x_dim1 + 1], &c__1);
+ i__2 = *m - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &x[i__ + 1 +
+ x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b15, &x[
+ i__ + 1 + i__ * x_dim1], &c__1);
+ i__2 = *m - i__;
+ dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
+
+/* Update A(i+1:m,i) */
+
+ i__2 = *m - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
+ a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b15, &a[i__ +
+ 1 + i__ * a_dim1], &c__1);
+ i__2 = *m - i__;
+ dgemv_("No transpose", &i__2, &i__, &c_b151, &x[i__ + 1 +
+ x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b15, &a[
+ i__ + 1 + i__ * a_dim1], &c__1);
+
+/* Generate reflection Q(i) to annihilate A(i+2:m,i) */
+
+ i__2 = *m - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) +
+ i__ * a_dim1], &c__1, &tauq[i__]);
+ e[i__] = a[i__ + 1 + i__ * a_dim1];
+ a[i__ + 1 + i__ * a_dim1] = 1.;
+
+/* Compute Y(i+1:n,i) */
+
+ i__2 = *m - i__;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + (i__ +
+ 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
+ &c_b29, &y[i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *m - i__;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + a_dim1]
+ , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &y[
+ i__ * y_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &y[i__ + 1 +
+ y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b15, &y[
+ i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *m - i__;
+ dgemv_("Transpose", &i__2, &i__, &c_b15, &x[i__ + 1 + x_dim1],
+ ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &y[
+ i__ * y_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ dgemv_("Transpose", &i__, &i__2, &c_b151, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b15,
+ &y[i__ + 1 + i__ * y_dim1], &c__1);
+ i__2 = *n - i__;
+ dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
+ }
+/* L20: */
+ }
+ }
+ return 0;
+
+/* End of DLABRD */
+
+} /* dlabrd_ */
+
+/* Subroutine */ int dlacpy_(char *uplo, integer *m, integer *n, doublereal *
+ a, integer *lda, doublereal *b, integer *ldb)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j;
+ extern logical lsame_(char *, char *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLACPY copies all or part of a two-dimensional matrix A to another
+ matrix B.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ Specifies the part of the matrix A to be copied to B.
+ = 'U': Upper triangular part
+ = 'L': Lower triangular part
+ Otherwise: All of the matrix A
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ The m by n matrix A. If UPLO = 'U', only the upper triangle
+ or trapezoid is accessed; if UPLO = 'L', only the lower
+ triangle or trapezoid is accessed.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ B (output) DOUBLE PRECISION array, dimension (LDB,N)
+ On exit, B = A in the locations specified by UPLO.
+
+ LDB (input) INTEGER
+ The leading dimension of the array B. LDB >= max(1,M).
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+
+ /* Function Body */
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(j,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
+/* L10: */
+ }
+/* L20: */
+ }
+ } else if (lsame_(uplo, "L")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
+/* L50: */
+ }
+/* L60: */
+ }
+ }
+ return 0;
+
+/* End of DLACPY */
+
+} /* dlacpy_ */
+
+/* Subroutine */ int dladiv_(doublereal *a, doublereal *b, doublereal *c__,
+ doublereal *d__, doublereal *p, doublereal *q)
+{
+ static doublereal e, f;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLADIV performs complex division in real arithmetic
+
+ a + i*b
+ p + i*q = ---------
+ c + i*d
+
+ The algorithm is due to Robert L. Smith and can be found
+ in D. Knuth, The art of Computer Programming, Vol.2, p.195
+
+ Arguments
+ =========
+
+ A (input) DOUBLE PRECISION
+ B (input) DOUBLE PRECISION
+ C (input) DOUBLE PRECISION
+ D (input) DOUBLE PRECISION
+ The scalars a, b, c, and d in the above expression.
+
+ P (output) DOUBLE PRECISION
+ Q (output) DOUBLE PRECISION
+ The scalars p and q in the above expression.
+
+ =====================================================================
+*/
+
+
+ if (abs(*d__) < abs(*c__)) {
+ e = *d__ / *c__;
+ f = *c__ + *d__ * e;
+ *p = (*a + *b * e) / f;
+ *q = (*b - *a * e) / f;
+ } else {
+ e = *c__ / *d__;
+ f = *d__ + *c__ * e;
+ *p = (*b + *a * e) / f;
+ *q = (-(*a) + *b * e) / f;
+ }
+
+ return 0;
+
+/* End of DLADIV */
+
+} /* dladiv_ */
+
+/* Subroutine */ int dlae2_(doublereal *a, doublereal *b, doublereal *c__,
+ doublereal *rt1, doublereal *rt2)
+{
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal ab, df, tb, sm, rt, adf, acmn, acmx;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
+ [ A B ]
+ [ B C ].
+ On return, RT1 is the eigenvalue of larger absolute value, and RT2
+ is the eigenvalue of smaller absolute value.
+
+ Arguments
+ =========
+
+ A (input) DOUBLE PRECISION
+ The (1,1) element of the 2-by-2 matrix.
+
+ B (input) DOUBLE PRECISION
+ The (1,2) and (2,1) elements of the 2-by-2 matrix.
+
+ C (input) DOUBLE PRECISION
+ The (2,2) element of the 2-by-2 matrix.
+
+ RT1 (output) DOUBLE PRECISION
+ The eigenvalue of larger absolute value.
+
+ RT2 (output) DOUBLE PRECISION
+ The eigenvalue of smaller absolute value.
+
+ Further Details
+ ===============
+
+ RT1 is accurate to a few ulps barring over/underflow.
+
+ RT2 may be inaccurate if there is massive cancellation in the
+ determinant A*C-B*B; higher precision or correctly rounded or
+ correctly truncated arithmetic would be needed to compute RT2
+ accurately in all cases.
+
+ Overflow is possible only if RT1 is within a factor of 5 of overflow.
+ Underflow is harmless if the input data is 0 or exceeds
+ underflow_threshold / macheps.
+
+ =====================================================================
+
+
+ Compute the eigenvalues
+*/
+
+ sm = *a + *c__;
+ df = *a - *c__;
+ adf = abs(df);
+ tb = *b + *b;
+ ab = abs(tb);
+ if (abs(*a) > abs(*c__)) {
+ acmx = *a;
+ acmn = *c__;
+ } else {
+ acmx = *c__;
+ acmn = *a;
+ }
+ if (adf > ab) {
+/* Computing 2nd power */
+ d__1 = ab / adf;
+ rt = adf * sqrt(d__1 * d__1 + 1.);
+ } else if (adf < ab) {
+/* Computing 2nd power */
+ d__1 = adf / ab;
+ rt = ab * sqrt(d__1 * d__1 + 1.);
+ } else {
+
+/* Includes case AB=ADF=0 */
+
+ rt = ab * sqrt(2.);
+ }
+ if (sm < 0.) {
+ *rt1 = (sm - rt) * .5;
+
+/*
+ Order of execution important.
+ To get fully accurate smaller eigenvalue,
+ next line needs to be executed in higher precision.
+*/
+
+ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
+ } else if (sm > 0.) {
+ *rt1 = (sm + rt) * .5;
+
+/*
+ Order of execution important.
+ To get fully accurate smaller eigenvalue,
+ next line needs to be executed in higher precision.
+*/
+
+ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
+ } else {
+
+/* Includes case RT1 = RT2 = 0 */
+
+ *rt1 = rt * .5;
+ *rt2 = rt * -.5;
+ }
+ return 0;
+
+/* End of DLAE2 */
+
+} /* dlae2_ */
+
+/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n,
+ doublereal *d__, doublereal *e, doublereal *q, integer *ldq,
+ doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double log(doublereal);
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ static integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
+ static doublereal temp;
+ static integer curr;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer iperm;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer indxq, iwrem;
+ extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *);
+ static integer iqptr;
+ extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *,
+ integer *, integer *, integer *, doublereal *, doublereal *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, integer *, integer *, doublereal
+ *, doublereal *, integer *, integer *);
+ static integer tlvls;
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *);
+ static integer igivcl;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer igivnm, submat, curprb, subpbs, igivpt;
+ extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *);
+ static integer curlvl, matsiz, iprmpt, smlsiz;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAED0 computes all eigenvalues and corresponding eigenvectors of a
+ symmetric tridiagonal matrix using the divide and conquer method.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ = 0: Compute eigenvalues only.
+ = 1: Compute eigenvectors of original dense symmetric matrix
+ also. On entry, Q contains the orthogonal matrix used
+ to reduce the original matrix to tridiagonal form.
+ = 2: Compute eigenvalues and eigenvectors of tridiagonal
+ matrix.
+
+ QSIZ (input) INTEGER
+ The dimension of the orthogonal matrix used to reduce
+ the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the main diagonal of the tridiagonal matrix.
+ On exit, its eigenvalues.
+
+ E (input) DOUBLE PRECISION array, dimension (N-1)
+ The off-diagonal elements of the tridiagonal matrix.
+ On exit, E has been destroyed.
+
+ Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
+ On entry, Q must contain an N-by-N orthogonal matrix.
+ If ICOMPQ = 0 Q is not referenced.
+ If ICOMPQ = 1 On entry, Q is a subset of the columns of the
+ orthogonal matrix used to reduce the full
+ matrix to tridiagonal form corresponding to
+ the subset of the full matrix which is being
+ decomposed at this time.
+ If ICOMPQ = 2 On entry, Q will be the identity matrix.
+ On exit, Q contains the eigenvectors of the
+ tridiagonal matrix.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. If eigenvectors are
+ desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
+
+ QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
+ Referenced only when ICOMPQ = 1. Used to store parts of
+ the eigenvector matrix when the updating matrix multiplies
+ take place.
+
+ LDQS (input) INTEGER
+ The leading dimension of the array QSTORE. If ICOMPQ = 1,
+ then LDQS >= max(1,N). In any case, LDQS >= 1.
+
+ WORK (workspace) DOUBLE PRECISION array,
+ If ICOMPQ = 0 or 1, the dimension of WORK must be at least
+ 1 + 3*N + 2*N*lg N + 2*N**2
+ ( lg( N ) = smallest integer k
+ such that 2^k >= N )
+ If ICOMPQ = 2, the dimension of WORK must be at least
+ 4*N + N**2.
+
+ IWORK (workspace) INTEGER array,
+ If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
+ 6 + 6*N + 5*N*lg N.
+ ( lg( N ) = smallest integer k
+ such that 2^k >= N )
+ If ICOMPQ = 2, the dimension of IWORK must be at least
+ 3 + 5*N.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: The algorithm failed to compute an eigenvalue while
+ working on the submatrix lying in rows and columns
+ INFO/(N+1) through mod(INFO,N+1).
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ qstore_dim1 = *ldqs;
+ qstore_offset = 1 + qstore_dim1 * 1;
+ qstore -= qstore_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 2) {
+ *info = -1;
+ } else if ((*icompq == 1 && *qsiz < max(0,*n))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ldq < max(1,*n)) {
+ *info = -7;
+ } else if (*ldqs < max(1,*n)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED0", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
+ ftnlen)6, (ftnlen)1);
+
+/*
+ Determine the size and placement of the submatrices, and save in
+ the leading elements of IWORK.
+*/
+
+ iwork[1] = *n;
+ subpbs = 1;
+ tlvls = 0;
+L10:
+ if (iwork[subpbs] > smlsiz) {
+ for (j = subpbs; j >= 1; --j) {
+ iwork[j * 2] = (iwork[j] + 1) / 2;
+ iwork[((j) << (1)) - 1] = iwork[j] / 2;
+/* L20: */
+ }
+ ++tlvls;
+ subpbs <<= 1;
+ goto L10;
+ }
+ i__1 = subpbs;
+ for (j = 2; j <= i__1; ++j) {
+ iwork[j] += iwork[j - 1];
+/* L30: */
+ }
+
+/*
+ Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
+ using rank-1 modifications (cuts).
+*/
+
+ spm1 = subpbs - 1;
+ i__1 = spm1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ submat = iwork[i__] + 1;
+ smm1 = submat - 1;
+ d__[smm1] -= (d__1 = e[smm1], abs(d__1));
+ d__[submat] -= (d__1 = e[smm1], abs(d__1));
+/* L40: */
+ }
+
+ indxq = ((*n) << (2)) + 3;
+ if (*icompq != 2) {
+
+/*
+ Set up workspaces for eigenvalues only/accumulate new vectors
+ routine
+*/
+
+ temp = log((doublereal) (*n)) / log(2.);
+ lgn = (integer) temp;
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ iprmpt = indxq + *n + 1;
+ iperm = iprmpt + *n * lgn;
+ iqptr = iperm + *n * lgn;
+ igivpt = iqptr + *n + 2;
+ igivcl = igivpt + *n * lgn;
+
+ igivnm = 1;
+ iq = igivnm + ((*n) << (1)) * lgn;
+/* Computing 2nd power */
+ i__1 = *n;
+ iwrem = iq + i__1 * i__1 + 1;
+
+/* Initialize pointers */
+
+ i__1 = subpbs;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ iwork[iprmpt + i__] = 1;
+ iwork[igivpt + i__] = 1;
+/* L50: */
+ }
+ iwork[iqptr] = 1;
+ }
+
+/*
+ Solve each submatrix eigenproblem at the bottom of the divide and
+ conquer tree.
+*/
+
+ curr = 0;
+ i__1 = spm1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ if (i__ == 0) {
+ submat = 1;
+ matsiz = iwork[1];
+ } else {
+ submat = iwork[i__] + 1;
+ matsiz = iwork[i__ + 1] - iwork[i__];
+ }
+ if (*icompq == 2) {
+ dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
+ submat * q_dim1], ldq, &work[1], info);
+ if (*info != 0) {
+ goto L130;
+ }
+ } else {
+ dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
+ iwork[iqptr + curr]], &matsiz, &work[1], info);
+ if (*info != 0) {
+ goto L130;
+ }
+ if (*icompq == 1) {
+ dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b15, &q[submat *
+ q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
+ &matsiz, &c_b29, &qstore[submat * qstore_dim1 + 1],
+ ldqs);
+ }
+/* Computing 2nd power */
+ i__2 = matsiz;
+ iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
+ ++curr;
+ }
+ k = 1;
+ i__2 = iwork[i__ + 1];
+ for (j = submat; j <= i__2; ++j) {
+ iwork[indxq + j] = k;
+ ++k;
+/* L60: */
+ }
+/* L70: */
+ }
+
+/*
+ Successively merge eigensystems of adjacent submatrices
+ into eigensystem for the corresponding larger matrix.
+
+ while ( SUBPBS > 1 )
+*/
+
+ curlvl = 1;
+L80:
+ if (subpbs > 1) {
+ spm2 = subpbs - 2;
+ i__1 = spm2;
+ for (i__ = 0; i__ <= i__1; i__ += 2) {
+ if (i__ == 0) {
+ submat = 1;
+ matsiz = iwork[2];
+ msd2 = iwork[1];
+ curprb = 0;
+ } else {
+ submat = iwork[i__] + 1;
+ matsiz = iwork[i__ + 2] - iwork[i__];
+ msd2 = matsiz / 2;
+ ++curprb;
+ }
+
+/*
+ Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
+ into an eigensystem of size MATSIZ.
+ DLAED1 is used only for the full eigensystem of a tridiagonal
+ matrix.
+ DLAED7 handles the cases in which eigenvalues only or eigenvalues
+ and eigenvectors of a full symmetric matrix (which was reduced to
+ tridiagonal form) are desired.
+*/
+
+ if (*icompq == 2) {
+ dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
+ ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
+ msd2, &work[1], &iwork[subpbs + 1], info);
+ } else {
+ dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
+ submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
+ iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
+ work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
+ , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
+ work[iwrem], &iwork[subpbs + 1], info);
+ }
+ if (*info != 0) {
+ goto L130;
+ }
+ iwork[i__ / 2 + 1] = iwork[i__ + 2];
+/* L90: */
+ }
+ subpbs /= 2;
+ ++curlvl;
+ goto L80;
+ }
+
+/*
+ end while
+
+ Re-merge the eigenvalues/vectors which were deflated at the final
+ merge step.
+*/
+
+ if (*icompq == 1) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ j = iwork[indxq + i__];
+ work[i__] = d__[j];
+ dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
+ + 1], &c__1);
+/* L100: */
+ }
+ dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
+ } else if (*icompq == 2) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ j = iwork[indxq + i__];
+ work[i__] = d__[j];
+ dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
+/* L110: */
+ }
+ dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
+ dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ j = iwork[indxq + i__];
+ work[i__] = d__[j];
+/* L120: */
+ }
+ dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
+ }
+ goto L140;
+
+L130:
+ *info = submat * (*n + 1) + submat + matsiz - 1;
+
+L140:
+ return 0;
+
+/* End of DLAED0 */
+
+} /* dlaed0_ */
+
+/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q,
+ integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt,
+ doublereal *work, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer indxp;
+ extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *, integer *, integer *, integer *), dlaed3_(integer *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *, integer *,
+ doublereal *, doublereal *, integer *);
+ static integer idlmda;
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), xerbla_(char *, integer *);
+ static integer coltyp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAED1 computes the updated eigensystem of a diagonal
+ matrix after modification by a rank-one symmetric matrix. This
+ routine is used only for the eigenproblem which requires all
+ eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
+ the case in which eigenvalues only or eigenvalues and eigenvectors
+ of a full symmetric matrix (which was reduced to tridiagonal form)
+ are desired.
+
+ T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
+
+ where Z = Q'u, u is a vector of length N with ones in the
+ CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
+
+ The eigenvectors of the original matrix are stored in Q, and the
+ eigenvalues are in D. The algorithm consists of three stages:
+
+ The first stage consists of deflating the size of the problem
+ when there are multiple eigenvalues or if there is a zero in
+ the Z vector. For each such occurence the dimension of the
+ secular equation problem is reduced by one. This stage is
+ performed by the routine DLAED2.
+
+ The second stage consists of calculating the updated
+ eigenvalues. This is done by finding the roots of the secular
+ equation via the routine DLAED4 (as called by DLAED3).
+ This routine also calculates the eigenvectors of the current
+ problem.
+
+ The final stage consists of computing the updated eigenvectors
+ directly using the updated eigenvalues. The eigenvectors for
+ the current problem are multiplied with the eigenvectors from
+ the overall problem.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the eigenvalues of the rank-1-perturbed matrix.
+ On exit, the eigenvalues of the repaired matrix.
+
+ Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
+ On entry, the eigenvectors of the rank-1-perturbed matrix.
+ On exit, the eigenvectors of the repaired tridiagonal matrix.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max(1,N).
+
+ INDXQ (input/output) INTEGER array, dimension (N)
+ On entry, the permutation which separately sorts the two
+ subproblems in D into ascending order.
+ On exit, the permutation which will reintegrate the
+ subproblems back into sorted order,
+ i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
+
+ RHO (input) DOUBLE PRECISION
+ The subdiagonal entry used to create the rank-1 modification.
+
+ CUTPNT (input) INTEGER
+ The location of the last eigenvalue in the leading sub-matrix.
+ min(1,N) <= CUTPNT <= N/2.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
+
+ IWORK (workspace) INTEGER array, dimension (4*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an eigenvalue did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+ Modified by Francoise Tisseur, University of Tennessee.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --indxq;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*n < 0) {
+ *info = -1;
+ } else if (*ldq < max(1,*n)) {
+ *info = -4;
+ } else /* if(complicated condition) */ {
+/* Computing MIN */
+ i__1 = 1, i__2 = *n / 2;
+ if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
+ *info = -7;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED1", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/*
+ The following values are integer pointers which indicate
+ the portion of the workspace
+ used by a particular array in DLAED2 and DLAED3.
+*/
+
+ iz = 1;
+ idlmda = iz + *n;
+ iw = idlmda + *n;
+ iq2 = iw + *n;
+
+ indx = 1;
+ indxc = indx + *n;
+ coltyp = indxc + *n;
+ indxp = coltyp + *n;
+
+
+/*
+ Form the z-vector which consists of the last row of Q_1 and the
+ first row of Q_2.
+*/
+
+ dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
+ zpp1 = *cutpnt + 1;
+ i__1 = *n - *cutpnt;
+ dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
+
+/* Deflate eigenvalues. */
+
+ dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
+ iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
+ indxc], &iwork[indxp], &iwork[coltyp], info);
+
+ if (*info != 0) {
+ goto L20;
+ }
+
+/* Solve Secular Equation. */
+
+ if (k != 0) {
+ is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
+ 1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
+ dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
+ &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
+ is], info);
+ if (*info != 0) {
+ goto L20;
+ }
+
+/* Prepare the INDXQ sorting permutation. */
+
+ n1 = k;
+ n2 = *n - k;
+ dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ indxq[i__] = i__;
+/* L10: */
+ }
+ }
+
+L20:
+ return 0;
+
+/* End of DLAED1 */
+
+} /* dlaed1_ */
+
+/* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal *
+ d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho,
+ doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2,
+ integer *indx, integer *indxc, integer *indxp, integer *coltyp,
+ integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, i__1, i__2;
+ doublereal d__1, d__2, d__3, d__4;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal c__;
+ static integer i__, j;
+ static doublereal s, t;
+ static integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;
+ static doublereal eps, tau, tol;
+ static integer psm[4], imax, jmax;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer ctot[4];
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dcopy_(integer *, doublereal *, integer *, doublereal
+ *, integer *);
+
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), dlacpy_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLAED2 merges the two sets of eigenvalues together into a single
+ sorted set. Then it tries to deflate the size of the problem.
+ There are two ways in which deflation can occur: when two or more
+ eigenvalues are close together or if there is a tiny entry in the
+ Z vector. For each such occurrence the order of the related secular
+ equation problem is reduced by one.
+
+ Arguments
+ =========
+
+ K (output) INTEGER
+ The number of non-deflated eigenvalues, and the order of the
+ related secular equation. 0 <= K <=N.
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ N1 (input) INTEGER
+ The location of the last eigenvalue in the leading sub-matrix.
+ min(1,N) <= N1 <= N/2.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, D contains the eigenvalues of the two submatrices to
+ be combined.
+ On exit, D contains the trailing (N-K) updated eigenvalues
+ (those which were deflated) sorted into increasing order.
+
+ Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
+ On entry, Q contains the eigenvectors of two submatrices in
+ the two square blocks with corners at (1,1), (N1,N1)
+ and (N1+1, N1+1), (N,N).
+ On exit, Q contains the trailing (N-K) updated eigenvectors
+ (those which were deflated) in its last N-K columns.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max(1,N).
+
+ INDXQ (input/output) INTEGER array, dimension (N)
+ The permutation which separately sorts the two sub-problems
+ in D into ascending order. Note that elements in the second
+ half of this permutation must first have N1 added to their
+ values. Destroyed on exit.
+
+ RHO (input/output) DOUBLE PRECISION
+ On entry, the off-diagonal element associated with the rank-1
+ cut which originally split the two submatrices which are now
+ being recombined.
+ On exit, RHO has been modified to the value required by
+ DLAED3.
+
+ Z (input) DOUBLE PRECISION array, dimension (N)
+ On entry, Z contains the updating vector (the last
+ row of the first sub-eigenvector matrix and the first row of
+ the second sub-eigenvector matrix).
+ On exit, the contents of Z have been destroyed by the updating
+ process.
+
+ DLAMDA (output) DOUBLE PRECISION array, dimension (N)
+ A copy of the first K eigenvalues which will be used by
+ DLAED3 to form the secular equation.
+
+ W (output) DOUBLE PRECISION array, dimension (N)
+ The first k values of the final deflation-altered z-vector
+ which will be passed to DLAED3.
+
+ Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
+ A copy of the first K eigenvectors which will be used by
+ DLAED3 in a matrix multiply (DGEMM) to solve for the new
+ eigenvectors.
+
+ INDX (workspace) INTEGER array, dimension (N)
+ The permutation used to sort the contents of DLAMDA into
+ ascending order.
+
+ INDXC (output) INTEGER array, dimension (N)
+ The permutation used to arrange the columns of the deflated
+ Q matrix into three groups: the first group contains non-zero
+ elements only at and above N1, the second contains
+ non-zero elements only below N1, and the third is dense.
+
+ INDXP (workspace) INTEGER array, dimension (N)
+ The permutation used to place deflated values of D at the end
+ of the array. INDXP(1:K) points to the nondeflated D-values
+ and INDXP(K+1:N) points to the deflated eigenvalues.
+
+ COLTYP (workspace/output) INTEGER array, dimension (N)
+ During execution, a label which will indicate which of the
+ following types a column in the Q2 matrix is:
+ 1 : non-zero in the upper half only;
+ 2 : dense;
+ 3 : non-zero in the lower half only;
+ 4 : deflated.
+ On exit, COLTYP(i) is the number of columns of type i,
+ for i=1 to 4 only.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+ Modified by Francoise Tisseur, University of Tennessee.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --indxq;
+ --z__;
+ --dlamda;
+ --w;
+ --q2;
+ --indx;
+ --indxc;
+ --indxp;
+ --coltyp;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*n < 0) {
+ *info = -2;
+ } else if (*ldq < max(1,*n)) {
+ *info = -6;
+ } else /* if(complicated condition) */ {
+/* Computing MIN */
+ i__1 = 1, i__2 = *n / 2;
+ if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {
+ *info = -3;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ n2 = *n - *n1;
+ n1p1 = *n1 + 1;
+
+ if (*rho < 0.) {
+ dscal_(&n2, &c_b151, &z__[n1p1], &c__1);
+ }
+
+/*
+ Normalize z so that norm(z) = 1. Since z is the concatenation of
+ two normalized vectors, norm2(z) = sqrt(2).
+*/
+
+ t = 1. / sqrt(2.);
+ dscal_(n, &t, &z__[1], &c__1);
+
+/* RHO = ABS( norm(z)**2 * RHO ) */
+
+ *rho = (d__1 = *rho * 2., abs(d__1));
+
+/* Sort the eigenvalues into increasing order */
+
+ i__1 = *n;
+ for (i__ = n1p1; i__ <= i__1; ++i__) {
+ indxq[i__] += *n1;
+/* L10: */
+ }
+
+/* re-integrate the deflated parts from the last pass */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlamda[i__] = d__[indxq[i__]];
+/* L20: */
+ }
+ dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ indx[i__] = indxq[indxc[i__]];
+/* L30: */
+ }
+
+/* Calculate the allowable deflation tolerance */
+
+ imax = idamax_(n, &z__[1], &c__1);
+ jmax = idamax_(n, &d__[1], &c__1);
+ eps = EPSILON;
+/* Computing MAX */
+ d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
+ ;
+ tol = eps * 8. * max(d__3,d__4);
+
+/*
+ If the rank-1 modifier is small enough, no more needs to be done
+ except to reorganize Q so that its columns correspond with the
+ elements in D.
+*/
+
+ if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
+ *k = 0;
+ iq2 = 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__ = indx[j];
+ dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
+ dlamda[j] = d__[i__];
+ iq2 += *n;
+/* L40: */
+ }
+ dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
+ dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
+ goto L190;
+ }
+
+/*
+ If there are multiple eigenvalues then the problem deflates. Here
+ the number of equal eigenvalues are found. As each equal
+ eigenvalue is found, an elementary reflector is computed to rotate
+ the corresponding eigensubspace so that the corresponding
+ components of Z are zero in this new basis.
+*/
+
+ i__1 = *n1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ coltyp[i__] = 1;
+/* L50: */
+ }
+ i__1 = *n;
+ for (i__ = n1p1; i__ <= i__1; ++i__) {
+ coltyp[i__] = 3;
+/* L60: */
+ }
+
+
+ *k = 0;
+ k2 = *n + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ nj = indx[j];
+ if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ coltyp[nj] = 4;
+ indxp[k2] = nj;
+ if (j == *n) {
+ goto L100;
+ }
+ } else {
+ pj = nj;
+ goto L80;
+ }
+/* L70: */
+ }
+L80:
+ ++j;
+ nj = indx[j];
+ if (j > *n) {
+ goto L100;
+ }
+ if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ coltyp[nj] = 4;
+ indxp[k2] = nj;
+ } else {
+
+/* Check if eigenvalues are close enough to allow deflation. */
+
+ s = z__[pj];
+ c__ = z__[nj];
+
+/*
+ Find sqrt(a**2+b**2) without overflow or
+ destructive underflow.
+*/
+
+ tau = dlapy2_(&c__, &s);
+ t = d__[nj] - d__[pj];
+ c__ /= tau;
+ s = -s / tau;
+ if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
+
+/* Deflation is possible. */
+
+ z__[nj] = tau;
+ z__[pj] = 0.;
+ if (coltyp[nj] != coltyp[pj]) {
+ coltyp[nj] = 2;
+ }
+ coltyp[pj] = 4;
+ drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
+ c__, &s);
+/* Computing 2nd power */
+ d__1 = c__;
+/* Computing 2nd power */
+ d__2 = s;
+ t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
+/* Computing 2nd power */
+ d__1 = s;
+/* Computing 2nd power */
+ d__2 = c__;
+ d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
+ d__[pj] = t;
+ --k2;
+ i__ = 1;
+L90:
+ if (k2 + i__ <= *n) {
+ if (d__[pj] < d__[indxp[k2 + i__]]) {
+ indxp[k2 + i__ - 1] = indxp[k2 + i__];
+ indxp[k2 + i__] = pj;
+ ++i__;
+ goto L90;
+ } else {
+ indxp[k2 + i__ - 1] = pj;
+ }
+ } else {
+ indxp[k2 + i__ - 1] = pj;
+ }
+ pj = nj;
+ } else {
+ ++(*k);
+ dlamda[*k] = d__[pj];
+ w[*k] = z__[pj];
+ indxp[*k] = pj;
+ pj = nj;
+ }
+ }
+ goto L80;
+L100:
+
+/* Record the last eigenvalue. */
+
+ ++(*k);
+ dlamda[*k] = d__[pj];
+ w[*k] = z__[pj];
+ indxp[*k] = pj;
+
+/*
+ Count up the total number of the various types of columns, then
+ form a permutation which positions the four column types into
+ four uniform groups (although one or more of these groups may be
+ empty).
+*/
+
+ for (j = 1; j <= 4; ++j) {
+ ctot[j - 1] = 0;
+/* L110: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ ct = coltyp[j];
+ ++ctot[ct - 1];
+/* L120: */
+ }
+
+/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
+
+ psm[0] = 1;
+ psm[1] = ctot[0] + 1;
+ psm[2] = psm[1] + ctot[1];
+ psm[3] = psm[2] + ctot[2];
+ *k = *n - ctot[3];
+
+/*
+ Fill out the INDXC array so that the permutation which it induces
+ will place all type-1 columns first, all type-2 columns next,
+ then all type-3's, and finally all type-4's.
+*/
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ js = indxp[j];
+ ct = coltyp[js];
+ indx[psm[ct - 1]] = js;
+ indxc[psm[ct - 1]] = j;
+ ++psm[ct - 1];
+/* L130: */
+ }
+
+/*
+ Sort the eigenvalues and corresponding eigenvectors into DLAMDA
+ and Q2 respectively. The eigenvalues/vectors which were not
+ deflated go into the first K slots of DLAMDA and Q2 respectively,
+ while those which were deflated go into the last N - K slots.
+*/
+
+ i__ = 1;
+ iq1 = 1;
+ iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
+ i__1 = ctot[0];
+ for (j = 1; j <= i__1; ++j) {
+ js = indx[i__];
+ dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
+ z__[i__] = d__[js];
+ ++i__;
+ iq1 += *n1;
+/* L140: */
+ }
+
+ i__1 = ctot[1];
+ for (j = 1; j <= i__1; ++j) {
+ js = indx[i__];
+ dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
+ dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
+ z__[i__] = d__[js];
+ ++i__;
+ iq1 += *n1;
+ iq2 += n2;
+/* L150: */
+ }
+
+ i__1 = ctot[2];
+ for (j = 1; j <= i__1; ++j) {
+ js = indx[i__];
+ dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
+ z__[i__] = d__[js];
+ ++i__;
+ iq2 += n2;
+/* L160: */
+ }
+
+ iq1 = iq2;
+ i__1 = ctot[3];
+ for (j = 1; j <= i__1; ++j) {
+ js = indx[i__];
+ dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
+ iq2 += *n;
+ z__[i__] = d__[js];
+ ++i__;
+/* L170: */
+ }
+
+/*
+ The deflated eigenvalues and their corresponding vectors go back
+ into the last N - K slots of D and Q respectively.
+*/
+
+ dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
+ i__1 = *n - *k;
+ dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
+
+/* Copy CTOT into COLTYP for referencing in DLAED3. */
+
+ for (j = 1; j <= 4; ++j) {
+ coltyp[j] = ctot[j - 1];
+/* L180: */
+ }
+
+L190:
+ return 0;
+
+/* End of DLAED2 */
+
+} /* dlaed2_ */
+
+/* Subroutine */ int dlaed3_(integer *k, integer *n, integer *n1, doublereal *
+ d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda,
+ doublereal *q2, integer *indx, integer *ctot, doublereal *w,
+ doublereal *s, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer i__, j, n2, n12, ii, n23, iq2;
+ static doublereal temp;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *),
+ dcopy_(integer *, doublereal *, integer *, doublereal *, integer
+ *), dlaed4_(integer *, integer *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, integer *);
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *),
+ dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAED3 finds the roots of the secular equation, as defined by the
+ values in D, W, and RHO, between 1 and K. It makes the
+ appropriate calls to DLAED4 and then updates the eigenvectors by
+ multiplying the matrix of eigenvectors of the pair of eigensystems
+ being combined by the matrix of eigenvectors of the K-by-K system
+ which is solved here.
+
+ This code makes very mild assumptions about floating point
+ arithmetic. It will work on machines with a guard digit in
+ add/subtract, or on those binary machines without guard digits
+ which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
+ It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ Arguments
+ =========
+
+ K (input) INTEGER
+ The number of terms in the rational function to be solved by
+ DLAED4. K >= 0.
+
+ N (input) INTEGER
+ The number of rows and columns in the Q matrix.
+ N >= K (deflation may result in N>K).
+
+ N1 (input) INTEGER
+ The location of the last eigenvalue in the leading submatrix.
+ min(1,N) <= N1 <= N/2.
+
+ D (output) DOUBLE PRECISION array, dimension (N)
+ D(I) contains the updated eigenvalues for
+ 1 <= I <= K.
+
+ Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
+ Initially the first K columns are used as workspace.
+ On output the columns 1 to K contain
+ the updated eigenvectors.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max(1,N).
+
+ RHO (input) DOUBLE PRECISION
+ The value of the parameter in the rank one update equation.
+ RHO >= 0 required.
+
+ DLAMDA (input/output) DOUBLE PRECISION array, dimension (K)
+ The first K elements of this array contain the old roots
+ of the deflated updating problem. These are the poles
+ of the secular equation. May be changed on output by
+ having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
+ Cray-2, or Cray C-90, as described above.
+
+ Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N)
+ The first K columns of this matrix contain the non-deflated
+ eigenvectors for the split problem.
+
+ INDX (input) INTEGER array, dimension (N)
+ The permutation used to arrange the columns of the deflated
+ Q matrix into three groups (see DLAED2).
+ The rows of the eigenvectors found by DLAED4 must be likewise
+ permuted before the matrix multiply can take place.
+
+ CTOT (input) INTEGER array, dimension (4)
+ A count of the total number of the various types of columns
+ in Q, as described in INDX. The fourth column type is any
+ column which has been deflated.
+
+ W (input/output) DOUBLE PRECISION array, dimension (K)
+ The first K elements of this array contain the components
+ of the deflation-adjusted updating vector. Destroyed on
+ output.
+
+ S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
+ Will contain the eigenvectors of the repaired matrix which
+ will be multiplied by the previously accumulated eigenvectors
+ to update the system.
+
+ LDS (input) INTEGER
+ The leading dimension of S. LDS >= max(1,K).
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an eigenvalue did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+ Modified by Francoise Tisseur, University of Tennessee.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --dlamda;
+ --q2;
+ --indx;
+ --ctot;
+ --w;
+ --s;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*k < 0) {
+ *info = -1;
+ } else if (*n < *k) {
+ *info = -2;
+ } else if (*ldq < max(1,*n)) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED3", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*k == 0) {
+ return 0;
+ }
+
+/*
+ Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
+ be computed with high relative accuracy (barring over/underflow).
+ This is a problem on machines without a guard digit in
+ add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
+ The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
+ which on any of these machines zeros out the bottommost
+ bit of DLAMDA(I) if it is 1; this makes the subsequent
+ subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
+ occurs. On binary machines with a guard digit (almost all
+ machines) it does not change DLAMDA(I) at all. On hexadecimal
+ and decimal machines with a guard digit, it slightly
+ changes the bottommost bits of DLAMDA(I). It does not account
+ for hexadecimal or decimal machines without guard digits
+ (we know of none). We use a subroutine call to compute
+ 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
+ this code.
+*/
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
+/* L10: */
+ }
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
+ info);
+
+/* If the zero finder fails, the computation is terminated. */
+
+ if (*info != 0) {
+ goto L120;
+ }
+/* L20: */
+ }
+
+ if (*k == 1) {
+ goto L110;
+ }
+ if (*k == 2) {
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ w[1] = q[j * q_dim1 + 1];
+ w[2] = q[j * q_dim1 + 2];
+ ii = indx[1];
+ q[j * q_dim1 + 1] = w[ii];
+ ii = indx[2];
+ q[j * q_dim1 + 2] = w[ii];
+/* L30: */
+ }
+ goto L110;
+ }
+
+/* Compute updated W. */
+
+ dcopy_(k, &w[1], &c__1, &s[1], &c__1);
+
+/* Initialize W(I) = Q(I,I) */
+
+ i__1 = *ldq + 1;
+ dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
+/* L40: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
+/* L50: */
+ }
+/* L60: */
+ }
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__1 = sqrt(-w[i__]);
+ w[i__] = d_sign(&d__1, &s[i__]);
+/* L70: */
+ }
+
+/* Compute eigenvectors of the modified rank-1 modification. */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ s[i__] = w[i__] / q[i__ + j * q_dim1];
+/* L80: */
+ }
+ temp = dnrm2_(k, &s[1], &c__1);
+ i__2 = *k;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ ii = indx[i__];
+ q[i__ + j * q_dim1] = s[ii] / temp;
+/* L90: */
+ }
+/* L100: */
+ }
+
+/* Compute the updated eigenvectors. */
+
+L110:
+
+ n2 = *n - *n1;
+ n12 = ctot[1] + ctot[2];
+ n23 = ctot[2] + ctot[3];
+
+ dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);
+ iq2 = *n1 * n12 + 1;
+ if (n23 != 0) {
+ dgemm_("N", "N", &n2, k, &n23, &c_b15, &q2[iq2], &n2, &s[1], &n23, &
+ c_b29, &q[*n1 + 1 + q_dim1], ldq);
+ } else {
+ dlaset_("A", &n2, k, &c_b29, &c_b29, &q[*n1 + 1 + q_dim1], ldq);
+ }
+
+ dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);
+ if (n12 != 0) {
+ dgemm_("N", "N", n1, k, &n12, &c_b15, &q2[1], n1, &s[1], &n12, &c_b29,
+ &q[q_offset], ldq);
+ } else {
+ dlaset_("A", n1, k, &c_b29, &c_b29, &q[q_dim1 + 1], ldq);
+ }
+
+
+L120:
+ return 0;
+
+/* End of DLAED3 */
+
+} /* dlaed3_ */
+
+/* Subroutine */ int dlaed4_(integer *n, integer *i__, doublereal *d__,
+ doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam,
+ integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal a, b, c__;
+ static integer j;
+ static doublereal w;
+ static integer ii;
+ static doublereal dw, zz[3];
+ static integer ip1;
+ static doublereal del, eta, phi, eps, tau, psi;
+ static integer iim1, iip1;
+ static doublereal dphi, dpsi;
+ static integer iter;
+ static doublereal temp, prew, temp1, dltlb, dltub, midpt;
+ static integer niter;
+ static logical swtch;
+ extern /* Subroutine */ int dlaed5_(integer *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *), dlaed6_(integer *,
+ logical *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *);
+ static logical swtch3;
+
+ static logical orgati;
+ static doublereal erretm, rhoinv;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ December 23, 1999
+
+
+ Purpose
+ =======
+
+ This subroutine computes the I-th updated eigenvalue of a symmetric
+ rank-one modification to a diagonal matrix whose elements are
+ given in the array d, and that
+
+ D(i) < D(j) for i < j
+
+ and that RHO > 0. This is arranged by the calling routine, and is
+ no loss in generality. The rank-one modified system is thus
+
+ diag( D ) + RHO * Z * Z_transpose.
+
+ where we assume the Euclidean norm of Z is 1.
+
+ The method consists of approximating the rational functions in the
+ secular equation by simpler interpolating rational functions.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The length of all arrays.
+
+ I (input) INTEGER
+ The index of the eigenvalue to be computed. 1 <= I <= N.
+
+ D (input) DOUBLE PRECISION array, dimension (N)
+ The original eigenvalues. It is assumed that they are in
+ order, D(I) < D(J) for I < J.
+
+ Z (input) DOUBLE PRECISION array, dimension (N)
+ The components of the updating vector.
+
+ DELTA (output) DOUBLE PRECISION array, dimension (N)
+ If N .ne. 1, DELTA contains (D(j) - lambda_I) in its j-th
+ component. If N = 1, then DELTA(1) = 1. The vector DELTA
+ contains the information necessary to construct the
+ eigenvectors.
+
+ RHO (input) DOUBLE PRECISION
+ The scalar in the symmetric updating formula.
+
+ DLAM (output) DOUBLE PRECISION
+ The computed lambda_I, the I-th updated eigenvalue.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ > 0: if INFO = 1, the updating process failed.
+
+ Internal Parameters
+ ===================
+
+ Logical variable ORGATI (origin-at-i?) is used for distinguishing
+ whether D(i) or D(i+1) is treated as the origin.
+
+ ORGATI = .true. origin at i
+ ORGATI = .false. origin at i+1
+
+ Logical variable SWTCH3 (switch-for-3-poles?) is for noting
+ if we are working with THREE poles!
+
+ MAXIT is the maximum number of iterations allowed for each
+ eigenvalue.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ren-Cang Li, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Since this routine is called in an inner loop, we do no argument
+ checking.
+
+ Quick return for N=1 and 2.
+*/
+
+ /* Parameter adjustments */
+ --delta;
+ --z__;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ if (*n == 1) {
+
+/* Presumably, I=1 upon entry */
+
+ *dlam = d__[1] + *rho * z__[1] * z__[1];
+ delta[1] = 1.;
+ return 0;
+ }
+ if (*n == 2) {
+ dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
+ return 0;
+ }
+
+/* Compute machine epsilon */
+
+ eps = EPSILON;
+ rhoinv = 1. / *rho;
+
+/* The case I = N */
+
+ if (*i__ == *n) {
+
+/* Initialize some basic variables */
+
+ ii = *n - 1;
+ niter = 1;
+
+/* Calculate initial guess */
+
+ midpt = *rho / 2.;
+
+/*
+ If ||Z||_2 is not one, then TEMP should be set to
+ RHO * ||Z||_2^2 / TWO
+*/
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - midpt;
+/* L10: */
+ }
+
+ psi = 0.;
+ i__1 = *n - 2;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / delta[j];
+/* L20: */
+ }
+
+ c__ = rhoinv + psi;
+ w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
+ n];
+
+ if (w <= 0.) {
+ temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho)
+ + z__[*n] * z__[*n] / *rho;
+ if (c__ <= temp) {
+ tau = *rho;
+ } else {
+ del = d__[*n] - d__[*n - 1];
+ a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
+ ;
+ b = z__[*n] * z__[*n] * del;
+ if (a < 0.) {
+ tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
+ }
+ }
+
+/*
+ It can be proved that
+ D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
+*/
+
+ dltlb = midpt;
+ dltub = *rho;
+ } else {
+ del = d__[*n] - d__[*n - 1];
+ a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
+ b = z__[*n] * z__[*n] * del;
+ if (a < 0.) {
+ tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
+ }
+
+/*
+ It can be proved that
+ D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
+*/
+
+ dltlb = 0.;
+ dltub = midpt;
+ }
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - tau;
+/* L30: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L40: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / delta[*n];
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
+ + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ *dlam = d__[*i__] + tau;
+ goto L250;
+ }
+
+ if (w <= 0.) {
+ dltlb = max(dltlb,tau);
+ } else {
+ dltub = min(dltub,tau);
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
+ a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
+ dpsi + dphi);
+ b = delta[*n - 1] * delta[*n] * w;
+ if (c__ < 0.) {
+ c__ = abs(c__);
+ }
+ if (c__ == 0.) {
+/*
+ ETA = B/A
+ ETA = RHO - TAU
+*/
+ eta = dltub - tau;
+ } else if (a >= 0.) {
+ eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
+ * 2.);
+ } else {
+ eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
+ );
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta > 0.) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = tau + eta;
+ if (temp > dltub || temp < dltlb) {
+ if (w < 0.) {
+ eta = (dltub - tau) / 2.;
+ } else {
+ eta = (dltlb - tau) / 2.;
+ }
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+/* L50: */
+ }
+
+ tau += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L60: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / delta[*n];
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
+ + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Main loop to update the values of the array DELTA */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 30; ++niter) {
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ *dlam = d__[*i__] + tau;
+ goto L250;
+ }
+
+ if (w <= 0.) {
+ dltlb = max(dltlb,tau);
+ } else {
+ dltub = min(dltub,tau);
+ }
+
+/* Calculate the new step */
+
+ c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
+ a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] *
+ (dpsi + dphi);
+ b = delta[*n - 1] * delta[*n] * w;
+ if (a >= 0.) {
+ eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ } else {
+ eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta > 0.) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = tau + eta;
+ if (temp > dltub || temp < dltlb) {
+ if (w < 0.) {
+ eta = (dltub - tau) / 2.;
+ } else {
+ eta = (dltlb - tau) / 2.;
+ }
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+/* L70: */
+ }
+
+ tau += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L80: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / delta[*n];
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
+ dpsi + dphi);
+
+ w = rhoinv + phi + psi;
+/* L90: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+ *dlam = d__[*i__] + tau;
+ goto L250;
+
+/* End for the case I = N */
+
+ } else {
+
+/* The case for I < N */
+
+ niter = 1;
+ ip1 = *i__ + 1;
+
+/* Calculate initial guess */
+
+ del = d__[ip1] - d__[*i__];
+ midpt = del / 2.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - midpt;
+/* L100: */
+ }
+
+ psi = 0.;
+ i__1 = *i__ - 1;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / delta[j];
+/* L110: */
+ }
+
+ phi = 0.;
+ i__1 = *i__ + 2;
+ for (j = *n; j >= i__1; --j) {
+ phi += z__[j] * z__[j] / delta[j];
+/* L120: */
+ }
+ c__ = rhoinv + psi + phi;
+ w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] /
+ delta[ip1];
+
+ if (w > 0.) {
+
+/*
+ d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
+
+ We choose d(i) as origin.
+*/
+
+ orgati = TRUE_;
+ a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
+ b = z__[*i__] * z__[*i__] * del;
+ if (a > 0.) {
+ tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ } else {
+ tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ }
+ dltlb = 0.;
+ dltub = midpt;
+ } else {
+
+/*
+ (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
+
+ We choose d(i+1) as origin.
+*/
+
+ orgati = FALSE_;
+ a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
+ b = z__[ip1] * z__[ip1] * del;
+ if (a < 0.) {
+ tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
+ d__1))));
+ } else {
+ tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
+ (c__ * 2.);
+ }
+ dltlb = -midpt;
+ dltub = 0.;
+ }
+
+ if (orgati) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - tau;
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[ip1] - tau;
+/* L140: */
+ }
+ }
+ if (orgati) {
+ ii = *i__;
+ } else {
+ ii = *i__ + 1;
+ }
+ iim1 = ii - 1;
+ iip1 = ii + 1;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L150: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / delta[j];
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L160: */
+ }
+
+ w = rhoinv + phi + psi;
+
+/*
+ W is the value of the secular function with
+ its ii-th element removed.
+*/
+
+ swtch3 = FALSE_;
+ if (orgati) {
+ if (w < 0.) {
+ swtch3 = TRUE_;
+ }
+ } else {
+ if (w > 0.) {
+ swtch3 = TRUE_;
+ }
+ }
+ if (ii == 1 || ii == *n) {
+ swtch3 = FALSE_;
+ }
+
+ temp = z__[ii] / delta[ii];
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w += temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
+ abs(tau) * dw;
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ if (orgati) {
+ *dlam = d__[*i__] + tau;
+ } else {
+ *dlam = d__[ip1] + tau;
+ }
+ goto L250;
+ }
+
+ if (w <= 0.) {
+ dltlb = max(dltlb,tau);
+ } else {
+ dltub = min(dltub,tau);
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ if (! swtch3) {
+ if (orgati) {
+/* Computing 2nd power */
+ d__1 = z__[*i__] / delta[*i__];
+ c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 *
+ d__1);
+ } else {
+/* Computing 2nd power */
+ d__1 = z__[ip1] / delta[ip1];
+ c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 *
+ d__1);
+ }
+ a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
+ dw;
+ b = delta[*i__] * delta[ip1] * w;
+ if (c__ == 0.) {
+ if (a == 0.) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
+ (dpsi + dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
+ (dpsi + dphi);
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.) {
+ eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ } else {
+ eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ temp = rhoinv + psi + phi;
+ if (orgati) {
+ temp1 = z__[iim1] / delta[iim1];
+ temp1 *= temp1;
+ c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
+ iip1]) * temp1;
+ zz[0] = z__[iim1] * z__[iim1];
+ zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
+ } else {
+ temp1 = z__[iip1] / delta[iip1];
+ temp1 *= temp1;
+ c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
+ iim1]) * temp1;
+ zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ zz[1] = z__[ii] * z__[ii];
+ dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
+ if (*info != 0) {
+ goto L250;
+ }
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta >= 0.) {
+ eta = -w / dw;
+ }
+ temp = tau + eta;
+ if (temp > dltub || temp < dltlb) {
+ if (w < 0.) {
+ eta = (dltub - tau) / 2.;
+ } else {
+ eta = (dltlb - tau) / 2.;
+ }
+ }
+
+ prew = w;
+
+/* L170: */
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+/* L180: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L190: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / delta[j];
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L200: */
+ }
+
+ temp = z__[ii] / delta[ii];
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
+ d__1 = tau + eta, abs(d__1)) * dw;
+
+ swtch = FALSE_;
+ if (orgati) {
+ if (-w > abs(prew) / 10.) {
+ swtch = TRUE_;
+ }
+ } else {
+ if (w > abs(prew) / 10.) {
+ swtch = TRUE_;
+ }
+ }
+
+ tau += eta;
+
+/* Main loop to update the values of the array DELTA */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 30; ++niter) {
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ if (orgati) {
+ *dlam = d__[*i__] + tau;
+ } else {
+ *dlam = d__[ip1] + tau;
+ }
+ goto L250;
+ }
+
+ if (w <= 0.) {
+ dltlb = max(dltlb,tau);
+ } else {
+ dltub = min(dltub,tau);
+ }
+
+/* Calculate the new step */
+
+ if (! swtch3) {
+ if (! swtch) {
+ if (orgati) {
+/* Computing 2nd power */
+ d__1 = z__[*i__] / delta[*i__];
+ c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
+ d__1 * d__1);
+ } else {
+/* Computing 2nd power */
+ d__1 = z__[ip1] / delta[ip1];
+ c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
+ (d__1 * d__1);
+ }
+ } else {
+ temp = z__[ii] / delta[ii];
+ if (orgati) {
+ dpsi += temp * temp;
+ } else {
+ dphi += temp * temp;
+ }
+ c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
+ }
+ a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
+ * dw;
+ b = delta[*i__] * delta[ip1] * w;
+ if (c__ == 0.) {
+ if (a == 0.) {
+ if (! swtch) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + delta[ip1] *
+ delta[ip1] * (dpsi + dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
+ *i__] * (dpsi + dphi);
+ }
+ } else {
+ a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
+ * delta[ip1] * dphi;
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.) {
+ eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
+ / (c__ * 2.);
+ } else {
+ eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
+ abs(d__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ temp = rhoinv + psi + phi;
+ if (swtch) {
+ c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
+ zz[0] = delta[iim1] * delta[iim1] * dpsi;
+ zz[2] = delta[iip1] * delta[iip1] * dphi;
+ } else {
+ if (orgati) {
+ temp1 = z__[iim1] / delta[iim1];
+ temp1 *= temp1;
+ c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
+ - d__[iip1]) * temp1;
+ zz[0] = z__[iim1] * z__[iim1];
+ zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
+ dphi);
+ } else {
+ temp1 = z__[iip1] / delta[iip1];
+ temp1 *= temp1;
+ c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
+ - d__[iim1]) * temp1;
+ zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
+ temp1));
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ }
+ dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
+ info);
+ if (*info != 0) {
+ goto L250;
+ }
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta >= 0.) {
+ eta = -w / dw;
+ }
+ temp = tau + eta;
+ if (temp > dltub || temp < dltlb) {
+ if (w < 0.) {
+ eta = (dltub - tau) / 2.;
+ } else {
+ eta = (dltlb - tau) / 2.;
+ }
+ }
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+/* L210: */
+ }
+
+ tau += eta;
+ prew = w;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / delta[j];
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L220: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / delta[j];
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L230: */
+ }
+
+ temp = z__[ii] / delta[ii];
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
+ + abs(tau) * dw;
+ if ((w * prew > 0. && abs(w) > abs(prew) / 10.)) {
+ swtch = ! swtch;
+ }
+
+/* L240: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+ if (orgati) {
+ *dlam = d__[*i__] + tau;
+ } else {
+ *dlam = d__[ip1] + tau;
+ }
+
+ }
+
+L250:
+
+ return 0;
+
+/* End of DLAED4 */
+
+} /* dlaed4_ */
+
+/* Subroutine */ int dlaed5_(integer *i__, doublereal *d__, doublereal *z__,
+ doublereal *delta, doublereal *rho, doublereal *dlam)
+{
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal b, c__, w, del, tau, temp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ This subroutine computes the I-th eigenvalue of a symmetric rank-one
+ modification of a 2-by-2 diagonal matrix
+
+ diag( D ) + RHO * Z * transpose(Z) .
+
+ The diagonal elements in the array D are assumed to satisfy
+
+ D(i) < D(j) for i < j .
+
+ We also assume RHO > 0 and that the Euclidean norm of the vector
+ Z is one.
+
+ Arguments
+ =========
+
+ I (input) INTEGER
+ The index of the eigenvalue to be computed. I = 1 or I = 2.
+
+ D (input) DOUBLE PRECISION array, dimension (2)
+ The original eigenvalues. We assume D(1) < D(2).
+
+ Z (input) DOUBLE PRECISION array, dimension (2)
+ The components of the updating vector.
+
+ DELTA (output) DOUBLE PRECISION array, dimension (2)
+ The vector DELTA contains the information necessary
+ to construct the eigenvectors.
+
+ RHO (input) DOUBLE PRECISION
+ The scalar in the symmetric updating formula.
+
+ DLAM (output) DOUBLE PRECISION
+ The computed lambda_I, the I-th updated eigenvalue.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ren-Cang Li, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --delta;
+ --z__;
+ --d__;
+
+ /* Function Body */
+ del = d__[2] - d__[1];
+ if (*i__ == 1) {
+ w = *rho * 2. * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.;
+ if (w > 0.) {
+ b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[1] * z__[1] * del;
+
+/* B > ZERO, always */
+
+ tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
+ *dlam = d__[1] + tau;
+ delta[1] = -z__[1] / tau;
+ delta[2] = z__[2] / (del - tau);
+ } else {
+ b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[2] * z__[2] * del;
+ if (b > 0.) {
+ tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
+ } else {
+ tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
+ }
+ *dlam = d__[2] + tau;
+ delta[1] = -z__[1] / (del + tau);
+ delta[2] = -z__[2] / tau;
+ }
+ temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
+ delta[1] /= temp;
+ delta[2] /= temp;
+ } else {
+
+/* Now I=2 */
+
+ b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[2] * z__[2] * del;
+ if (b > 0.) {
+ tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
+ } else {
+ tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
+ }
+ *dlam = d__[2] + tau;
+ delta[1] = -z__[1] / (del + tau);
+ delta[2] = -z__[2] / tau;
+ temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
+ delta[1] /= temp;
+ delta[2] /= temp;
+ }
+ return 0;
+
+/* End OF DLAED5 */
+
+} /* dlaed5_ */
+
+/* Subroutine */ int dlaed6_(integer *kniter, logical *orgati, doublereal *
+ rho, doublereal *d__, doublereal *z__, doublereal *finit, doublereal *
+ tau, integer *info)
+{
+ /* Initialized data */
+
+ static logical first = TRUE_;
+
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2, d__3, d__4;
+
+ /* Builtin functions */
+ double sqrt(doublereal), log(doublereal), pow_di(doublereal *, integer *);
+
+ /* Local variables */
+ static doublereal a, b, c__, f;
+ static integer i__;
+ static doublereal fc, df, ddf, eta, eps, base;
+ static integer iter;
+ static doublereal temp, temp1, temp2, temp3, temp4;
+ static logical scale;
+ static integer niter;
+ static doublereal small1, small2, sminv1, sminv2;
+
+ static doublereal dscale[3], sclfac, zscale[3], erretm, sclinv;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAED6 computes the positive or negative root (closest to the origin)
+ of
+ z(1) z(2) z(3)
+ f(x) = rho + --------- + ---------- + ---------
+ d(1)-x d(2)-x d(3)-x
+
+ It is assumed that
+
+ if ORGATI = .true. the root is between d(2) and d(3);
+ otherwise it is between d(1) and d(2)
+
+ This routine will be called by DLAED4 when necessary. In most cases,
+ the root sought is the smallest in magnitude, though it might not be
+ in some extremely rare situations.
+
+ Arguments
+ =========
+
+ KNITER (input) INTEGER
+ Refer to DLAED4 for its significance.
+
+ ORGATI (input) LOGICAL
+ If ORGATI is true, the needed root is between d(2) and
+ d(3); otherwise it is between d(1) and d(2). See
+ DLAED4 for further details.
+
+ RHO (input) DOUBLE PRECISION
+ Refer to the equation f(x) above.
+
+ D (input) DOUBLE PRECISION array, dimension (3)
+ D satisfies d(1) < d(2) < d(3).
+
+ Z (input) DOUBLE PRECISION array, dimension (3)
+ Each of the elements in z must be positive.
+
+ FINIT (input) DOUBLE PRECISION
+ The value of f at 0. It is more accurate than the one
+ evaluated inside this routine (if someone wants to do
+ so).
+
+ TAU (output) DOUBLE PRECISION
+ The root of the equation f(x).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ > 0: if INFO = 1, failure to converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ren-Cang Li, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+*/
+
+ /* Parameter adjustments */
+ --z__;
+ --d__;
+
+ /* Function Body */
+
+ *info = 0;
+
+ niter = 1;
+ *tau = 0.;
+ if (*kniter == 2) {
+ if (*orgati) {
+ temp = (d__[3] - d__[2]) / 2.;
+ c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
+ a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
+ b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
+ } else {
+ temp = (d__[1] - d__[2]) / 2.;
+ c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
+ a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
+ b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
+ }
+/* Computing MAX */
+ d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
+ temp = max(d__1,d__2);
+ a /= temp;
+ b /= temp;
+ c__ /= temp;
+ if (c__ == 0.) {
+ *tau = b / a;
+ } else if (a <= 0.) {
+ *tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ } else {
+ *tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))
+ ));
+ }
+ temp = *rho + z__[1] / (d__[1] - *tau) + z__[2] / (d__[2] - *tau) +
+ z__[3] / (d__[3] - *tau);
+ if (abs(*finit) <= abs(temp)) {
+ *tau = 0.;
+ }
+ }
+
+/*
+ On first call to routine, get machine parameters for
+ possible scaling to avoid overflow
+*/
+
+ if (first) {
+ eps = EPSILON;
+ base = BASE;
+ i__1 = (integer) (log(SAFEMINIMUM) / log(base) / 3.);
+ small1 = pow_di(&base, &i__1);
+ sminv1 = 1. / small1;
+ small2 = small1 * small1;
+ sminv2 = sminv1 * sminv1;
+ first = FALSE_;
+ }
+
+/*
+ Determine if scaling of inputs necessary to avoid overflow
+ when computing 1/TEMP**3
+*/
+
+ if (*orgati) {
+/* Computing MIN */
+ d__3 = (d__1 = d__[2] - *tau, abs(d__1)), d__4 = (d__2 = d__[3] - *
+ tau, abs(d__2));
+ temp = min(d__3,d__4);
+ } else {
+/* Computing MIN */
+ d__3 = (d__1 = d__[1] - *tau, abs(d__1)), d__4 = (d__2 = d__[2] - *
+ tau, abs(d__2));
+ temp = min(d__3,d__4);
+ }
+ scale = FALSE_;
+ if (temp <= small1) {
+ scale = TRUE_;
+ if (temp <= small2) {
+
+/* Scale up by power of radix nearest 1/SAFMIN**(2/3) */
+
+ sclfac = sminv2;
+ sclinv = small2;
+ } else {
+
+/* Scale up by power of radix nearest 1/SAFMIN**(1/3) */
+
+ sclfac = sminv1;
+ sclinv = small1;
+ }
+
+/* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */
+
+ for (i__ = 1; i__ <= 3; ++i__) {
+ dscale[i__ - 1] = d__[i__] * sclfac;
+ zscale[i__ - 1] = z__[i__] * sclfac;
+/* L10: */
+ }
+ *tau *= sclfac;
+ } else {
+
+/* Copy D and Z to DSCALE and ZSCALE */
+
+ for (i__ = 1; i__ <= 3; ++i__) {
+ dscale[i__ - 1] = d__[i__];
+ zscale[i__ - 1] = z__[i__];
+/* L20: */
+ }
+ }
+
+ fc = 0.;
+ df = 0.;
+ ddf = 0.;
+ for (i__ = 1; i__ <= 3; ++i__) {
+ temp = 1. / (dscale[i__ - 1] - *tau);
+ temp1 = zscale[i__ - 1] * temp;
+ temp2 = temp1 * temp;
+ temp3 = temp2 * temp;
+ fc += temp1 / dscale[i__ - 1];
+ df += temp2;
+ ddf += temp3;
+/* L30: */
+ }
+ f = *finit + *tau * fc;
+
+ if (abs(f) <= 0.) {
+ goto L60;
+ }
+
+/*
+ Iteration begins
+
+ It is not hard to see that
+
+ 1) Iterations will go up monotonically
+ if FINIT < 0;
+
+ 2) Iterations will go down monotonically
+ if FINIT > 0.
+*/
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 20; ++niter) {
+
+ if (*orgati) {
+ temp1 = dscale[1] - *tau;
+ temp2 = dscale[2] - *tau;
+ } else {
+ temp1 = dscale[0] - *tau;
+ temp2 = dscale[1] - *tau;
+ }
+ a = (temp1 + temp2) * f - temp1 * temp2 * df;
+ b = temp1 * temp2 * f;
+ c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
+/* Computing MAX */
+ d__1 = abs(a), d__2 = abs(b), d__1 = max(d__1,d__2), d__2 = abs(c__);
+ temp = max(d__1,d__2);
+ a /= temp;
+ b /= temp;
+ c__ /= temp;
+ if (c__ == 0.) {
+ eta = b / a;
+ } else if (a <= 0.) {
+ eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
+ * 2.);
+ } else {
+ eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
+ );
+ }
+ if (f * eta >= 0.) {
+ eta = -f / df;
+ }
+
+ temp = eta + *tau;
+ if (*orgati) {
+ if ((eta > 0. && temp >= dscale[2])) {
+ eta = (dscale[2] - *tau) / 2.;
+ }
+ if ((eta < 0. && temp <= dscale[1])) {
+ eta = (dscale[1] - *tau) / 2.;
+ }
+ } else {
+ if ((eta > 0. && temp >= dscale[1])) {
+ eta = (dscale[1] - *tau) / 2.;
+ }
+ if ((eta < 0. && temp <= dscale[0])) {
+ eta = (dscale[0] - *tau) / 2.;
+ }
+ }
+ *tau += eta;
+
+ fc = 0.;
+ erretm = 0.;
+ df = 0.;
+ ddf = 0.;
+ for (i__ = 1; i__ <= 3; ++i__) {
+ temp = 1. / (dscale[i__ - 1] - *tau);
+ temp1 = zscale[i__ - 1] * temp;
+ temp2 = temp1 * temp;
+ temp3 = temp2 * temp;
+ temp4 = temp1 / dscale[i__ - 1];
+ fc += temp4;
+ erretm += abs(temp4);
+ df += temp2;
+ ddf += temp3;
+/* L40: */
+ }
+ f = *finit + *tau * fc;
+ erretm = (abs(*finit) + abs(*tau) * erretm) * 8. + abs(*tau) * df;
+ if (abs(f) <= eps * erretm) {
+ goto L60;
+ }
+/* L50: */
+ }
+ *info = 1;
+L60:
+
+/* Undo scaling */
+
+ if (scale) {
+ *tau *= sclinv;
+ }
+ return 0;
+
+/* End of DLAED6 */
+
+} /* dlaed6_ */
+
+/* Subroutine */ int dlaed7_(integer *icompq, integer *n, integer *qsiz,
+ integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__,
+ doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer
+ *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer *
+ perm, integer *givptr, integer *givcol, doublereal *givnum,
+ doublereal *work, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, i__1, i__2;
+
+ /* Builtin functions */
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ static integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer indxc, indxp;
+ extern /* Subroutine */ int dlaed8_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *, integer *,
+ doublereal *, integer *, integer *, integer *), dlaed9_(integer *,
+ integer *, integer *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ integer *, integer *), dlaeda_(integer *, integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *, doublereal
+ *, doublereal *, integer *, doublereal *, doublereal *, integer *)
+ ;
+ static integer idlmda;
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), xerbla_(char *, integer *);
+ static integer coltyp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAED7 computes the updated eigensystem of a diagonal
+ matrix after modification by a rank-one symmetric matrix. This
+ routine is used only for the eigenproblem which requires all
+ eigenvalues and optionally eigenvectors of a dense symmetric matrix
+ that has been reduced to tridiagonal form. DLAED1 handles
+ the case in which all eigenvalues and eigenvectors of a symmetric
+ tridiagonal matrix are desired.
+
+ T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
+
+ where Z = Q'u, u is a vector of length N with ones in the
+ CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
+
+ The eigenvectors of the original matrix are stored in Q, and the
+ eigenvalues are in D. The algorithm consists of three stages:
+
+ The first stage consists of deflating the size of the problem
+ when there are multiple eigenvalues or if there is a zero in
+ the Z vector. For each such occurence the dimension of the
+ secular equation problem is reduced by one. This stage is
+ performed by the routine DLAED8.
+
+ The second stage consists of calculating the updated
+ eigenvalues. This is done by finding the roots of the secular
+ equation via the routine DLAED4 (as called by DLAED9).
+ This routine also calculates the eigenvectors of the current
+ problem.
+
+ The final stage consists of computing the updated eigenvectors
+ directly using the updated eigenvalues. The eigenvectors for
+ the current problem are multiplied with the eigenvectors from
+ the overall problem.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ = 0: Compute eigenvalues only.
+ = 1: Compute eigenvectors of original dense symmetric matrix
+ also. On entry, Q contains the orthogonal matrix used
+ to reduce the original matrix to tridiagonal form.
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ QSIZ (input) INTEGER
+ The dimension of the orthogonal matrix used to reduce
+ the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
+
+ TLVLS (input) INTEGER
+ The total number of merging levels in the overall divide and
+ conquer tree.
+
+ CURLVL (input) INTEGER
+ The current level in the overall merge routine,
+ 0 <= CURLVL <= TLVLS.
+
+ CURPBM (input) INTEGER
+ The current problem in the current level in the overall
+ merge routine (counting from upper left to lower right).
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the eigenvalues of the rank-1-perturbed matrix.
+ On exit, the eigenvalues of the repaired matrix.
+
+ Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
+ On entry, the eigenvectors of the rank-1-perturbed matrix.
+ On exit, the eigenvectors of the repaired tridiagonal matrix.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max(1,N).
+
+ INDXQ (output) INTEGER array, dimension (N)
+ The permutation which will reintegrate the subproblem just
+ solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
+ will be in ascending order.
+
+ RHO (input) DOUBLE PRECISION
+ The subdiagonal element used to create the rank-1
+ modification.
+
+ CUTPNT (input) INTEGER
+ Contains the location of the last eigenvalue in the leading
+ sub-matrix. min(1,N) <= CUTPNT <= N.
+
+ QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
+ Stores eigenvectors of submatrices encountered during
+ divide and conquer, packed together. QPTR points to
+ beginning of the submatrices.
+
+ QPTR (input/output) INTEGER array, dimension (N+2)
+ List of indices pointing to beginning of submatrices stored
+ in QSTORE. The submatrices are numbered starting at the
+ bottom left of the divide and conquer tree, from left to
+ right and bottom to top.
+
+ PRMPTR (input) INTEGER array, dimension (N lg N)
+ Contains a list of pointers which indicate where in PERM a
+ level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
+ indicates the size of the permutation and also the size of
+ the full, non-deflated problem.
+
+ PERM (input) INTEGER array, dimension (N lg N)
+ Contains the permutations (from deflation and sorting) to be
+ applied to each eigenblock.
+
+ GIVPTR (input) INTEGER array, dimension (N lg N)
+ Contains a list of pointers which indicate where in GIVCOL a
+ level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
+ indicates the number of Givens rotations.
+
+ GIVCOL (input) INTEGER array, dimension (2, N lg N)
+ Each pair of numbers indicates a pair of columns to take place
+ in a Givens rotation.
+
+ GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
+ Each number indicates the S value to be used in the
+ corresponding Givens rotation.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
+
+ IWORK (workspace) INTEGER array, dimension (4*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an eigenvalue did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --indxq;
+ --qstore;
+ --qptr;
+ --prmptr;
+ --perm;
+ --givptr;
+ givcol -= 3;
+ givnum -= 3;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if ((*icompq == 1 && *qsiz < *n)) {
+ *info = -4;
+ } else if (*ldq < max(1,*n)) {
+ *info = -9;
+ } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
+ *info = -12;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED7", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/*
+ The following values are for bookkeeping purposes only. They are
+ integer pointers which indicate the portion of the workspace
+ used by a particular array in DLAED8 and DLAED9.
+*/
+
+ if (*icompq == 1) {
+ ldq2 = *qsiz;
+ } else {
+ ldq2 = *n;
+ }
+
+ iz = 1;
+ idlmda = iz + *n;
+ iw = idlmda + *n;
+ iq2 = iw + *n;
+ is = iq2 + *n * ldq2;
+
+ indx = 1;
+ indxc = indx + *n;
+ coltyp = indxc + *n;
+ indxp = coltyp + *n;
+
+/*
+ Form the z-vector which consists of the last row of Q_1 and the
+ first row of Q_2.
+*/
+
+ ptr = pow_ii(&c__2, tlvls) + 1;
+ i__1 = *curlvl - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = *tlvls - i__;
+ ptr += pow_ii(&c__2, &i__2);
+/* L10: */
+ }
+ curr = ptr + *curpbm;
+ dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
+ givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz
+ + *n], info);
+
+/*
+ When solving the final problem, we no longer need the stored data,
+ so we will overwrite the data from this level onto the previously
+ used storage space.
+*/
+
+ if (*curlvl == *tlvls) {
+ qptr[curr] = 1;
+ prmptr[curr] = 1;
+ givptr[curr] = 1;
+ }
+
+/* Sort and Deflate eigenvalues. */
+
+ dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho,
+ cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
+ perm[prmptr[curr]], &givptr[curr + 1], &givcol[((givptr[curr]) <<
+ (1)) + 1], &givnum[((givptr[curr]) << (1)) + 1], &iwork[indxp], &
+ iwork[indx], info);
+ prmptr[curr + 1] = prmptr[curr] + *n;
+ givptr[curr + 1] += givptr[curr];
+
+/* Solve Secular Equation. */
+
+ if (k != 0) {
+ dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda],
+ &work[iw], &qstore[qptr[curr]], &k, info);
+ if (*info != 0) {
+ goto L30;
+ }
+ if (*icompq == 1) {
+ dgemm_("N", "N", qsiz, &k, &k, &c_b15, &work[iq2], &ldq2, &qstore[
+ qptr[curr]], &k, &c_b29, &q[q_offset], ldq);
+ }
+/* Computing 2nd power */
+ i__1 = k;
+ qptr[curr + 1] = qptr[curr] + i__1 * i__1;
+
+/* Prepare the INDXQ sorting permutation. */
+
+ n1 = k;
+ n2 = *n - k;
+ dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
+ } else {
+ qptr[curr + 1] = qptr[curr];
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ indxq[i__] = i__;
+/* L20: */
+ }
+ }
+
+L30:
+ return 0;
+
+/* End of DLAED7 */
+
+} /* dlaed7_ */
+
+/* Subroutine */ int dlaed8_(integer *icompq, integer *k, integer *n, integer
+ *qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq,
+ doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda,
+ doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer
+ *givptr, integer *givcol, doublereal *givnum, integer *indxp, integer
+ *indx, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal c__;
+ static integer i__, j;
+ static doublereal s, t;
+ static integer k2, n1, n2, jp, n1p1;
+ static doublereal eps, tau, tol;
+ static integer jlam, imax, jmax;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *), dscal_(
+ integer *, doublereal *, doublereal *, integer *), dcopy_(integer
+ *, doublereal *, integer *, doublereal *, integer *);
+
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), dlacpy_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAED8 merges the two sets of eigenvalues together into a single
+ sorted set. Then it tries to deflate the size of the problem.
+ There are two ways in which deflation can occur: when two or more
+ eigenvalues are close together or if there is a tiny element in the
+ Z vector. For each such occurrence the order of the related secular
+ equation problem is reduced by one.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ = 0: Compute eigenvalues only.
+ = 1: Compute eigenvectors of original dense symmetric matrix
+ also. On entry, Q contains the orthogonal matrix used
+ to reduce the original matrix to tridiagonal form.
+
+ K (output) INTEGER
+ The number of non-deflated eigenvalues, and the order of the
+ related secular equation.
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ QSIZ (input) INTEGER
+ The dimension of the orthogonal matrix used to reduce
+ the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the eigenvalues of the two submatrices to be
+ combined. On exit, the trailing (N-K) updated eigenvalues
+ (those which were deflated) sorted into increasing order.
+
+ Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
+ If ICOMPQ = 0, Q is not referenced. Otherwise,
+ on entry, Q contains the eigenvectors of the partially solved
+ system which has been previously updated in matrix
+ multiplies with other partially solved eigensystems.
+ On exit, Q contains the trailing (N-K) updated eigenvectors
+ (those which were deflated) in its last N-K columns.
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max(1,N).
+
+ INDXQ (input) INTEGER array, dimension (N)
+ The permutation which separately sorts the two sub-problems
+ in D into ascending order. Note that elements in the second
+ half of this permutation must first have CUTPNT added to
+ their values in order to be accurate.
+
+ RHO (input/output) DOUBLE PRECISION
+ On entry, the off-diagonal element associated with the rank-1
+ cut which originally split the two submatrices which are now
+ being recombined.
+ On exit, RHO has been modified to the value required by
+ DLAED3.
+
+ CUTPNT (input) INTEGER
+ The location of the last eigenvalue in the leading
+ sub-matrix. min(1,N) <= CUTPNT <= N.
+
+ Z (input) DOUBLE PRECISION array, dimension (N)
+ On entry, Z contains the updating vector (the last row of
+ the first sub-eigenvector matrix and the first row of the
+ second sub-eigenvector matrix).
+ On exit, the contents of Z are destroyed by the updating
+ process.
+
+ DLAMDA (output) DOUBLE PRECISION array, dimension (N)
+ A copy of the first K eigenvalues which will be used by
+ DLAED3 to form the secular equation.
+
+ Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N)
+ If ICOMPQ = 0, Q2 is not referenced. Otherwise,
+ a copy of the first K eigenvectors which will be used by
+ DLAED7 in a matrix multiply (DGEMM) to update the new
+ eigenvectors.
+
+ LDQ2 (input) INTEGER
+ The leading dimension of the array Q2. LDQ2 >= max(1,N).
+
+ W (output) DOUBLE PRECISION array, dimension (N)
+ The first k values of the final deflation-altered z-vector and
+ will be passed to DLAED3.
+
+ PERM (output) INTEGER array, dimension (N)
+ The permutations (from deflation and sorting) to be applied
+ to each eigenblock.
+
+ GIVPTR (output) INTEGER
+ The number of Givens rotations which took place in this
+ subproblem.
+
+ GIVCOL (output) INTEGER array, dimension (2, N)
+ Each pair of numbers indicates a pair of columns to take place
+ in a Givens rotation.
+
+ GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)
+ Each number indicates the S value to be used in the
+ corresponding Givens rotation.
+
+ INDXP (workspace) INTEGER array, dimension (N)
+ The permutation used to place deflated values of D at the end
+ of the array. INDXP(1:K) points to the nondeflated D-values
+ and INDXP(K+1:N) points to the deflated eigenvalues.
+
+ INDX (workspace) INTEGER array, dimension (N)
+ The permutation used to sort the contents of D into ascending
+ order.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --indxq;
+ --z__;
+ --dlamda;
+ q2_dim1 = *ldq2;
+ q2_offset = 1 + q2_dim1 * 1;
+ q2 -= q2_offset;
+ --w;
+ --perm;
+ givcol -= 3;
+ givnum -= 3;
+ --indxp;
+ --indx;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if ((*icompq == 1 && *qsiz < *n)) {
+ *info = -4;
+ } else if (*ldq < max(1,*n)) {
+ *info = -7;
+ } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
+ *info = -10;
+ } else if (*ldq2 < max(1,*n)) {
+ *info = -14;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED8", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ n1 = *cutpnt;
+ n2 = *n - n1;
+ n1p1 = n1 + 1;
+
+ if (*rho < 0.) {
+ dscal_(&n2, &c_b151, &z__[n1p1], &c__1);
+ }
+
+/* Normalize z so that norm(z) = 1 */
+
+ t = 1. / sqrt(2.);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ indx[j] = j;
+/* L10: */
+ }
+ dscal_(n, &t, &z__[1], &c__1);
+ *rho = (d__1 = *rho * 2., abs(d__1));
+
+/* Sort the eigenvalues into increasing order */
+
+ i__1 = *n;
+ for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
+ indxq[i__] += *cutpnt;
+/* L20: */
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlamda[i__] = d__[indxq[i__]];
+ w[i__] = z__[indxq[i__]];
+/* L30: */
+ }
+ i__ = 1;
+ j = *cutpnt + 1;
+ dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = dlamda[indx[i__]];
+ z__[i__] = w[indx[i__]];
+/* L40: */
+ }
+
+/* Calculate the allowable deflation tolerence */
+
+ imax = idamax_(n, &z__[1], &c__1);
+ jmax = idamax_(n, &d__[1], &c__1);
+ eps = EPSILON;
+ tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));
+
+/*
+ If the rank-1 modifier is small enough, no more needs to be done
+ except to reorganize Q so that its columns correspond with the
+ elements in D.
+*/
+
+ if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
+ *k = 0;
+ if (*icompq == 0) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ perm[j] = indxq[indx[j]];
+/* L50: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ perm[j] = indxq[indx[j]];
+ dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1
+ + 1], &c__1);
+/* L60: */
+ }
+ dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
+ }
+ return 0;
+ }
+
+/*
+ If there are multiple eigenvalues then the problem deflates. Here
+ the number of equal eigenvalues are found. As each equal
+ eigenvalue is found, an elementary reflector is computed to rotate
+ the corresponding eigensubspace so that the corresponding
+ components of Z are zero in this new basis.
+*/
+
+ *k = 0;
+ *givptr = 0;
+ k2 = *n + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ indxp[k2] = j;
+ if (j == *n) {
+ goto L110;
+ }
+ } else {
+ jlam = j;
+ goto L80;
+ }
+/* L70: */
+ }
+L80:
+ ++j;
+ if (j > *n) {
+ goto L100;
+ }
+ if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ indxp[k2] = j;
+ } else {
+
+/* Check if eigenvalues are close enough to allow deflation. */
+
+ s = z__[jlam];
+ c__ = z__[j];
+
+/*
+ Find sqrt(a**2+b**2) without overflow or
+ destructive underflow.
+*/
+
+ tau = dlapy2_(&c__, &s);
+ t = d__[j] - d__[jlam];
+ c__ /= tau;
+ s = -s / tau;
+ if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
+
+/* Deflation is possible. */
+
+ z__[j] = tau;
+ z__[jlam] = 0.;
+
+/* Record the appropriate Givens rotation */
+
+ ++(*givptr);
+ givcol[((*givptr) << (1)) + 1] = indxq[indx[jlam]];
+ givcol[((*givptr) << (1)) + 2] = indxq[indx[j]];
+ givnum[((*givptr) << (1)) + 1] = c__;
+ givnum[((*givptr) << (1)) + 2] = s;
+ if (*icompq == 1) {
+ drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
+ indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
+ }
+ t = d__[jlam] * c__ * c__ + d__[j] * s * s;
+ d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
+ d__[jlam] = t;
+ --k2;
+ i__ = 1;
+L90:
+ if (k2 + i__ <= *n) {
+ if (d__[jlam] < d__[indxp[k2 + i__]]) {
+ indxp[k2 + i__ - 1] = indxp[k2 + i__];
+ indxp[k2 + i__] = jlam;
+ ++i__;
+ goto L90;
+ } else {
+ indxp[k2 + i__ - 1] = jlam;
+ }
+ } else {
+ indxp[k2 + i__ - 1] = jlam;
+ }
+ jlam = j;
+ } else {
+ ++(*k);
+ w[*k] = z__[jlam];
+ dlamda[*k] = d__[jlam];
+ indxp[*k] = jlam;
+ jlam = j;
+ }
+ }
+ goto L80;
+L100:
+
+/* Record the last eigenvalue. */
+
+ ++(*k);
+ w[*k] = z__[jlam];
+ dlamda[*k] = d__[jlam];
+ indxp[*k] = jlam;
+
+L110:
+
+/*
+ Sort the eigenvalues and corresponding eigenvectors into DLAMDA
+ and Q2 respectively. The eigenvalues/vectors which were not
+ deflated go into the first K slots of DLAMDA and Q2 respectively,
+ while those which were deflated go into the last N - K slots.
+*/
+
+ if (*icompq == 0) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ jp = indxp[j];
+ dlamda[j] = d__[jp];
+ perm[j] = indxq[indx[jp]];
+/* L120: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ jp = indxp[j];
+ dlamda[j] = d__[jp];
+ perm[j] = indxq[indx[jp]];
+ dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
+ , &c__1);
+/* L130: */
+ }
+ }
+
+/*
+ The deflated eigenvalues and their corresponding vectors go back
+ into the last N - K slots of D and Q respectively.
+*/
+
+ if (*k < *n) {
+ if (*icompq == 0) {
+ i__1 = *n - *k;
+ dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
+ } else {
+ i__1 = *n - *k;
+ dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
+ i__1 = *n - *k;
+ dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
+ k + 1) * q_dim1 + 1], ldq);
+ }
+ }
+
+ return 0;
+
+/* End of DLAED8 */
+
+} /* dlaed8_ */
+
+/* Subroutine */ int dlaed9_(integer *k, integer *kstart, integer *kstop,
+ integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
+ rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds,
+ integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal temp;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dlaed4_(integer *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *);
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAED9 finds the roots of the secular equation, as defined by the
+ values in D, Z, and RHO, between KSTART and KSTOP. It makes the
+ appropriate calls to DLAED4 and then stores the new matrix of
+ eigenvectors for use in calculating the next level of Z vectors.
+
+ Arguments
+ =========
+
+ K (input) INTEGER
+ The number of terms in the rational function to be solved by
+ DLAED4. K >= 0.
+
+ KSTART (input) INTEGER
+ KSTOP (input) INTEGER
+ The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
+ are to be computed. 1 <= KSTART <= KSTOP <= K.
+
+ N (input) INTEGER
+ The number of rows and columns in the Q matrix.
+ N >= K (delation may result in N > K).
+
+ D (output) DOUBLE PRECISION array, dimension (N)
+ D(I) contains the updated eigenvalues
+ for KSTART <= I <= KSTOP.
+
+ Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= max( 1, N ).
+
+ RHO (input) DOUBLE PRECISION
+ The value of the parameter in the rank one update equation.
+ RHO >= 0 required.
+
+ DLAMDA (input) DOUBLE PRECISION array, dimension (K)
+ The first K elements of this array contain the old roots
+ of the deflated updating problem. These are the poles
+ of the secular equation.
+
+ W (input) DOUBLE PRECISION array, dimension (K)
+ The first K elements of this array contain the components
+ of the deflation-adjusted updating vector.
+
+ S (output) DOUBLE PRECISION array, dimension (LDS, K)
+ Will contain the eigenvectors of the repaired matrix which
+ will be stored for subsequent Z vector calculation and
+ multiplied by the previously accumulated eigenvectors
+ to update the system.
+
+ LDS (input) INTEGER
+ The leading dimension of S. LDS >= max( 1, K ).
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an eigenvalue did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --dlamda;
+ --w;
+ s_dim1 = *lds;
+ s_offset = 1 + s_dim1 * 1;
+ s -= s_offset;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*k < 0) {
+ *info = -1;
+ } else if (*kstart < 1 || *kstart > max(1,*k)) {
+ *info = -2;
+ } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
+ *info = -3;
+ } else if (*n < *k) {
+ *info = -4;
+ } else if (*ldq < max(1,*k)) {
+ *info = -7;
+ } else if (*lds < max(1,*k)) {
+ *info = -12;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAED9", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*k == 0) {
+ return 0;
+ }
+
+/*
+ Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
+ be computed with high relative accuracy (barring over/underflow).
+ This is a problem on machines without a guard digit in
+ add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
+ The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
+ which on any of these machines zeros out the bottommost
+ bit of DLAMDA(I) if it is 1; this makes the subsequent
+ subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
+ occurs. On binary machines with a guard digit (almost all
+ machines) it does not change DLAMDA(I) at all. On hexadecimal
+ and decimal machines with a guard digit, it slightly
+ changes the bottommost bits of DLAMDA(I). It does not account
+ for hexadecimal or decimal machines without guard digits
+ (we know of none). We use a subroutine call to compute
+ 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
+ this code.
+*/
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
+/* L10: */
+ }
+
+ i__1 = *kstop;
+ for (j = *kstart; j <= i__1; ++j) {
+ dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
+ info);
+
+/* If the zero finder fails, the computation is terminated. */
+
+ if (*info != 0) {
+ goto L120;
+ }
+/* L20: */
+ }
+
+ if (*k == 1 || *k == 2) {
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = *k;
+ for (j = 1; j <= i__2; ++j) {
+ s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ goto L120;
+ }
+
+/* Compute updated W. */
+
+ dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);
+
+/* Initialize W(I) = Q(I,I) */
+
+ i__1 = *ldq + 1;
+ dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
+/* L50: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
+/* L60: */
+ }
+/* L70: */
+ }
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__1 = sqrt(-w[i__]);
+ w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);
+/* L80: */
+ }
+
+/* Compute eigenvectors of the modified rank-1 modification. */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
+/* L90: */
+ }
+ temp = dnrm2_(k, &q[j * q_dim1 + 1], &c__1);
+ i__2 = *k;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
+/* L100: */
+ }
+/* L110: */
+ }
+
+L120:
+ return 0;
+
+/* End of DLAED9 */
+
+} /* dlaed9_ */
+
+/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl,
+ integer *curpbm, integer *prmptr, integer *perm, integer *givptr,
+ integer *givcol, doublereal *givnum, doublereal *q, integer *qptr,
+ doublereal *z__, doublereal *ztemp, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+
+ /* Builtin functions */
+ integer pow_ii(integer *, integer *);
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, k, mid, ptr;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), dcopy_(integer *,
+ doublereal *, integer *, doublereal *, integer *), xerbla_(char *,
+ integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAEDA computes the Z vector corresponding to the merge step in the
+ CURLVLth step of the merge process with TLVLS steps for the CURPBMth
+ problem.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ TLVLS (input) INTEGER
+ The total number of merging levels in the overall divide and
+ conquer tree.
+
+ CURLVL (input) INTEGER
+ The current level in the overall merge routine,
+ 0 <= curlvl <= tlvls.
+
+ CURPBM (input) INTEGER
+ The current problem in the current level in the overall
+ merge routine (counting from upper left to lower right).
+
+ PRMPTR (input) INTEGER array, dimension (N lg N)
+ Contains a list of pointers which indicate where in PERM a
+ level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
+ indicates the size of the permutation and incidentally the
+ size of the full, non-deflated problem.
+
+ PERM (input) INTEGER array, dimension (N lg N)
+ Contains the permutations (from deflation and sorting) to be
+ applied to each eigenblock.
+
+ GIVPTR (input) INTEGER array, dimension (N lg N)
+ Contains a list of pointers which indicate where in GIVCOL a
+ level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
+ indicates the number of Givens rotations.
+
+ GIVCOL (input) INTEGER array, dimension (2, N lg N)
+ Each pair of numbers indicates a pair of columns to take place
+ in a Givens rotation.
+
+ GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
+ Each number indicates the S value to be used in the
+ corresponding Givens rotation.
+
+ Q (input) DOUBLE PRECISION array, dimension (N**2)
+ Contains the square eigenblocks from previous levels, the
+ starting positions for blocks are given by QPTR.
+
+ QPTR (input) INTEGER array, dimension (N+2)
+ Contains a list of pointers which indicate where in Q an
+ eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
+ the size of the block.
+
+ Z (output) DOUBLE PRECISION array, dimension (N)
+ On output this vector contains the updating vector (the last
+ row of the first sub-eigenvector matrix and the first row of
+ the second sub-eigenvector matrix).
+
+ ZTEMP (workspace) DOUBLE PRECISION array, dimension (N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --ztemp;
+ --z__;
+ --qptr;
+ --q;
+ givnum -= 3;
+ givcol -= 3;
+ --givptr;
+ --perm;
+ --prmptr;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*n < 0) {
+ *info = -1;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLAEDA", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Determine location of first number in second half. */
+
+ mid = *n / 2 + 1;
+
+/* Gather last/first rows of appropriate eigenblocks into center of Z */
+
+ ptr = 1;
+
+/*
+ Determine location of lowest level subproblem in the full storage
+ scheme
+*/
+
+ i__1 = *curlvl - 1;
+ curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
+
+/*
+ Determine size of these matrices. We add HALF to the value of
+ the SQRT in case the machine underestimates one of these square
+ roots.
+*/
+
+ bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
+ bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) +
+ .5);
+ i__1 = mid - bsiz1 - 1;
+ for (k = 1; k <= i__1; ++k) {
+ z__[k] = 0.;
+/* L10: */
+ }
+ dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
+ c__1);
+ dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
+ i__1 = *n;
+ for (k = mid + bsiz2; k <= i__1; ++k) {
+ z__[k] = 0.;
+/* L20: */
+ }
+
+/*
+ Loop thru remaining levels 1 -> CURLVL applying the Givens
+ rotations and permutation and then multiplying the center matrices
+ against the current Z.
+*/
+
+ ptr = pow_ii(&c__2, tlvls) + 1;
+ i__1 = *curlvl - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = *curlvl - k;
+ i__3 = *curlvl - k - 1;
+ curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) -
+ 1;
+ psiz1 = prmptr[curr + 1] - prmptr[curr];
+ psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
+ zptr1 = mid - psiz1;
+
+/* Apply Givens at CURR and CURR+1 */
+
+ i__2 = givptr[curr + 1] - 1;
+ for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
+ drot_(&c__1, &z__[zptr1 + givcol[((i__) << (1)) + 1] - 1], &c__1,
+ &z__[zptr1 + givcol[((i__) << (1)) + 2] - 1], &c__1, &
+ givnum[((i__) << (1)) + 1], &givnum[((i__) << (1)) + 2]);
+/* L30: */
+ }
+ i__2 = givptr[curr + 2] - 1;
+ for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
+ drot_(&c__1, &z__[mid - 1 + givcol[((i__) << (1)) + 1]], &c__1, &
+ z__[mid - 1 + givcol[((i__) << (1)) + 2]], &c__1, &givnum[
+ ((i__) << (1)) + 1], &givnum[((i__) << (1)) + 2]);
+/* L40: */
+ }
+ psiz1 = prmptr[curr + 1] - prmptr[curr];
+ psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
+ i__2 = psiz1 - 1;
+ for (i__ = 0; i__ <= i__2; ++i__) {
+ ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
+/* L50: */
+ }
+ i__2 = psiz2 - 1;
+ for (i__ = 0; i__ <= i__2; ++i__) {
+ ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] -
+ 1];
+/* L60: */
+ }
+
+/*
+ Multiply Blocks at CURR and CURR+1
+
+ Determine size of these matrices. We add HALF to the value of
+ the SQRT in case the machine underestimates one of these
+ square roots.
+*/
+
+ bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) +
+ .5);
+ bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
+ ) + .5);
+ if (bsiz1 > 0) {
+ dgemv_("T", &bsiz1, &bsiz1, &c_b15, &q[qptr[curr]], &bsiz1, &
+ ztemp[1], &c__1, &c_b29, &z__[zptr1], &c__1);
+ }
+ i__2 = psiz1 - bsiz1;
+ dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
+ if (bsiz2 > 0) {
+ dgemv_("T", &bsiz2, &bsiz2, &c_b15, &q[qptr[curr + 1]], &bsiz2, &
+ ztemp[psiz1 + 1], &c__1, &c_b29, &z__[mid], &c__1);
+ }
+ i__2 = psiz2 - bsiz2;
+ dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
+ c__1);
+
+ i__2 = *tlvls - k;
+ ptr += pow_ii(&c__2, &i__2);
+/* L70: */
+ }
+
+ return 0;
+
+/* End of DLAEDA */
+
+} /* dlaeda_ */
+
+/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__,
+ doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1)
+{
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
+ static integer sgn1, sgn2;
+ static doublereal acmn, acmx;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
+ [ A B ]
+ [ B C ].
+ On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
+ eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
+ eigenvector for RT1, giving the decomposition
+
+ [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
+ [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
+
+ Arguments
+ =========
+
+ A (input) DOUBLE PRECISION
+ The (1,1) element of the 2-by-2 matrix.
+
+ B (input) DOUBLE PRECISION
+ The (1,2) element and the conjugate of the (2,1) element of
+ the 2-by-2 matrix.
+
+ C (input) DOUBLE PRECISION
+ The (2,2) element of the 2-by-2 matrix.
+
+ RT1 (output) DOUBLE PRECISION
+ The eigenvalue of larger absolute value.
+
+ RT2 (output) DOUBLE PRECISION
+ The eigenvalue of smaller absolute value.
+
+ CS1 (output) DOUBLE PRECISION
+ SN1 (output) DOUBLE PRECISION
+ The vector (CS1, SN1) is a unit right eigenvector for RT1.
+
+ Further Details
+ ===============
+
+ RT1 is accurate to a few ulps barring over/underflow.
+
+ RT2 may be inaccurate if there is massive cancellation in the
+ determinant A*C-B*B; higher precision or correctly rounded or
+ correctly truncated arithmetic would be needed to compute RT2
+ accurately in all cases.
+
+ CS1 and SN1 are accurate to a few ulps barring over/underflow.
+
+ Overflow is possible only if RT1 is within a factor of 5 of overflow.
+ Underflow is harmless if the input data is 0 or exceeds
+ underflow_threshold / macheps.
+
+ =====================================================================
+
+
+ Compute the eigenvalues
+*/
+
+ sm = *a + *c__;
+ df = *a - *c__;
+ adf = abs(df);
+ tb = *b + *b;
+ ab = abs(tb);
+ if (abs(*a) > abs(*c__)) {
+ acmx = *a;
+ acmn = *c__;
+ } else {
+ acmx = *c__;
+ acmn = *a;
+ }
+ if (adf > ab) {
+/* Computing 2nd power */
+ d__1 = ab / adf;
+ rt = adf * sqrt(d__1 * d__1 + 1.);
+ } else if (adf < ab) {
+/* Computing 2nd power */
+ d__1 = adf / ab;
+ rt = ab * sqrt(d__1 * d__1 + 1.);
+ } else {
+
+/* Includes case AB=ADF=0 */
+
+ rt = ab * sqrt(2.);
+ }
+ if (sm < 0.) {
+ *rt1 = (sm - rt) * .5;
+ sgn1 = -1;
+
+/*
+ Order of execution important.
+ To get fully accurate smaller eigenvalue,
+ next line needs to be executed in higher precision.
+*/
+
+ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
+ } else if (sm > 0.) {
+ *rt1 = (sm + rt) * .5;
+ sgn1 = 1;
+
+/*
+ Order of execution important.
+ To get fully accurate smaller eigenvalue,
+ next line needs to be executed in higher precision.
+*/
+
+ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
+ } else {
+
+/* Includes case RT1 = RT2 = 0 */
+
+ *rt1 = rt * .5;
+ *rt2 = rt * -.5;
+ sgn1 = 1;
+ }
+
+/* Compute the eigenvector */
+
+ if (df >= 0.) {
+ cs = df + rt;
+ sgn2 = 1;
+ } else {
+ cs = df - rt;
+ sgn2 = -1;
+ }
+ acs = abs(cs);
+ if (acs > ab) {
+ ct = -tb / cs;
+ *sn1 = 1. / sqrt(ct * ct + 1.);
+ *cs1 = ct * *sn1;
+ } else {
+ if (ab == 0.) {
+ *cs1 = 1.;
+ *sn1 = 0.;
+ } else {
+ tn = -cs / tb;
+ *cs1 = 1. / sqrt(tn * tn + 1.);
+ *sn1 = tn * *cs1;
+ }
+ }
+ if (sgn1 == sgn2) {
+ tn = *cs1;
+ *cs1 = -(*sn1);
+ *sn1 = tn;
+ }
+ return 0;
+
+/* End of DLAEV2 */
+
+} /* dlaev2_ */
+
+/* Subroutine */ int dlahqr_(logical *wantt, logical *wantz, integer *n,
+ integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
+ *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
+ integer *ldz, integer *info)
+{
+ /* System generated locals */
+ integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer i__, j, k, l, m;
+ static doublereal s, v[3];
+ static integer i1, i2;
+ static doublereal t1, t2, t3, v1, v2, v3, h00, h10, h11, h12, h21, h22,
+ h33, h44;
+ static integer nh;
+ static doublereal cs;
+ static integer nr;
+ static doublereal sn;
+ static integer nz;
+ static doublereal ave, h33s, h44s;
+ static integer itn, its;
+ static doublereal ulp, sum, tst1, h43h34, disc, unfl, ovfl;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static doublereal work[1];
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dlanv2_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *), dlabad_(
+ doublereal *, doublereal *);
+
+ extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *);
+ extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
+ doublereal *);
+ static doublereal smlnum;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAHQR is an auxiliary routine called by DHSEQR to update the
+ eigenvalues and Schur decomposition already computed by DHSEQR, by
+ dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
+
+ Arguments
+ =========
+
+ WANTT (input) LOGICAL
+ = .TRUE. : the full Schur form T is required;
+ = .FALSE.: only eigenvalues are required.
+
+ WANTZ (input) LOGICAL
+ = .TRUE. : the matrix of Schur vectors Z is required;
+ = .FALSE.: Schur vectors are not required.
+
+ N (input) INTEGER
+ The order of the matrix H. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ It is assumed that H is already upper quasi-triangular in
+ rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
+ ILO = 1). DLAHQR works primarily with the Hessenberg
+ submatrix in rows and columns ILO to IHI, but applies
+ transformations to all of H if WANTT is .TRUE..
+ 1 <= ILO <= max(1,IHI); IHI <= N.
+
+ H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
+ On entry, the upper Hessenberg matrix H.
+ On exit, if WANTT is .TRUE., H is upper quasi-triangular in
+ rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
+ standard form. If WANTT is .FALSE., the contents of H are
+ unspecified on exit.
+
+ LDH (input) INTEGER
+ The leading dimension of the array H. LDH >= max(1,N).
+
+ WR (output) DOUBLE PRECISION array, dimension (N)
+ WI (output) DOUBLE PRECISION array, dimension (N)
+ The real and imaginary parts, respectively, of the computed
+ eigenvalues ILO to IHI are stored in the corresponding
+ elements of WR and WI. If two eigenvalues are computed as a
+ complex conjugate pair, they are stored in consecutive
+ elements of WR and WI, say the i-th and (i+1)th, with
+ WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
+ eigenvalues are stored in the same order as on the diagonal
+ of the Schur form returned in H, with WR(i) = H(i,i), and, if
+ H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
+ WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
+
+ ILOZ (input) INTEGER
+ IHIZ (input) INTEGER
+ Specify the rows of Z to which transformations must be
+ applied if WANTZ is .TRUE..
+ 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
+
+ Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+ If WANTZ is .TRUE., on entry Z must contain the current
+ matrix Z of transformations accumulated by DHSEQR, and on
+ exit Z has been updated; transformations are applied only to
+ the submatrix Z(ILOZ:IHIZ,ILO:IHI).
+ If WANTZ is .FALSE., Z is not referenced.
+
+ LDZ (input) INTEGER
+ The leading dimension of the array Z. LDZ >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ > 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
+ in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
+ elements i+1:ihi of WR and WI contain those eigenvalues
+ which have been successfully computed.
+
+ Further Details
+ ===============
+
+ 2-96 Based on modifications by
+ David Day, Sandia National Laboratory, USA
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ h_dim1 = *ldh;
+ h_offset = 1 + h_dim1 * 1;
+ h__ -= h_offset;
+ --wr;
+ --wi;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+
+ /* Function Body */
+ *info = 0;
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+ if (*ilo == *ihi) {
+ wr[*ilo] = h__[*ilo + *ilo * h_dim1];
+ wi[*ilo] = 0.;
+ return 0;
+ }
+
+ nh = *ihi - *ilo + 1;
+ nz = *ihiz - *iloz + 1;
+
+/*
+ Set machine-dependent constants for the stopping criterion.
+ If norm(H) <= sqrt(OVFL), overflow should not occur.
+*/
+
+ unfl = SAFEMINIMUM;
+ ovfl = 1. / unfl;
+ dlabad_(&unfl, &ovfl);
+ ulp = PRECISION;
+ smlnum = unfl * (nh / ulp);
+
+/*
+ I1 and I2 are the indices of the first row and last column of H
+ to which transformations must be applied. If eigenvalues only are
+ being computed, I1 and I2 are set inside the main loop.
+*/
+
+ if (*wantt) {
+ i1 = 1;
+ i2 = *n;
+ }
+
+/* ITN is the total number of QR iterations allowed. */
+
+ itn = nh * 30;
+
+/*
+ The main loop begins here. I is the loop index and decreases from
+ IHI to ILO in steps of 1 or 2. Each iteration of the loop works
+ with the active submatrix in rows and columns L to I.
+ Eigenvalues I+1 to IHI have already converged. Either L = ILO or
+ H(L,L-1) is negligible so that the matrix splits.
+*/
+
+ i__ = *ihi;
+L10:
+ l = *ilo;
+ if (i__ < *ilo) {
+ goto L150;
+ }
+
+/*
+ Perform QR iterations on rows and columns ILO to I until a
+ submatrix of order 1 or 2 splits off at the bottom because a
+ subdiagonal element has become negligible.
+*/
+
+ i__1 = itn;
+ for (its = 0; its <= i__1; ++its) {
+
+/* Look for a single small subdiagonal element. */
+
+ i__2 = l + 1;
+ for (k = i__; k >= i__2; --k) {
+ tst1 = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
+ h__[k + k * h_dim1], abs(d__2));
+ if (tst1 == 0.) {
+ i__3 = i__ - l + 1;
+ tst1 = dlanhs_("1", &i__3, &h__[l + l * h_dim1], ldh, work);
+ }
+/* Computing MAX */
+ d__2 = ulp * tst1;
+ if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= max(d__2,
+ smlnum)) {
+ goto L30;
+ }
+/* L20: */
+ }
+L30:
+ l = k;
+ if (l > *ilo) {
+
+/* H(L,L-1) is negligible */
+
+ h__[l + (l - 1) * h_dim1] = 0.;
+ }
+
+/* Exit from loop if a submatrix of order 1 or 2 has split off. */
+
+ if (l >= i__ - 1) {
+ goto L140;
+ }
+
+/*
+ Now the active submatrix is in rows and columns L to I. If
+ eigenvalues only are being computed, only the active submatrix
+ need be transformed.
+*/
+
+ if (! (*wantt)) {
+ i1 = l;
+ i2 = i__;
+ }
+
+ if (its == 10 || its == 20) {
+
+/* Exceptional shift. */
+
+ s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 =
+ h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
+ h44 = s * .75 + h__[i__ + i__ * h_dim1];
+ h33 = h44;
+ h43h34 = s * -.4375 * s;
+ } else {
+
+/*
+ Prepare to use Francis' double shift
+ (i.e. 2nd degree generalized Rayleigh quotient)
+*/
+
+ h44 = h__[i__ + i__ * h_dim1];
+ h33 = h__[i__ - 1 + (i__ - 1) * h_dim1];
+ h43h34 = h__[i__ + (i__ - 1) * h_dim1] * h__[i__ - 1 + i__ *
+ h_dim1];
+ s = h__[i__ - 1 + (i__ - 2) * h_dim1] * h__[i__ - 1 + (i__ - 2) *
+ h_dim1];
+ disc = (h33 - h44) * .5;
+ disc = disc * disc + h43h34;
+ if (disc > 0.) {
+
+/* Real roots: use Wilkinson's shift twice */
+
+ disc = sqrt(disc);
+ ave = (h33 + h44) * .5;
+ if (abs(h33) - abs(h44) > 0.) {
+ h33 = h33 * h44 - h43h34;
+ h44 = h33 / (d_sign(&disc, &ave) + ave);
+ } else {
+ h44 = d_sign(&disc, &ave) + ave;
+ }
+ h33 = h44;
+ h43h34 = 0.;
+ }
+ }
+
+/* Look for two consecutive small subdiagonal elements. */
+
+ i__2 = l;
+ for (m = i__ - 2; m >= i__2; --m) {
+/*
+ Determine the effect of starting the double-shift QR
+ iteration at row M, and see if this would make H(M,M-1)
+ negligible.
+*/
+
+ h11 = h__[m + m * h_dim1];
+ h22 = h__[m + 1 + (m + 1) * h_dim1];
+ h21 = h__[m + 1 + m * h_dim1];
+ h12 = h__[m + (m + 1) * h_dim1];
+ h44s = h44 - h11;
+ h33s = h33 - h11;
+ v1 = (h33s * h44s - h43h34) / h21 + h12;
+ v2 = h22 - h11 - h33s - h44s;
+ v3 = h__[m + 2 + (m + 1) * h_dim1];
+ s = abs(v1) + abs(v2) + abs(v3);
+ v1 /= s;
+ v2 /= s;
+ v3 /= s;
+ v[0] = v1;
+ v[1] = v2;
+ v[2] = v3;
+ if (m == l) {
+ goto L50;
+ }
+ h00 = h__[m - 1 + (m - 1) * h_dim1];
+ h10 = h__[m + (m - 1) * h_dim1];
+ tst1 = abs(v1) * (abs(h00) + abs(h11) + abs(h22));
+ if (abs(h10) * (abs(v2) + abs(v3)) <= ulp * tst1) {
+ goto L50;
+ }
+/* L40: */
+ }
+L50:
+
+/* Double-shift QR step */
+
+ i__2 = i__ - 1;
+ for (k = m; k <= i__2; ++k) {
+
+/*
+ The first iteration of this loop determines a reflection G
+ from the vector V and applies it from left and right to H,
+ thus creating a nonzero bulge below the subdiagonal.
+
+ Each subsequent iteration determines a reflection G to
+ restore the Hessenberg form in the (K-1)th column, and thus
+ chases the bulge one step toward the bottom of the active
+ submatrix. NR is the order of G.
+
+ Computing MIN
+*/
+ i__3 = 3, i__4 = i__ - k + 1;
+ nr = min(i__3,i__4);
+ if (k > m) {
+ dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
+ }
+ dlarfg_(&nr, v, &v[1], &c__1, &t1);
+ if (k > m) {
+ h__[k + (k - 1) * h_dim1] = v[0];
+ h__[k + 1 + (k - 1) * h_dim1] = 0.;
+ if (k < i__ - 1) {
+ h__[k + 2 + (k - 1) * h_dim1] = 0.;
+ }
+ } else if (m > l) {
+ h__[k + (k - 1) * h_dim1] = -h__[k + (k - 1) * h_dim1];
+ }
+ v2 = v[1];
+ t2 = t1 * v2;
+ if (nr == 3) {
+ v3 = v[2];
+ t3 = t1 * v3;
+
+/*
+ Apply G from the left to transform the rows of the matrix
+ in columns K to I2.
+*/
+
+ i__3 = i2;
+ for (j = k; j <= i__3; ++j) {
+ sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1]
+ + v3 * h__[k + 2 + j * h_dim1];
+ h__[k + j * h_dim1] -= sum * t1;
+ h__[k + 1 + j * h_dim1] -= sum * t2;
+ h__[k + 2 + j * h_dim1] -= sum * t3;
+/* L60: */
+ }
+
+/*
+ Apply G from the right to transform the columns of the
+ matrix in rows I1 to min(K+3,I).
+
+ Computing MIN
+*/
+ i__4 = k + 3;
+ i__3 = min(i__4,i__);
+ for (j = i1; j <= i__3; ++j) {
+ sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
+ + v3 * h__[j + (k + 2) * h_dim1];
+ h__[j + k * h_dim1] -= sum * t1;
+ h__[j + (k + 1) * h_dim1] -= sum * t2;
+ h__[j + (k + 2) * h_dim1] -= sum * t3;
+/* L70: */
+ }
+
+ if (*wantz) {
+
+/* Accumulate transformations in the matrix Z */
+
+ i__3 = *ihiz;
+ for (j = *iloz; j <= i__3; ++j) {
+ sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
+ z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
+ z__[j + k * z_dim1] -= sum * t1;
+ z__[j + (k + 1) * z_dim1] -= sum * t2;
+ z__[j + (k + 2) * z_dim1] -= sum * t3;
+/* L80: */
+ }
+ }
+ } else if (nr == 2) {
+
+/*
+ Apply G from the left to transform the rows of the matrix
+ in columns K to I2.
+*/
+
+ i__3 = i2;
+ for (j = k; j <= i__3; ++j) {
+ sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
+ h__[k + j * h_dim1] -= sum * t1;
+ h__[k + 1 + j * h_dim1] -= sum * t2;
+/* L90: */
+ }
+
+/*
+ Apply G from the right to transform the columns of the
+ matrix in rows I1 to min(K+3,I).
+*/
+
+ i__3 = i__;
+ for (j = i1; j <= i__3; ++j) {
+ sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
+ ;
+ h__[j + k * h_dim1] -= sum * t1;
+ h__[j + (k + 1) * h_dim1] -= sum * t2;
+/* L100: */
+ }
+
+ if (*wantz) {
+
+/* Accumulate transformations in the matrix Z */
+
+ i__3 = *ihiz;
+ for (j = *iloz; j <= i__3; ++j) {
+ sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
+ z_dim1];
+ z__[j + k * z_dim1] -= sum * t1;
+ z__[j + (k + 1) * z_dim1] -= sum * t2;
+/* L110: */
+ }
+ }
+ }
+/* L120: */
+ }
+
+/* L130: */
+ }
+
+/* Failure to converge in remaining number of iterations */
+
+ *info = i__;
+ return 0;
+
+L140:
+
+ if (l == i__) {
+
+/* H(I,I-1) is negligible: one eigenvalue has converged. */
+
+ wr[i__] = h__[i__ + i__ * h_dim1];
+ wi[i__] = 0.;
+ } else if (l == i__ - 1) {
+
+/*
+ H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
+
+ Transform the 2-by-2 submatrix to standard Schur form,
+ and compute and store the eigenvalues.
+*/
+
+ dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ *
+ h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ *
+ h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs,
+ &sn);
+
+ if (*wantt) {
+
+/* Apply the transformation to the rest of H. */
+
+ if (i2 > i__) {
+ i__1 = i2 - i__;
+ drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
+ i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
+ }
+ i__1 = i__ - i1 - 1;
+ drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
+ h_dim1], &c__1, &cs, &sn);
+ }
+ if (*wantz) {
+
+/* Apply the transformation to Z. */
+
+ drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz +
+ i__ * z_dim1], &c__1, &cs, &sn);
+ }
+ }
+
+/*
+ Decrement number of remaining iterations, and return to start of
+ the main loop with new value of I.
+*/
+
+ itn -= its;
+ i__ = l - 1;
+ goto L10;
+
+L150:
+ return 0;
+
+/* End of DLAHQR */
+
+} /* dlahqr_ */
+
+/* Subroutine */ int dlahrd_(integer *n, integer *k, integer *nb, doublereal *
+ a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
+ doublereal *y, integer *ldy)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
+ i__3;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__;
+ static doublereal ei;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dgemv_(char *, integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dcopy_(integer *, doublereal *,
+ integer *, doublereal *, integer *), daxpy_(integer *, doublereal
+ *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
+ *, char *, char *, integer *, doublereal *, integer *, doublereal
+ *, integer *), dlarfg_(integer *,
+ doublereal *, doublereal *, integer *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
+ matrix A so that elements below the k-th subdiagonal are zero. The
+ reduction is performed by an orthogonal similarity transformation
+ Q' * A * Q. The routine returns the matrices V and T which determine
+ Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
+
+ This is an auxiliary routine called by DGEHRD.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the matrix A.
+
+ K (input) INTEGER
+ The offset for the reduction. Elements below the k-th
+ subdiagonal in the first NB columns are reduced to zero.
+
+ NB (input) INTEGER
+ The number of columns to be reduced.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
+ On entry, the n-by-(n-k+1) general matrix A.
+ On exit, the elements on and above the k-th subdiagonal in
+ the first NB columns are overwritten with the corresponding
+ elements of the reduced matrix; the elements below the k-th
+ subdiagonal, with the array TAU, represent the matrix Q as a
+ product of elementary reflectors. The other columns of A are
+ unchanged. See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ TAU (output) DOUBLE PRECISION array, dimension (NB)
+ The scalar factors of the elementary reflectors. See Further
+ Details.
+
+ T (output) DOUBLE PRECISION array, dimension (LDT,NB)
+ The upper triangular matrix T.
+
+ LDT (input) INTEGER
+ The leading dimension of the array T. LDT >= NB.
+
+ Y (output) DOUBLE PRECISION array, dimension (LDY,NB)
+ The n-by-nb matrix Y.
+
+ LDY (input) INTEGER
+ The leading dimension of the array Y. LDY >= N.
+
+ Further Details
+ ===============
+
+ The matrix Q is represented as a product of nb elementary reflectors
+
+ Q = H(1) H(2) . . . H(nb).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
+ A(i+k+1:n,i), and tau in TAU(i).
+
+ The elements of the vectors v together form the (n-k+1)-by-nb matrix
+ V which is needed, with T and Y, to apply the transformation to the
+ unreduced part of the matrix, using an update of the form:
+ A := (I - V*T*V') * (A - Y*V').
+
+ The contents of A on exit are illustrated by the following example
+ with n = 7, k = 3 and nb = 2:
+
+ ( a h a a a )
+ ( a h a a a )
+ ( a h a a a )
+ ( h h a a a )
+ ( v1 h a a a )
+ ( v1 v2 a a a )
+ ( v1 v2 a a a )
+
+ where a denotes an element of the original matrix A, h denotes a
+ modified element of the upper Hessenberg matrix H, and vi denotes an
+ element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Quick return if possible
+*/
+
+ /* Parameter adjustments */
+ --tau;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1 * 1;
+ t -= t_offset;
+ y_dim1 = *ldy;
+ y_offset = 1 + y_dim1 * 1;
+ y -= y_offset;
+
+ /* Function Body */
+ if (*n <= 1) {
+ return 0;
+ }
+
+ i__1 = *nb;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (i__ > 1) {
+
+/*
+ Update A(1:n,i)
+
+ Compute i-th column of A - Y * V'
+*/
+
+ i__2 = i__ - 1;
+ dgemv_("No transpose", n, &i__2, &c_b151, &y[y_offset], ldy, &a[*
+ k + i__ - 1 + a_dim1], lda, &c_b15, &a[i__ * a_dim1 + 1],
+ &c__1);
+
+/*
+ Apply I - V * T' * V' to this column (call it b) from the
+ left, using the last column of T as workspace
+
+ Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
+ ( V2 ) ( b2 )
+
+ where V1 is unit lower triangular
+
+ w := V1' * b1
+*/
+
+ i__2 = i__ - 1;
+ dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
+ 1], &c__1);
+ i__2 = i__ - 1;
+ dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
+ lda, &t[*nb * t_dim1 + 1], &c__1);
+
+/* w := w + V2'*b2 */
+
+ i__2 = *n - *k - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[*k + i__ + a_dim1],
+ lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b15, &t[*nb *
+ t_dim1 + 1], &c__1);
+
+/* w := T'*w */
+
+ i__2 = i__ - 1;
+ dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
+ &t[*nb * t_dim1 + 1], &c__1);
+
+/* b2 := b2 - V2*w */
+
+ i__2 = *n - *k - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[*k + i__ +
+ a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1, &c_b15, &a[*k
+ + i__ + i__ * a_dim1], &c__1);
+
+/* b1 := b1 - V1*w */
+
+ i__2 = i__ - 1;
+ dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
+ , lda, &t[*nb * t_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ daxpy_(&i__2, &c_b151, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 +
+ i__ * a_dim1], &c__1);
+
+ a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
+ }
+
+/*
+ Generate the elementary reflector H(i) to annihilate
+ A(k+i+1:n,i)
+*/
+
+ i__2 = *n - *k - i__ + 1;
+/* Computing MIN */
+ i__3 = *k + i__ + 1;
+ dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3,*n) + i__ *
+ a_dim1], &c__1, &tau[i__]);
+ ei = a[*k + i__ + i__ * a_dim1];
+ a[*k + i__ + i__ * a_dim1] = 1.;
+
+/* Compute Y(1:n,i) */
+
+ i__2 = *n - *k - i__ + 1;
+ dgemv_("No transpose", n, &i__2, &c_b15, &a[(i__ + 1) * a_dim1 + 1],
+ lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b29, &y[i__ *
+ y_dim1 + 1], &c__1);
+ i__2 = *n - *k - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[*k + i__ + a_dim1], lda,
+ &a[*k + i__ + i__ * a_dim1], &c__1, &c_b29, &t[i__ * t_dim1 +
+ 1], &c__1);
+ i__2 = i__ - 1;
+ dgemv_("No transpose", n, &i__2, &c_b151, &y[y_offset], ldy, &t[i__ *
+ t_dim1 + 1], &c__1, &c_b15, &y[i__ * y_dim1 + 1], &c__1);
+ dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
+
+/* Compute T(1:i,i) */
+
+ i__2 = i__ - 1;
+ d__1 = -tau[i__];
+ dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
+ &t[i__ * t_dim1 + 1], &c__1)
+ ;
+ t[i__ + i__ * t_dim1] = tau[i__];
+
+/* L10: */
+ }
+ a[*k + *nb + *nb * a_dim1] = ei;
+
+ return 0;
+
+/* End of DLAHRD */
+
+} /* dlahrd_ */
+
+/* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw,
+ doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
+ doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
+ doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
+ doublereal *scale, doublereal *xnorm, integer *info)
+{
+ /* Initialized data */
+
+ static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
+ static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
+ static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
+ 4,3,2,1 };
+
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
+ doublereal d__1, d__2, d__3, d__4, d__5, d__6;
+ static doublereal equiv_0[4], equiv_1[4];
+
+ /* Local variables */
+ static integer j;
+#define ci (equiv_0)
+#define cr (equiv_1)
+ static doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22,
+ cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
+#define civ (equiv_0)
+ static doublereal csr, ur11, ur12, ur22;
+#define crv (equiv_1)
+ static doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
+ static integer icmax;
+ static doublereal bnorm, cnorm, smini;
+
+ extern /* Subroutine */ int dladiv_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *);
+ static doublereal bignum, smlnum;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLALN2 solves a system of the form (ca A - w D ) X = s B
+ or (ca A' - w D) X = s B with possible scaling ("s") and
+ perturbation of A. (A' means A-transpose.)
+
+ A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
+ real diagonal matrix, w is a real or complex value, and X and B are
+ NA x 1 matrices -- real if w is real, complex if w is complex. NA
+ may be 1 or 2.
+
+ If w is complex, X and B are represented as NA x 2 matrices,
+ the first column of each being the real part and the second
+ being the imaginary part.
+
+ "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
+ so chosen that X can be computed without overflow. X is further
+ scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
+ than overflow.
+
+ If both singular values of (ca A - w D) are less than SMIN,
+ SMIN*identity will be used instead of (ca A - w D). If only one
+ singular value is less than SMIN, one element of (ca A - w D) will be
+ perturbed enough to make the smallest singular value roughly SMIN.
+ If both singular values are at least SMIN, (ca A - w D) will not be
+ perturbed. In any case, the perturbation will be at most some small
+ multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
+ are computed by infinity-norm approximations, and thus will only be
+ correct to a factor of 2 or so.
+
+ Note: all input quantities are assumed to be smaller than overflow
+ by a reasonable factor. (See BIGNUM.)
+
+ Arguments
+ ==========
+
+ LTRANS (input) LOGICAL
+ =.TRUE.: A-transpose will be used.
+ =.FALSE.: A will be used (not transposed.)
+
+ NA (input) INTEGER
+ The size of the matrix A. It may (only) be 1 or 2.
+
+ NW (input) INTEGER
+ 1 if "w" is real, 2 if "w" is complex. It may only be 1
+ or 2.
+
+ SMIN (input) DOUBLE PRECISION
+ The desired lower bound on the singular values of A. This
+ should be a safe distance away from underflow or overflow,
+ say, between (underflow/machine precision) and (machine
+ precision * overflow ). (See BIGNUM and ULP.)
+
+ CA (input) DOUBLE PRECISION
+ The coefficient c, which A is multiplied by.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,NA)
+ The NA x NA matrix A.
+
+ LDA (input) INTEGER
+ The leading dimension of A. It must be at least NA.
+
+ D1 (input) DOUBLE PRECISION
+ The 1,1 element in the diagonal matrix D.
+
+ D2 (input) DOUBLE PRECISION
+ The 2,2 element in the diagonal matrix D. Not used if NW=1.
+
+ B (input) DOUBLE PRECISION array, dimension (LDB,NW)
+ The NA x NW matrix B (right-hand side). If NW=2 ("w" is
+ complex), column 1 contains the real part of B and column 2
+ contains the imaginary part.
+
+ LDB (input) INTEGER
+ The leading dimension of B. It must be at least NA.
+
+ WR (input) DOUBLE PRECISION
+ The real part of the scalar "w".
+
+ WI (input) DOUBLE PRECISION
+ The imaginary part of the scalar "w". Not used if NW=1.
+
+ X (output) DOUBLE PRECISION array, dimension (LDX,NW)
+ The NA x NW matrix X (unknowns), as computed by DLALN2.
+ If NW=2 ("w" is complex), on exit, column 1 will contain
+ the real part of X and column 2 will contain the imaginary
+ part.
+
+ LDX (input) INTEGER
+ The leading dimension of X. It must be at least NA.
+
+ SCALE (output) DOUBLE PRECISION
+ The scale factor that B must be multiplied by to insure
+ that overflow does not occur when computing X. Thus,
+ (ca A - w D) X will be SCALE*B, not B (ignoring
+ perturbations of A.) It will be at most 1.
+
+ XNORM (output) DOUBLE PRECISION
+ The infinity-norm of X, when X is regarded as an NA x NW
+ real matrix.
+
+ INFO (output) INTEGER
+ An error flag. It will be set to zero if no error occurs,
+ a negative number if an argument is in error, or a positive
+ number if ca A - w D had to be perturbed.
+ The possible values are:
+ = 0: No error occurred, and (ca A - w D) did not have to be
+ perturbed.
+ = 1: (ca A - w D) had to be perturbed to make its smallest
+ (or only) singular value greater than SMIN.
+ NOTE: In the interests of speed, this routine does not
+ check the inputs for errors.
+
+ =====================================================================
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1 * 1;
+ x -= x_offset;
+
+ /* Function Body */
+
+/* Compute BIGNUM */
+
+ smlnum = 2. * SAFEMINIMUM;
+ bignum = 1. / smlnum;
+ smini = max(*smin,smlnum);
+
+/* Don't check for input errors */
+
+ *info = 0;
+
+/* Standard Initializations */
+
+ *scale = 1.;
+
+ if (*na == 1) {
+
+/* 1 x 1 (i.e., scalar) system C X = B */
+
+ if (*nw == 1) {
+
+/*
+ Real 1x1 system.
+
+ C = ca A - w D
+*/
+
+ csr = *ca * a[a_dim1 + 1] - *wr * *d1;
+ cnorm = abs(csr);
+
+/* If | C | < SMINI, use C = SMINI */
+
+ if (cnorm < smini) {
+ csr = smini;
+ cnorm = smini;
+ *info = 1;
+ }
+
+/* Check scaling for X = B / C */
+
+ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
+ if ((cnorm < 1. && bnorm > 1.)) {
+ if (bnorm > bignum * cnorm) {
+ *scale = 1. / bnorm;
+ }
+ }
+
+/* Compute X */
+
+ x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
+ *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
+ } else {
+
+/*
+ Complex 1x1 system (w is complex)
+
+ C = ca A - w D
+*/
+
+ csr = *ca * a[a_dim1 + 1] - *wr * *d1;
+ csi = -(*wi) * *d1;
+ cnorm = abs(csr) + abs(csi);
+
+/* If | C | < SMINI, use C = SMINI */
+
+ if (cnorm < smini) {
+ csr = smini;
+ csi = 0.;
+ cnorm = smini;
+ *info = 1;
+ }
+
+/* Check scaling for X = B / C */
+
+ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[((b_dim1) <<
+ (1)) + 1], abs(d__2));
+ if ((cnorm < 1. && bnorm > 1.)) {
+ if (bnorm > bignum * cnorm) {
+ *scale = 1. / bnorm;
+ }
+ }
+
+/* Compute X */
+
+ d__1 = *scale * b[b_dim1 + 1];
+ d__2 = *scale * b[((b_dim1) << (1)) + 1];
+ dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[((x_dim1) <<
+ (1)) + 1]);
+ *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[((x_dim1)
+ << (1)) + 1], abs(d__2));
+ }
+
+ } else {
+
+/*
+ 2x2 System
+
+ Compute the real part of C = ca A - w D (or ca A' - w D )
+*/
+
+ cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
+ cr[3] = *ca * a[((a_dim1) << (1)) + 2] - *wr * *d2;
+ if (*ltrans) {
+ cr[2] = *ca * a[a_dim1 + 2];
+ cr[1] = *ca * a[((a_dim1) << (1)) + 1];
+ } else {
+ cr[1] = *ca * a[a_dim1 + 2];
+ cr[2] = *ca * a[((a_dim1) << (1)) + 1];
+ }
+
+ if (*nw == 1) {
+
+/*
+ Real 2x2 system (w is real)
+
+ Find the largest element in C
+*/
+
+ cmax = 0.;
+ icmax = 0;
+
+ for (j = 1; j <= 4; ++j) {
+ if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
+ cmax = (d__1 = crv[j - 1], abs(d__1));
+ icmax = j;
+ }
+/* L10: */
+ }
+
+/* If norm(C) < SMINI, use SMINI*identity. */
+
+ if (cmax < smini) {
+/* Computing MAX */
+ d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
+ b_dim1 + 2], abs(d__2));
+ bnorm = max(d__3,d__4);
+ if ((smini < 1. && bnorm > 1.)) {
+ if (bnorm > bignum * smini) {
+ *scale = 1. / bnorm;
+ }
+ }
+ temp = *scale / smini;
+ x[x_dim1 + 1] = temp * b[b_dim1 + 1];
+ x[x_dim1 + 2] = temp * b[b_dim1 + 2];
+ *xnorm = temp * bnorm;
+ *info = 1;
+ return 0;
+ }
+
+/* Gaussian elimination with complete pivoting. */
+
+ ur11 = crv[icmax - 1];
+ cr21 = crv[ipivot[((icmax) << (2)) - 3] - 1];
+ ur12 = crv[ipivot[((icmax) << (2)) - 2] - 1];
+ cr22 = crv[ipivot[((icmax) << (2)) - 1] - 1];
+ ur11r = 1. / ur11;
+ lr21 = ur11r * cr21;
+ ur22 = cr22 - ur12 * lr21;
+
+/* If smaller pivot < SMINI, use SMINI */
+
+ if (abs(ur22) < smini) {
+ ur22 = smini;
+ *info = 1;
+ }
+ if (rswap[icmax - 1]) {
+ br1 = b[b_dim1 + 2];
+ br2 = b[b_dim1 + 1];
+ } else {
+ br1 = b[b_dim1 + 1];
+ br2 = b[b_dim1 + 2];
+ }
+ br2 -= lr21 * br1;
+/* Computing MAX */
+ d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
+ bbnd = max(d__2,d__3);
+ if ((bbnd > 1. && abs(ur22) < 1.)) {
+ if (bbnd >= bignum * abs(ur22)) {
+ *scale = 1. / bbnd;
+ }
+ }
+
+ xr2 = br2 * *scale / ur22;
+ xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
+ if (zswap[icmax - 1]) {
+ x[x_dim1 + 1] = xr2;
+ x[x_dim1 + 2] = xr1;
+ } else {
+ x[x_dim1 + 1] = xr1;
+ x[x_dim1 + 2] = xr2;
+ }
+/* Computing MAX */
+ d__1 = abs(xr1), d__2 = abs(xr2);
+ *xnorm = max(d__1,d__2);
+
+/* Further scaling if norm(A) norm(X) > overflow */
+
+ if ((*xnorm > 1. && cmax > 1.)) {
+ if (*xnorm > bignum / cmax) {
+ temp = cmax / bignum;
+ x[x_dim1 + 1] = temp * x[x_dim1 + 1];
+ x[x_dim1 + 2] = temp * x[x_dim1 + 2];
+ *xnorm = temp * *xnorm;
+ *scale = temp * *scale;
+ }
+ }
+ } else {
+
+/*
+ Complex 2x2 system (w is complex)
+
+ Find the largest element in C
+*/
+
+ ci[0] = -(*wi) * *d1;
+ ci[1] = 0.;
+ ci[2] = 0.;
+ ci[3] = -(*wi) * *d2;
+ cmax = 0.;
+ icmax = 0;
+
+ for (j = 1; j <= 4; ++j) {
+ if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
+ d__2)) > cmax) {
+ cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
+ , abs(d__2));
+ icmax = j;
+ }
+/* L20: */
+ }
+
+/* If norm(C) < SMINI, use SMINI*identity. */
+
+ if (cmax < smini) {
+/* Computing MAX */
+ d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[((b_dim1)
+ << (1)) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 +
+ 2], abs(d__3)) + (d__4 = b[((b_dim1) << (1)) + 2],
+ abs(d__4));
+ bnorm = max(d__5,d__6);
+ if ((smini < 1. && bnorm > 1.)) {
+ if (bnorm > bignum * smini) {
+ *scale = 1. / bnorm;
+ }
+ }
+ temp = *scale / smini;
+ x[x_dim1 + 1] = temp * b[b_dim1 + 1];
+ x[x_dim1 + 2] = temp * b[b_dim1 + 2];
+ x[((x_dim1) << (1)) + 1] = temp * b[((b_dim1) << (1)) + 1];
+ x[((x_dim1) << (1)) + 2] = temp * b[((b_dim1) << (1)) + 2];
+ *xnorm = temp * bnorm;
+ *info = 1;
+ return 0;
+ }
+
+/* Gaussian elimination with complete pivoting. */
+
+ ur11 = crv[icmax - 1];
+ ui11 = civ[icmax - 1];
+ cr21 = crv[ipivot[((icmax) << (2)) - 3] - 1];
+ ci21 = civ[ipivot[((icmax) << (2)) - 3] - 1];
+ ur12 = crv[ipivot[((icmax) << (2)) - 2] - 1];
+ ui12 = civ[ipivot[((icmax) << (2)) - 2] - 1];
+ cr22 = crv[ipivot[((icmax) << (2)) - 1] - 1];
+ ci22 = civ[ipivot[((icmax) << (2)) - 1] - 1];
+ if (icmax == 1 || icmax == 4) {
+
+/* Code when off-diagonals of pivoted C are real */
+
+ if (abs(ur11) > abs(ui11)) {
+ temp = ui11 / ur11;
+/* Computing 2nd power */
+ d__1 = temp;
+ ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
+ ui11r = -temp * ur11r;
+ } else {
+ temp = ur11 / ui11;
+/* Computing 2nd power */
+ d__1 = temp;
+ ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
+ ur11r = -temp * ui11r;
+ }
+ lr21 = cr21 * ur11r;
+ li21 = cr21 * ui11r;
+ ur12s = ur12 * ur11r;
+ ui12s = ur12 * ui11r;
+ ur22 = cr22 - ur12 * lr21;
+ ui22 = ci22 - ur12 * li21;
+ } else {
+
+/* Code when diagonals of pivoted C are real */
+
+ ur11r = 1. / ur11;
+ ui11r = 0.;
+ lr21 = cr21 * ur11r;
+ li21 = ci21 * ur11r;
+ ur12s = ur12 * ur11r;
+ ui12s = ui12 * ur11r;
+ ur22 = cr22 - ur12 * lr21 + ui12 * li21;
+ ui22 = -ur12 * li21 - ui12 * lr21;
+ }
+ u22abs = abs(ur22) + abs(ui22);
+
+/* If smaller pivot < SMINI, use SMINI */
+
+ if (u22abs < smini) {
+ ur22 = smini;
+ ui22 = 0.;
+ *info = 1;
+ }
+ if (rswap[icmax - 1]) {
+ br2 = b[b_dim1 + 1];
+ br1 = b[b_dim1 + 2];
+ bi2 = b[((b_dim1) << (1)) + 1];
+ bi1 = b[((b_dim1) << (1)) + 2];
+ } else {
+ br1 = b[b_dim1 + 1];
+ br2 = b[b_dim1 + 2];
+ bi1 = b[((b_dim1) << (1)) + 1];
+ bi2 = b[((b_dim1) << (1)) + 2];
+ }
+ br2 = br2 - lr21 * br1 + li21 * bi1;
+ bi2 = bi2 - li21 * br1 - lr21 * bi1;
+/* Computing MAX */
+ d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
+ ), d__2 = abs(br2) + abs(bi2);
+ bbnd = max(d__1,d__2);
+ if ((bbnd > 1. && u22abs < 1.)) {
+ if (bbnd >= bignum * u22abs) {
+ *scale = 1. / bbnd;
+ br1 = *scale * br1;
+ bi1 = *scale * bi1;
+ br2 = *scale * br2;
+ bi2 = *scale * bi2;
+ }
+ }
+
+ dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
+ xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
+ xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
+ if (zswap[icmax - 1]) {
+ x[x_dim1 + 1] = xr2;
+ x[x_dim1 + 2] = xr1;
+ x[((x_dim1) << (1)) + 1] = xi2;
+ x[((x_dim1) << (1)) + 2] = xi1;
+ } else {
+ x[x_dim1 + 1] = xr1;
+ x[x_dim1 + 2] = xr2;
+ x[((x_dim1) << (1)) + 1] = xi1;
+ x[((x_dim1) << (1)) + 2] = xi2;
+ }
+/* Computing MAX */
+ d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
+ *xnorm = max(d__1,d__2);
+
+/* Further scaling if norm(A) norm(X) > overflow */
+
+ if ((*xnorm > 1. && cmax > 1.)) {
+ if (*xnorm > bignum / cmax) {
+ temp = cmax / bignum;
+ x[x_dim1 + 1] = temp * x[x_dim1 + 1];
+ x[x_dim1 + 2] = temp * x[x_dim1 + 2];
+ x[((x_dim1) << (1)) + 1] = temp * x[((x_dim1) << (1)) + 1]
+ ;
+ x[((x_dim1) << (1)) + 2] = temp * x[((x_dim1) << (1)) + 2]
+ ;
+ *xnorm = temp * *xnorm;
+ *scale = temp * *scale;
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DLALN2 */
+
+} /* dlaln2_ */
+
+#undef crv
+#undef civ
+#undef cr
+#undef ci
+
+
+/* Subroutine */ int dlals0_(integer *icompq, integer *nl, integer *nr,
+ integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal
+ *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol,
+ integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
+ poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
+ k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset,
+ difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1,
+ poles_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__, j, m, n;
+ static doublereal dj;
+ static integer nlp1;
+ static doublereal temp;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ static doublereal diflj, difrj, dsigj;
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), dcopy_(integer *,
+ doublereal *, integer *, doublereal *, integer *);
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlacpy_(char *, integer *, integer
+ *, doublereal *, integer *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+ static doublereal dsigjp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ December 1, 1999
+
+
+ Purpose
+ =======
+
+ DLALS0 applies back the multiplying factors of either the left or the
+ right singular vector matrix of a diagonal matrix appended by a row
+ to the right hand side matrix B in solving the least squares problem
+ using the divide-and-conquer SVD approach.
+
+ For the left singular vector matrix, three types of orthogonal
+ matrices are involved:
+
+ (1L) Givens rotations: the number of such rotations is GIVPTR; the
+ pairs of columns/rows they were applied to are stored in GIVCOL;
+ and the C- and S-values of these rotations are stored in GIVNUM.
+
+ (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
+ row, and for J=2:N, PERM(J)-th row of B is to be moved to the
+ J-th row.
+
+ (3L) The left singular vector matrix of the remaining matrix.
+
+ For the right singular vector matrix, four types of orthogonal
+ matrices are involved:
+
+ (1R) The right singular vector matrix of the remaining matrix.
+
+ (2R) If SQRE = 1, one extra Givens rotation to generate the right
+ null space.
+
+ (3R) The inverse transformation of (2L).
+
+ (4R) The inverse transformation of (1L).
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ Specifies whether singular vectors are to be computed in
+ factored form:
+ = 0: Left singular vector matrix.
+ = 1: Right singular vector matrix.
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has row dimension N = NL + NR + 1,
+ and column dimension M = N + SQRE.
+
+ NRHS (input) INTEGER
+ The number of columns of B and BX. NRHS must be at least 1.
+
+ B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
+ On input, B contains the right hand sides of the least
+ squares problem in rows 1 through M. On output, B contains
+ the solution X in rows 1 through N.
+
+ LDB (input) INTEGER
+ The leading dimension of B. LDB must be at least
+ max(1,MAX( M, N ) ).
+
+ BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
+
+ LDBX (input) INTEGER
+ The leading dimension of BX.
+
+ PERM (input) INTEGER array, dimension ( N )
+ The permutations (from deflation and sorting) applied
+ to the two blocks.
+
+ GIVPTR (input) INTEGER
+ The number of Givens rotations which took place in this
+ subproblem.
+
+ GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
+ Each pair of numbers indicates a pair of rows/columns
+ involved in a Givens rotation.
+
+ LDGCOL (input) INTEGER
+ The leading dimension of GIVCOL, must be at least N.
+
+ GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+ Each number indicates the C or S value used in the
+ corresponding Givens rotation.
+
+ LDGNUM (input) INTEGER
+ The leading dimension of arrays DIFR, POLES and
+ GIVNUM, must be at least K.
+
+ POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+ On entry, POLES(1:K, 1) contains the new singular
+ values obtained from solving the secular equation, and
+ POLES(1:K, 2) is an array containing the poles in the secular
+ equation.
+
+ DIFL (input) DOUBLE PRECISION array, dimension ( K ).
+ On entry, DIFL(I) is the distance between I-th updated
+ (undeflated) singular value and the I-th (undeflated) old
+ singular value.
+
+ DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
+ On entry, DIFR(I, 1) contains the distances between I-th
+ updated (undeflated) singular value and the I+1-th
+ (undeflated) old singular value. And DIFR(I, 2) is the
+ normalizing factor for the I-th right singular vector.
+
+ Z (input) DOUBLE PRECISION array, dimension ( K )
+ Contain the components of the deflation-adjusted updating row
+ vector.
+
+ K (input) INTEGER
+ Contains the dimension of the non-deflated matrix,
+ This is the order of the related secular equation. 1 <= K <=N.
+
+ C (input) DOUBLE PRECISION
+ C contains garbage if SQRE =0 and the C-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ S (input) DOUBLE PRECISION
+ S contains garbage if SQRE =0 and the S-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension ( K )
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Ren-Cang Li, Computer Science Division, University of
+ California at Berkeley, USA
+ Osni Marques, LBNL/NERSC, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+ bx_dim1 = *ldbx;
+ bx_offset = 1 + bx_dim1 * 1;
+ bx -= bx_offset;
+ --perm;
+ givcol_dim1 = *ldgcol;
+ givcol_offset = 1 + givcol_dim1 * 1;
+ givcol -= givcol_offset;
+ difr_dim1 = *ldgnum;
+ difr_offset = 1 + difr_dim1 * 1;
+ difr -= difr_offset;
+ poles_dim1 = *ldgnum;
+ poles_offset = 1 + poles_dim1 * 1;
+ poles -= poles_offset;
+ givnum_dim1 = *ldgnum;
+ givnum_offset = 1 + givnum_dim1 * 1;
+ givnum -= givnum_offset;
+ --difl;
+ --z__;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*nl < 1) {
+ *info = -2;
+ } else if (*nr < 1) {
+ *info = -3;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -4;
+ }
+
+ n = *nl + *nr + 1;
+
+ if (*nrhs < 1) {
+ *info = -5;
+ } else if (*ldb < n) {
+ *info = -7;
+ } else if (*ldbx < n) {
+ *info = -9;
+ } else if (*givptr < 0) {
+ *info = -11;
+ } else if (*ldgcol < n) {
+ *info = -13;
+ } else if (*ldgnum < n) {
+ *info = -15;
+ } else if (*k < 1) {
+ *info = -20;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLALS0", &i__1);
+ return 0;
+ }
+
+ m = n + *sqre;
+ nlp1 = *nl + 1;
+
+ if (*icompq == 0) {
+
+/*
+ Apply back orthogonal transformations from the left.
+
+ Step (1L): apply back the Givens rotations performed.
+*/
+
+ i__1 = *givptr;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ drot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
+ ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
+ i__ + ((givnum_dim1) << (1))], &givnum[i__ + givnum_dim1])
+ ;
+/* L10: */
+ }
+
+/* Step (2L): permute rows of B. */
+
+ dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
+ ldbx);
+/* L20: */
+ }
+
+/*
+ Step (3L): apply the inverse of the left singular vector
+ matrix to BX.
+*/
+
+ if (*k == 1) {
+ dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
+ if (z__[1] < 0.) {
+ dscal_(nrhs, &c_b151, &b[b_offset], ldb);
+ }
+ } else {
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ diflj = difl[j];
+ dj = poles[j + poles_dim1];
+ dsigj = -poles[j + ((poles_dim1) << (1))];
+ if (j < *k) {
+ difrj = -difr[j + difr_dim1];
+ dsigjp = -poles[j + 1 + ((poles_dim1) << (1))];
+ }
+ if (z__[j] == 0. || poles[j + ((poles_dim1) << (1))] == 0.) {
+ work[j] = 0.;
+ } else {
+ work[j] = -poles[j + ((poles_dim1) << (1))] * z__[j] /
+ diflj / (poles[j + ((poles_dim1) << (1))] + dj);
+ }
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
+ == 0.) {
+ work[i__] = 0.;
+ } else {
+ work[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
+ i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
+ (1))], &dsigj) - diflj) / (poles[i__ + ((
+ poles_dim1) << (1))] + dj);
+ }
+/* L30: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ if (z__[i__] == 0. || poles[i__ + ((poles_dim1) << (1))]
+ == 0.) {
+ work[i__] = 0.;
+ } else {
+ work[i__] = poles[i__ + ((poles_dim1) << (1))] * z__[
+ i__] / (dlamc3_(&poles[i__ + ((poles_dim1) <<
+ (1))], &dsigjp) + difrj) / (poles[i__ + ((
+ poles_dim1) << (1))] + dj);
+ }
+/* L40: */
+ }
+ work[1] = -1.;
+ temp = dnrm2_(k, &work[1], &c__1);
+ dgemv_("T", k, nrhs, &c_b15, &bx[bx_offset], ldbx, &work[1], &
+ c__1, &c_b29, &b[j + b_dim1], ldb);
+ dlascl_("G", &c__0, &c__0, &temp, &c_b15, &c__1, nrhs, &b[j +
+ b_dim1], ldb, info);
+/* L50: */
+ }
+ }
+
+/* Move the deflated rows of BX to B also. */
+
+ if (*k < max(m,n)) {
+ i__1 = n - *k;
+ dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
+ + b_dim1], ldb);
+ }
+ } else {
+
+/*
+ Apply back the right orthogonal transformations.
+
+ Step (1R): apply back the new right singular vector matrix
+ to B.
+*/
+
+ if (*k == 1) {
+ dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
+ } else {
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dsigj = poles[j + ((poles_dim1) << (1))];
+ if (z__[j] == 0.) {
+ work[j] = 0.;
+ } else {
+ work[j] = -z__[j] / difl[j] / (dsigj + poles[j +
+ poles_dim1]) / difr[j + ((difr_dim1) << (1))];
+ }
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (z__[j] == 0.) {
+ work[i__] = 0.;
+ } else {
+ d__1 = -poles[i__ + 1 + ((poles_dim1) << (1))];
+ work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
+ i__ + difr_dim1]) / (dsigj + poles[i__ +
+ poles_dim1]) / difr[i__ + ((difr_dim1) << (1))
+ ];
+ }
+/* L60: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ if (z__[j] == 0.) {
+ work[i__] = 0.;
+ } else {
+ d__1 = -poles[i__ + ((poles_dim1) << (1))];
+ work[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
+ i__]) / (dsigj + poles[i__ + poles_dim1]) /
+ difr[i__ + ((difr_dim1) << (1))];
+ }
+/* L70: */
+ }
+ dgemv_("T", k, nrhs, &c_b15, &b[b_offset], ldb, &work[1], &
+ c__1, &c_b29, &bx[j + bx_dim1], ldbx);
+/* L80: */
+ }
+ }
+
+/*
+ Step (2R): if SQRE = 1, apply back the rotation that is
+ related to the right null space of the subproblem.
+*/
+
+ if (*sqre == 1) {
+ dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
+ drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
+ s);
+ }
+ if (*k < max(m,n)) {
+ i__1 = n - *k;
+ dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
+ bx_dim1], ldbx);
+ }
+
+/* Step (3R): permute rows of B. */
+
+ dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
+ if (*sqre == 1) {
+ dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
+ }
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
+ ldb);
+/* L90: */
+ }
+
+/* Step (4R): apply back the Givens rotations performed. */
+
+ for (i__ = *givptr; i__ >= 1; --i__) {
+ d__1 = -givnum[i__ + givnum_dim1];
+ drot_(nrhs, &b[givcol[i__ + ((givcol_dim1) << (1))] + b_dim1],
+ ldb, &b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[
+ i__ + ((givnum_dim1) << (1))], &d__1);
+/* L100: */
+ }
+ }
+
+ return 0;
+
+/* End of DLALS0 */
+
+} /* dlals0_ */
+
+/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n,
+ integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
+ ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
+ doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
+ poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
+ perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
+ work, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
+ b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
+ difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
+ u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
+ i__2;
+
+ /* Builtin functions */
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ static integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl,
+ ndb1, nlp1, lvl2, nrp1, nlvl, sqre;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer inode, ndiml, ndimr;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dlals0_(integer *, integer *, integer *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *), dlasdt_(integer *, integer *, integer *, integer *,
+ integer *, integer *, integer *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLALSA is an itermediate step in solving the least squares problem
+ by computing the SVD of the coefficient matrix in compact form (The
+ singular vectors are computed as products of simple orthorgonal
+ matrices.).
+
+ If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
+ matrix of an upper bidiagonal matrix to the right hand side; and if
+ ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
+ right hand side. The singular vector matrices were generated in
+ compact form by DLALSA.
+
+ Arguments
+ =========
+
+
+ ICOMPQ (input) INTEGER
+ Specifies whether the left or the right singular vector
+ matrix is involved.
+ = 0: Left singular vector matrix
+ = 1: Right singular vector matrix
+
+ SMLSIZ (input) INTEGER
+ The maximum size of the subproblems at the bottom of the
+ computation tree.
+
+ N (input) INTEGER
+ The row and column dimensions of the upper bidiagonal matrix.
+
+ NRHS (input) INTEGER
+ The number of columns of B and BX. NRHS must be at least 1.
+
+ B (input) DOUBLE PRECISION array, dimension ( LDB, NRHS )
+ On input, B contains the right hand sides of the least
+ squares problem in rows 1 through M. On output, B contains
+ the solution X in rows 1 through N.
+
+ LDB (input) INTEGER
+ The leading dimension of B in the calling subprogram.
+ LDB must be at least max(1,MAX( M, N ) ).
+
+ BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
+ On exit, the result of applying the left or right singular
+ vector matrix to B.
+
+ LDBX (input) INTEGER
+ The leading dimension of BX.
+
+ U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
+ On entry, U contains the left singular vector matrices of all
+ subproblems at the bottom level.
+
+ LDU (input) INTEGER, LDU = > N.
+ The leading dimension of arrays U, VT, DIFL, DIFR,
+ POLES, GIVNUM, and Z.
+
+ VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
+ On entry, VT' contains the right singular vector matrices of
+ all subproblems at the bottom level.
+
+ K (input) INTEGER array, dimension ( N ).
+
+ DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
+ where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
+
+ DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
+ On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
+ distances between singular values on the I-th level and
+ singular values on the (I -1)-th level, and DIFR(*, 2 * I)
+ record the normalizing factors of the right singular vectors
+ matrices of subproblems on I-th level.
+
+ Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
+ On entry, Z(1, I) contains the components of the deflation-
+ adjusted updating row vector for subproblems on the I-th
+ level.
+
+ POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
+ On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
+ singular values involved in the secular equations on the I-th
+ level.
+
+ GIVPTR (input) INTEGER array, dimension ( N ).
+ On entry, GIVPTR( I ) records the number of Givens
+ rotations performed on the I-th problem on the computation
+ tree.
+
+ GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
+ On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
+ locations of Givens rotations performed on the I-th level on
+ the computation tree.
+
+ LDGCOL (input) INTEGER, LDGCOL = > N.
+ The leading dimension of arrays GIVCOL and PERM.
+
+ PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
+ On entry, PERM(*, I) records permutations done on the I-th
+ level of the computation tree.
+
+ GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
+ On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
+ values of Givens rotations performed on the I-th level on the
+ computation tree.
+
+ C (input) DOUBLE PRECISION array, dimension ( N ).
+ On entry, if the I-th subproblem is not square,
+ C( I ) contains the C-value of a Givens rotation related to
+ the right null space of the I-th subproblem.
+
+ S (input) DOUBLE PRECISION array, dimension ( N ).
+ On entry, if the I-th subproblem is not square,
+ S( I ) contains the S-value of a Givens rotation related to
+ the right null space of the I-th subproblem.
+
+ WORK (workspace) DOUBLE PRECISION array.
+ The dimension must be at least N.
+
+ IWORK (workspace) INTEGER array.
+ The dimension must be at least 3 * N
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Ren-Cang Li, Computer Science Division, University of
+ California at Berkeley, USA
+ Osni Marques, LBNL/NERSC, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+ bx_dim1 = *ldbx;
+ bx_offset = 1 + bx_dim1 * 1;
+ bx -= bx_offset;
+ givnum_dim1 = *ldu;
+ givnum_offset = 1 + givnum_dim1 * 1;
+ givnum -= givnum_offset;
+ poles_dim1 = *ldu;
+ poles_offset = 1 + poles_dim1 * 1;
+ poles -= poles_offset;
+ z_dim1 = *ldu;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+ difr_dim1 = *ldu;
+ difr_offset = 1 + difr_dim1 * 1;
+ difr -= difr_offset;
+ difl_dim1 = *ldu;
+ difl_offset = 1 + difl_dim1 * 1;
+ difl -= difl_offset;
+ vt_dim1 = *ldu;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ --k;
+ --givptr;
+ perm_dim1 = *ldgcol;
+ perm_offset = 1 + perm_dim1 * 1;
+ perm -= perm_offset;
+ givcol_dim1 = *ldgcol;
+ givcol_offset = 1 + givcol_dim1 * 1;
+ givcol -= givcol_offset;
+ --c__;
+ --s;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*smlsiz < 3) {
+ *info = -2;
+ } else if (*n < *smlsiz) {
+ *info = -3;
+ } else if (*nrhs < 1) {
+ *info = -4;
+ } else if (*ldb < *n) {
+ *info = -6;
+ } else if (*ldbx < *n) {
+ *info = -8;
+ } else if (*ldu < *n) {
+ *info = -10;
+ } else if (*ldgcol < *n) {
+ *info = -19;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLALSA", &i__1);
+ return 0;
+ }
+
+/* Book-keeping and setting up the computation tree. */
+
+ inode = 1;
+ ndiml = inode + *n;
+ ndimr = ndiml + *n;
+
+ dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
+ smlsiz);
+
+/*
+ The following code applies back the left singular vector factors.
+ For applying back the right singular vector factors, go to 50.
+*/
+
+ if (*icompq == 1) {
+ goto L50;
+ }
+
+/*
+ The nodes on the bottom level of the tree were solved
+ by DLASDQ. The corresponding left and right singular vector
+ matrices are in explicit form. First apply back the left
+ singular vector matrices.
+*/
+
+ ndb1 = (nd + 1) / 2;
+ i__1 = nd;
+ for (i__ = ndb1; i__ <= i__1; ++i__) {
+
+/*
+ IC : center row of each node
+ NL : number of rows of left subproblem
+ NR : number of rows of right subproblem
+ NLF: starting row of the left subproblem
+ NRF: starting row of the right subproblem
+*/
+
+ i1 = i__ - 1;
+ ic = iwork[inode + i1];
+ nl = iwork[ndiml + i1];
+ nr = iwork[ndimr + i1];
+ nlf = ic - nl;
+ nrf = ic + 1;
+ dgemm_("T", "N", &nl, nrhs, &nl, &c_b15, &u[nlf + u_dim1], ldu, &b[
+ nlf + b_dim1], ldb, &c_b29, &bx[nlf + bx_dim1], ldbx);
+ dgemm_("T", "N", &nr, nrhs, &nr, &c_b15, &u[nrf + u_dim1], ldu, &b[
+ nrf + b_dim1], ldb, &c_b29, &bx[nrf + bx_dim1], ldbx);
+/* L10: */
+ }
+
+/*
+ Next copy the rows of B that correspond to unchanged rows
+ in the bidiagonal matrix to BX.
+*/
+
+ i__1 = nd;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ic = iwork[inode + i__ - 1];
+ dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
+/* L20: */
+ }
+
+/*
+ Finally go through the left singular vector matrices of all
+ the other subproblems bottom-up on the tree.
+*/
+
+ j = pow_ii(&c__2, &nlvl);
+ sqre = 0;
+
+ for (lvl = nlvl; lvl >= 1; --lvl) {
+ lvl2 = ((lvl) << (1)) - 1;
+
+/*
+ find the first node LF and last node LL on
+ the current level LVL
+*/
+
+ if (lvl == 1) {
+ lf = 1;
+ ll = 1;
+ } else {
+ i__1 = lvl - 1;
+ lf = pow_ii(&c__2, &i__1);
+ ll = ((lf) << (1)) - 1;
+ }
+ i__1 = ll;
+ for (i__ = lf; i__ <= i__1; ++i__) {
+ im1 = i__ - 1;
+ ic = iwork[inode + im1];
+ nl = iwork[ndiml + im1];
+ nr = iwork[ndimr + im1];
+ nlf = ic - nl;
+ nrf = ic + 1;
+ --j;
+ dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
+ b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
+ givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
+ givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
+ poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
+ lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
+ j], &s[j], &work[1], info);
+/* L30: */
+ }
+/* L40: */
+ }
+ goto L90;
+
+/* ICOMPQ = 1: applying back the right singular vector factors. */
+
+L50:
+
+/*
+ First now go through the right singular vector matrices of all
+ the tree nodes top-down.
+*/
+
+ j = 0;
+ i__1 = nlvl;
+ for (lvl = 1; lvl <= i__1; ++lvl) {
+ lvl2 = ((lvl) << (1)) - 1;
+
+/*
+ Find the first node LF and last node LL on
+ the current level LVL.
+*/
+
+ if (lvl == 1) {
+ lf = 1;
+ ll = 1;
+ } else {
+ i__2 = lvl - 1;
+ lf = pow_ii(&c__2, &i__2);
+ ll = ((lf) << (1)) - 1;
+ }
+ i__2 = lf;
+ for (i__ = ll; i__ >= i__2; --i__) {
+ im1 = i__ - 1;
+ ic = iwork[inode + im1];
+ nl = iwork[ndiml + im1];
+ nr = iwork[ndimr + im1];
+ nlf = ic - nl;
+ nrf = ic + 1;
+ if (i__ == ll) {
+ sqre = 0;
+ } else {
+ sqre = 1;
+ }
+ ++j;
+ dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
+ nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
+ givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
+ givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
+ poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
+ lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
+ j], &s[j], &work[1], info);
+/* L60: */
+ }
+/* L70: */
+ }
+
+/*
+ The nodes on the bottom level of the tree were solved
+ by DLASDQ. The corresponding right singular vector
+ matrices are in explicit form. Apply them back.
+*/
+
+ ndb1 = (nd + 1) / 2;
+ i__1 = nd;
+ for (i__ = ndb1; i__ <= i__1; ++i__) {
+ i1 = i__ - 1;
+ ic = iwork[inode + i1];
+ nl = iwork[ndiml + i1];
+ nr = iwork[ndimr + i1];
+ nlp1 = nl + 1;
+ if (i__ == nd) {
+ nrp1 = nr;
+ } else {
+ nrp1 = nr + 1;
+ }
+ nlf = ic - nl;
+ nrf = ic + 1;
+ dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b15, &vt[nlf + vt_dim1], ldu,
+ &b[nlf + b_dim1], ldb, &c_b29, &bx[nlf + bx_dim1], ldbx);
+ dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b15, &vt[nrf + vt_dim1], ldu,
+ &b[nrf + b_dim1], ldb, &c_b29, &bx[nrf + bx_dim1], ldbx);
+/* L80: */
+ }
+
+L90:
+
+ return 0;
+
+/* End of DLALSA */
+
+} /* dlalsa_ */
+
+/* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
+ *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
+ doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double log(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer c__, i__, j, k;
+ static doublereal r__;
+ static integer s, u, z__;
+ static doublereal cs;
+ static integer bx;
+ static doublereal sn;
+ static integer st, vt, nm1, st1;
+ static doublereal eps;
+ static integer iwk;
+ static doublereal tol;
+ static integer difl, difr, perm, nsub;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer nlvl, sqre, bxst;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *),
+ dcopy_(integer *, doublereal *, integer *, doublereal *, integer
+ *);
+ static integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
+
+ extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *), dlalsa_(integer *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ doublereal *, doublereal *, integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ integer *, integer *), dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
+ *, integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlacpy_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *), dlaset_(char *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+ static integer givcol;
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
+ integer *);
+ static doublereal orgnrm;
+ static integer givnum, givptr, smlszp;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLALSD uses the singular value decomposition of A to solve the least
+ squares problem of finding X to minimize the Euclidean norm of each
+ column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
+ are N-by-NRHS. The solution X overwrites B.
+
+ The singular values of A smaller than RCOND times the largest
+ singular value are treated as zero in solving the least squares
+ problem; in this case a minimum norm solution is returned.
+ The actual singular values are returned in D in ascending order.
+
+ This code makes very mild assumptions about floating point
+ arithmetic. It will work on machines with a guard digit in
+ add/subtract, or on those binary machines without guard digits
+ which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
+ It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': D and E define an upper bidiagonal matrix.
+ = 'L': D and E define a lower bidiagonal matrix.
+
+ SMLSIZ (input) INTEGER
+ The maximum size of the subproblems at the bottom of the
+ computation tree.
+
+ N (input) INTEGER
+ The dimension of the bidiagonal matrix. N >= 0.
+
+ NRHS (input) INTEGER
+ The number of columns of B. NRHS must be at least 1.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry D contains the main diagonal of the bidiagonal
+ matrix. On exit, if INFO = 0, D contains its singular values.
+
+ E (input) DOUBLE PRECISION array, dimension (N-1)
+ Contains the super-diagonal entries of the bidiagonal matrix.
+ On exit, E has been destroyed.
+
+ B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+ On input, B contains the right hand sides of the least
+ squares problem. On output, B contains the solution X.
+
+ LDB (input) INTEGER
+ The leading dimension of B in the calling subprogram.
+ LDB must be at least max(1,N).
+
+ RCOND (input) DOUBLE PRECISION
+ The singular values of A less than or equal to RCOND times
+ the largest singular value are treated as zero in solving
+ the least squares problem. If RCOND is negative,
+ machine precision is used instead.
+ For example, if diag(S)*X=B were the least squares problem,
+ where diag(S) is a diagonal matrix of singular values, the
+ solution would be X(i) = B(i) / S(i) if S(i) is greater than
+ RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
+ RCOND*max(S).
+
+ RANK (output) INTEGER
+ The number of singular values of A greater than RCOND times
+ the largest singular value.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension at least
+ (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
+ where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
+
+ IWORK (workspace) INTEGER array, dimension at least
+ (3*N*NLVL + 11*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: The algorithm failed to compute an singular value while
+ working on the submatrix lying in rows and columns
+ INFO/(N+1) through MOD(INFO,N+1).
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Ren-Cang Li, Computer Science Division, University of
+ California at Berkeley, USA
+ Osni Marques, LBNL/NERSC, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1 * 1;
+ b -= b_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 1) {
+ *info = -4;
+ } else if (*ldb < 1 || *ldb < *n) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLALSD", &i__1);
+ return 0;
+ }
+
+ eps = EPSILON;
+
+/* Set up the tolerance. */
+
+ if (*rcond <= 0. || *rcond >= 1.) {
+ *rcond = eps;
+ }
+
+ *rank = 0;
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ } else if (*n == 1) {
+ if (d__[1] == 0.) {
+ dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
+ } else {
+ *rank = 1;
+ dlascl_("G", &c__0, &c__0, &d__[1], &c_b15, &c__1, nrhs, &b[
+ b_offset], ldb, info);
+ d__[1] = abs(d__[1]);
+ }
+ return 0;
+ }
+
+/* Rotate the matrix if it is lower bidiagonal. */
+
+ if (*(unsigned char *)uplo == 'L') {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (*nrhs == 1) {
+ drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
+ c__1, &cs, &sn);
+ } else {
+ work[((i__) << (1)) - 1] = cs;
+ work[i__ * 2] = sn;
+ }
+/* L10: */
+ }
+ if (*nrhs > 1) {
+ i__1 = *nrhs;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = *n - 1;
+ for (j = 1; j <= i__2; ++j) {
+ cs = work[((j) << (1)) - 1];
+ sn = work[j * 2];
+ drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
+ b_dim1], &c__1, &cs, &sn);
+/* L20: */
+ }
+/* L30: */
+ }
+ }
+ }
+
+/* Scale. */
+
+ nm1 = *n - 1;
+ orgnrm = dlanst_("M", n, &d__[1], &e[1]);
+ if (orgnrm == 0.) {
+ dlaset_("A", n, nrhs, &c_b29, &c_b29, &b[b_offset], ldb);
+ return 0;
+ }
+
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, info);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1,
+ info);
+
+/*
+ If N is smaller than the minimum divide size SMLSIZ, then solve
+ the problem with another solver.
+*/
+
+ if (*n <= *smlsiz) {
+ nwork = *n * *n + 1;
+ dlaset_("A", n, n, &c_b29, &c_b15, &work[1], n);
+ dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
+ work[1], n, &b[b_offset], ldb, &work[nwork], info);
+ if (*info != 0) {
+ return 0;
+ }
+ tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (d__[i__] <= tol) {
+ dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &b[i__ + b_dim1],
+ ldb);
+ } else {
+ dlascl_("G", &c__0, &c__0, &d__[i__], &c_b15, &c__1, nrhs, &b[
+ i__ + b_dim1], ldb, info);
+ ++(*rank);
+ }
+/* L40: */
+ }
+ dgemm_("T", "N", n, nrhs, n, &c_b15, &work[1], n, &b[b_offset], ldb, &
+ c_b29, &work[nwork], n);
+ dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
+
+/* Unscale. */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n,
+ info);
+ dlasrt_("D", n, &d__[1], info);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, nrhs, &b[b_offset],
+ ldb, info);
+
+ return 0;
+ }
+
+/* Book-keeping and setting up some constants. */
+
+ nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
+ log(2.)) + 1;
+
+ smlszp = *smlsiz + 1;
+
+ u = 1;
+ vt = *smlsiz * *n + 1;
+ difl = vt + smlszp * *n;
+ difr = difl + nlvl * *n;
+ z__ = difr + ((nlvl * *n) << (1));
+ c__ = z__ + nlvl * *n;
+ s = c__ + *n;
+ poles = s + *n;
+ givnum = poles + ((nlvl) << (1)) * *n;
+ bx = givnum + ((nlvl) << (1)) * *n;
+ nwork = bx + *n * *nrhs;
+
+ sizei = *n + 1;
+ k = sizei + *n;
+ givptr = k + *n;
+ perm = givptr + *n;
+ givcol = perm + nlvl * *n;
+ iwk = givcol + ((nlvl * *n) << (1));
+
+ st = 1;
+ sqre = 0;
+ icmpq1 = 1;
+ icmpq2 = 0;
+ nsub = 0;
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) < eps) {
+ d__[i__] = d_sign(&eps, &d__[i__]);
+ }
+/* L50: */
+ }
+
+ i__1 = nm1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
+ ++nsub;
+ iwork[nsub] = st;
+
+/*
+ Subproblem found. First determine its size and then
+ apply divide and conquer on it.
+*/
+
+ if (i__ < nm1) {
+
+/* A subproblem with E(I) small for I < NM1. */
+
+ nsize = i__ - st + 1;
+ iwork[sizei + nsub - 1] = nsize;
+ } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
+
+/* A subproblem with E(NM1) not too small but I = NM1. */
+
+ nsize = *n - st + 1;
+ iwork[sizei + nsub - 1] = nsize;
+ } else {
+
+/*
+ A subproblem with E(NM1) small. This implies an
+ 1-by-1 subproblem at D(N), which is not solved
+ explicitly.
+*/
+
+ nsize = i__ - st + 1;
+ iwork[sizei + nsub - 1] = nsize;
+ ++nsub;
+ iwork[nsub] = *n;
+ iwork[sizei + nsub - 1] = 1;
+ dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
+ }
+ st1 = st - 1;
+ if (nsize == 1) {
+
+/*
+ This is a 1-by-1 subproblem and is not solved
+ explicitly.
+*/
+
+ dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
+ } else if (nsize <= *smlsiz) {
+
+/* This is a small subproblem and is solved by DLASDQ. */
+
+ dlaset_("A", &nsize, &nsize, &c_b29, &c_b15, &work[vt + st1],
+ n);
+ dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
+ st], &work[vt + st1], n, &work[nwork], n, &b[st +
+ b_dim1], ldb, &work[nwork], info);
+ if (*info != 0) {
+ return 0;
+ }
+ dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
+ st1], n);
+ } else {
+
+/* A large problem. Solve it using divide and conquer. */
+
+ dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
+ work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
+ work[difl + st1], &work[difr + st1], &work[z__ + st1],
+ &work[poles + st1], &iwork[givptr + st1], &iwork[
+ givcol + st1], n, &iwork[perm + st1], &work[givnum +
+ st1], &work[c__ + st1], &work[s + st1], &work[nwork],
+ &iwork[iwk], info);
+ if (*info != 0) {
+ return 0;
+ }
+ bxst = bx + st1;
+ dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
+ work[bxst], n, &work[u + st1], n, &work[vt + st1], &
+ iwork[k + st1], &work[difl + st1], &work[difr + st1],
+ &work[z__ + st1], &work[poles + st1], &iwork[givptr +
+ st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
+ work[givnum + st1], &work[c__ + st1], &work[s + st1],
+ &work[nwork], &iwork[iwk], info);
+ if (*info != 0) {
+ return 0;
+ }
+ }
+ st = i__ + 1;
+ }
+/* L60: */
+ }
+
+/* Apply the singular values and treat the tiny ones as zero. */
+
+ tol = *rcond * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/*
+ Some of the elements in D can be negative because 1-by-1
+ subproblems were not solved explicitly.
+*/
+
+ if ((d__1 = d__[i__], abs(d__1)) <= tol) {
+ dlaset_("A", &c__1, nrhs, &c_b29, &c_b29, &work[bx + i__ - 1], n);
+ } else {
+ ++(*rank);
+ dlascl_("G", &c__0, &c__0, &d__[i__], &c_b15, &c__1, nrhs, &work[
+ bx + i__ - 1], n, info);
+ }
+ d__[i__] = (d__1 = d__[i__], abs(d__1));
+/* L70: */
+ }
+
+/* Now apply back the right singular vectors. */
+
+ icmpq2 = 1;
+ i__1 = nsub;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ st = iwork[i__];
+ st1 = st - 1;
+ nsize = iwork[sizei + i__ - 1];
+ bxst = bx + st1;
+ if (nsize == 1) {
+ dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
+ } else if (nsize <= *smlsiz) {
+ dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b15, &work[vt + st1], n,
+ &work[bxst], n, &c_b29, &b[st + b_dim1], ldb);
+ } else {
+ dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
+ b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
+ k + st1], &work[difl + st1], &work[difr + st1], &work[z__
+ + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
+ givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
+ &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
+ iwk], info);
+ if (*info != 0) {
+ return 0;
+ }
+ }
+/* L80: */
+ }
+
+/* Unscale and sort the singular values. */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, info);
+ dlasrt_("D", n, &d__[1], info);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, nrhs, &b[b_offset], ldb,
+ info);
+
+ return 0;
+
+/* End of DLALSD */
+
+} /* dlalsd_ */
+
+/* Subroutine */ int dlamrg_(integer *n1, integer *n2, doublereal *a, integer
+ *dtrd1, integer *dtrd2, integer *index)
+{
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ static integer i__, ind1, ind2, n1sv, n2sv;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAMRG will create a permutation list which will merge the elements
+ of A (which is composed of two independently sorted sets) into a
+ single set which is sorted in ascending order.
+
+ Arguments
+ =========
+
+ N1 (input) INTEGER
+ N2 (input) INTEGER
+ These arguements contain the respective lengths of the two
+ sorted lists to be merged.
+
+ A (input) DOUBLE PRECISION array, dimension (N1+N2)
+ The first N1 elements of A contain a list of numbers which
+ are sorted in either ascending or descending order. Likewise
+ for the final N2 elements.
+
+ DTRD1 (input) INTEGER
+ DTRD2 (input) INTEGER
+ These are the strides to be taken through the array A.
+ Allowable strides are 1 and -1. They indicate whether a
+ subset of A is sorted in ascending (DTRDx = 1) or descending
+ (DTRDx = -1) order.
+
+ INDEX (output) INTEGER array, dimension (N1+N2)
+ On exit this array will contain a permutation such that
+ if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be
+ sorted in ascending order.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --index;
+ --a;
+
+ /* Function Body */
+ n1sv = *n1;
+ n2sv = *n2;
+ if (*dtrd1 > 0) {
+ ind1 = 1;
+ } else {
+ ind1 = *n1;
+ }
+ if (*dtrd2 > 0) {
+ ind2 = *n1 + 1;
+ } else {
+ ind2 = *n1 + *n2;
+ }
+ i__ = 1;
+/* while ( (N1SV > 0) & (N2SV > 0) ) */
+L10:
+ if ((n1sv > 0 && n2sv > 0)) {
+ if (a[ind1] <= a[ind2]) {
+ index[i__] = ind1;
+ ++i__;
+ ind1 += *dtrd1;
+ --n1sv;
+ } else {
+ index[i__] = ind2;
+ ++i__;
+ ind2 += *dtrd2;
+ --n2sv;
+ }
+ goto L10;
+ }
+/* end while */
+ if (n1sv == 0) {
+ i__1 = n2sv;
+ for (n1sv = 1; n1sv <= i__1; ++n1sv) {
+ index[i__] = ind2;
+ ++i__;
+ ind2 += *dtrd2;
+/* L20: */
+ }
+ } else {
+/* N2SV .EQ. 0 */
+ i__1 = n1sv;
+ for (n2sv = 1; n2sv <= i__1; ++n2sv) {
+ index[i__] = ind1;
+ ++i__;
+ ind1 += *dtrd1;
+/* L30: */
+ }
+ }
+
+ return 0;
+
+/* End of DLAMRG */
+
+} /* dlamrg_ */
+
+doublereal dlange_(char *norm, integer *m, integer *n, doublereal *a, integer
+ *lda, doublereal *work)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublereal ret_val, d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal sum, scale;
+ extern logical lsame_(char *, char *);
+ static doublereal value;
+ extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
+ doublereal *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLANGE returns the value of the one norm, or the Frobenius norm, or
+ the infinity norm, or the element of largest absolute value of a
+ real matrix A.
+
+ Description
+ ===========
+
+ DLANGE returns the value
+
+ DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+ (
+ ( norm1(A), NORM = '1', 'O' or 'o'
+ (
+ ( normI(A), NORM = 'I' or 'i'
+ (
+ ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+
+ where norm1 denotes the one norm of a matrix (maximum column sum),
+ normI denotes the infinity norm of a matrix (maximum row sum) and
+ normF denotes the Frobenius norm of a matrix (square root of sum of
+ squares). Note that max(abs(A(i,j))) is not a matrix norm.
+
+ Arguments
+ =========
+
+ NORM (input) CHARACTER*1
+ Specifies the value to be returned in DLANGE as described
+ above.
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0. When M = 0,
+ DLANGE is set to zero.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0. When N = 0,
+ DLANGE is set to zero.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ The m by n matrix A.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(M,1).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
+ where LWORK >= M when NORM = 'I'; otherwise, WORK is not
+ referenced.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --work;
+
+ /* Function Body */
+ if (min(*m,*n) == 0) {
+ value = 0.;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ value = 0.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
+ value = max(d__2,d__3);
+/* L10: */
+ }
+/* L20: */
+ }
+ } else if (lsame_(norm, "O") || *(unsigned char *)
+ norm == '1') {
+
+/* Find norm1(A). */
+
+ value = 0.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = 0.;
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L30: */
+ }
+ value = max(value,sum);
+/* L40: */
+ }
+ } else if (lsame_(norm, "I")) {
+
+/* Find normI(A). */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L50: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L60: */
+ }
+/* L70: */
+ }
+ value = 0.;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = value, d__2 = work[i__];
+ value = max(d__1,d__2);
+/* L80: */
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ scale = 0.;
+ sum = 1.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ dlassq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
+/* L90: */
+ }
+ value = scale * sqrt(sum);
+ }
+
+ ret_val = value;
+ return ret_val;
+
+/* End of DLANGE */
+
+} /* dlange_ */
+
+doublereal dlanhs_(char *norm, integer *n, doublereal *a, integer *lda,
+ doublereal *work)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+ doublereal ret_val, d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal sum, scale;
+ extern logical lsame_(char *, char *);
+ static doublereal value;
+ extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
+ doublereal *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLANHS returns the value of the one norm, or the Frobenius norm, or
+ the infinity norm, or the element of largest absolute value of a
+ Hessenberg matrix A.
+
+ Description
+ ===========
+
+ DLANHS returns the value
+
+ DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+ (
+ ( norm1(A), NORM = '1', 'O' or 'o'
+ (
+ ( normI(A), NORM = 'I' or 'i'
+ (
+ ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+
+ where norm1 denotes the one norm of a matrix (maximum column sum),
+ normI denotes the infinity norm of a matrix (maximum row sum) and
+ normF denotes the Frobenius norm of a matrix (square root of sum of
+ squares). Note that max(abs(A(i,j))) is not a matrix norm.
+
+ Arguments
+ =========
+
+ NORM (input) CHARACTER*1
+ Specifies the value to be returned in DLANHS as described
+ above.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0. When N = 0, DLANHS is
+ set to zero.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ The n by n upper Hessenberg matrix A; the part of A below the
+ first sub-diagonal is not referenced.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(N,1).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
+ where LWORK >= N when NORM = 'I'; otherwise, WORK is not
+ referenced.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --work;
+
+ /* Function Body */
+ if (*n == 0) {
+ value = 0.;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ value = 0.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *n, i__4 = j + 1;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
+ value = max(d__2,d__3);
+/* L10: */
+ }
+/* L20: */
+ }
+ } else if (lsame_(norm, "O") || *(unsigned char *)
+ norm == '1') {
+
+/* Find norm1(A). */
+
+ value = 0.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = 0.;
+/* Computing MIN */
+ i__3 = *n, i__4 = j + 1;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L30: */
+ }
+ value = max(value,sum);
+/* L40: */
+ }
+ } else if (lsame_(norm, "I")) {
+
+/* Find normI(A). */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L50: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *n, i__4 = j + 1;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L60: */
+ }
+/* L70: */
+ }
+ value = 0.;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = value, d__2 = work[i__];
+ value = max(d__1,d__2);
+/* L80: */
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ scale = 0.;
+ sum = 1.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *n, i__4 = j + 1;
+ i__2 = min(i__3,i__4);
+ dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
+/* L90: */
+ }
+ value = scale * sqrt(sum);
+ }
+
+ ret_val = value;
+ return ret_val;
+
+/* End of DLANHS */
+
+} /* dlanhs_ */
+
+doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal ret_val, d__1, d__2, d__3, d__4, d__5;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal sum, scale;
+ extern logical lsame_(char *, char *);
+ static doublereal anorm;
+ extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
+ doublereal *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLANST returns the value of the one norm, or the Frobenius norm, or
+ the infinity norm, or the element of largest absolute value of a
+ real symmetric tridiagonal matrix A.
+
+ Description
+ ===========
+
+ DLANST returns the value
+
+ DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+ (
+ ( norm1(A), NORM = '1', 'O' or 'o'
+ (
+ ( normI(A), NORM = 'I' or 'i'
+ (
+ ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+
+ where norm1 denotes the one norm of a matrix (maximum column sum),
+ normI denotes the infinity norm of a matrix (maximum row sum) and
+ normF denotes the Frobenius norm of a matrix (square root of sum of
+ squares). Note that max(abs(A(i,j))) is not a matrix norm.
+
+ Arguments
+ =========
+
+ NORM (input) CHARACTER*1
+ Specifies the value to be returned in DLANST as described
+ above.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0. When N = 0, DLANST is
+ set to zero.
+
+ D (input) DOUBLE PRECISION array, dimension (N)
+ The diagonal elements of A.
+
+ E (input) DOUBLE PRECISION array, dimension (N-1)
+ The (n-1) sub-diagonal or super-diagonal elements of A.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --e;
+ --d__;
+
+ /* Function Body */
+ if (*n <= 0) {
+ anorm = 0.;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ anorm = (d__1 = d__[*n], abs(d__1));
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
+ anorm = max(d__2,d__3);
+/* Computing MAX */
+ d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));
+ anorm = max(d__2,d__3);
+/* L10: */
+ }
+ } else if (lsame_(norm, "O") || *(unsigned char *)
+ norm == '1' || lsame_(norm, "I")) {
+
+/* Find norm1(A). */
+
+ if (*n == 1) {
+ anorm = abs(d__[1]);
+ } else {
+/* Computing MAX */
+ d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(
+ d__1)) + (d__2 = d__[*n], abs(d__2));
+ anorm = max(d__3,d__4);
+ i__1 = *n - 1;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
+ i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));
+ anorm = max(d__4,d__5);
+/* L20: */
+ }
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ scale = 0.;
+ sum = 1.;
+ if (*n > 1) {
+ i__1 = *n - 1;
+ dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
+ sum *= 2;
+ }
+ dlassq_(n, &d__[1], &c__1, &scale, &sum);
+ anorm = scale * sqrt(sum);
+ }
+
+ ret_val = anorm;
+ return ret_val;
+
+/* End of DLANST */
+
+} /* dlanst_ */
+
+doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer
+ *lda, doublereal *work)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublereal ret_val, d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal sum, absa, scale;
+ extern logical lsame_(char *, char *);
+ static doublereal value;
+ extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
+ doublereal *, doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLANSY returns the value of the one norm, or the Frobenius norm, or
+ the infinity norm, or the element of largest absolute value of a
+ real symmetric matrix A.
+
+ Description
+ ===========
+
+ DLANSY returns the value
+
+ DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+ (
+ ( norm1(A), NORM = '1', 'O' or 'o'
+ (
+ ( normI(A), NORM = 'I' or 'i'
+ (
+ ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+
+ where norm1 denotes the one norm of a matrix (maximum column sum),
+ normI denotes the infinity norm of a matrix (maximum row sum) and
+ normF denotes the Frobenius norm of a matrix (square root of sum of
+ squares). Note that max(abs(A(i,j))) is not a matrix norm.
+
+ Arguments
+ =========
+
+ NORM (input) CHARACTER*1
+ Specifies the value to be returned in DLANSY as described
+ above.
+
+ UPLO (input) CHARACTER*1
+ Specifies whether the upper or lower triangular part of the
+ symmetric matrix A is to be referenced.
+ = 'U': Upper triangular part of A is referenced
+ = 'L': Lower triangular part of A is referenced
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0. When N = 0, DLANSY is
+ set to zero.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,N)
+ The symmetric matrix A. If UPLO = 'U', the leading n by n
+ upper triangular part of A contains the upper triangular part
+ of the matrix A, and the strictly lower triangular part of A
+ is not referenced. If UPLO = 'L', the leading n by n lower
+ triangular part of A contains the lower triangular part of
+ the matrix A, and the strictly upper triangular part of A is
+ not referenced.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(N,1).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
+ where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
+ WORK is not referenced.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --work;
+
+ /* Function Body */
+ if (*n == 0) {
+ value = 0.;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ value = 0.;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
+
+/* Find normI(A) ( = norm1(A), since A is symmetric). */
+
+ value = 0.;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = 0.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
+ sum += absa;
+ work[i__] += absa;
+/* L50: */
+ }
+ work[j] = sum + (d__1 = a[j + j * a_dim1], abs(d__1));
+/* L60: */
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = value, d__2 = work[i__];
+ value = max(d__1,d__2);
+/* L70: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L80: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = work[j] + (d__1 = a[j + j * a_dim1], abs(d__1));
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
+ sum += absa;
+ work[i__] += absa;
+/* L90: */
+ }
+ value = max(value,sum);
+/* L100: */
+ }
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ scale = 0.;
+ sum = 1.;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ i__2 = j - 1;
+ dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
+/* L110: */
+ }
+ } else {
+ i__1 = *n - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n - j;
+ dlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum);
+/* L120: */
+ }
+ }
+ sum *= 2;
+ i__1 = *lda + 1;
+ dlassq_(n, &a[a_offset], &i__1, &scale, &sum);
+ value = scale * sqrt(sum);
+ }
+
+ ret_val = value;
+ return ret_val;
+
+/* End of DLANSY */
+
+} /* dlansy_ */
+
+/* Subroutine */ int dlanv2_(doublereal *a, doublereal *b, doublereal *c__,
+ doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r,
+ doublereal *rt2i, doublereal *cs, doublereal *sn)
+{
+ /* System generated locals */
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double d_sign(doublereal *, doublereal *), sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau,
+ temp, scale, bcmax, bcmis, sigma;
+
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
+ matrix in standard form:
+
+ [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
+ [ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
+
+ where either
+ 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
+ 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
+ conjugate eigenvalues.
+
+ Arguments
+ =========
+
+ A (input/output) DOUBLE PRECISION
+ B (input/output) DOUBLE PRECISION
+ C (input/output) DOUBLE PRECISION
+ D (input/output) DOUBLE PRECISION
+ On entry, the elements of the input matrix.
+ On exit, they are overwritten by the elements of the
+ standardised Schur form.
+
+ RT1R (output) DOUBLE PRECISION
+ RT1I (output) DOUBLE PRECISION
+ RT2R (output) DOUBLE PRECISION
+ RT2I (output) DOUBLE PRECISION
+ The real and imaginary parts of the eigenvalues. If the
+ eigenvalues are a complex conjugate pair, RT1I > 0.
+
+ CS (output) DOUBLE PRECISION
+ SN (output) DOUBLE PRECISION
+ Parameters of the rotation matrix.
+
+ Further Details
+ ===============
+
+ Modified by V. Sima, Research Institute for Informatics, Bucharest,
+ Romania, to reduce the risk of cancellation errors,
+ when computing real eigenvalues, and to ensure, if possible, that
+ abs(RT1R) >= abs(RT2R).
+
+ =====================================================================
+*/
+
+
+ eps = PRECISION;
+ if (*c__ == 0.) {
+ *cs = 1.;
+ *sn = 0.;
+ goto L10;
+
+ } else if (*b == 0.) {
+
+/* Swap rows and columns */
+
+ *cs = 0.;
+ *sn = 1.;
+ temp = *d__;
+ *d__ = *a;
+ *a = temp;
+ *b = -(*c__);
+ *c__ = 0.;
+ goto L10;
+ } else if ((*a - *d__ == 0. && d_sign(&c_b15, b) != d_sign(&c_b15, c__)))
+ {
+ *cs = 1.;
+ *sn = 0.;
+ goto L10;
+ } else {
+
+ temp = *a - *d__;
+ p = temp * .5;
+/* Computing MAX */
+ d__1 = abs(*b), d__2 = abs(*c__);
+ bcmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = abs(*b), d__2 = abs(*c__);
+ bcmis = min(d__1,d__2) * d_sign(&c_b15, b) * d_sign(&c_b15, c__);
+/* Computing MAX */
+ d__1 = abs(p);
+ scale = max(d__1,bcmax);
+ z__ = p / scale * p + bcmax / scale * bcmis;
+
+/*
+ If Z is of the order of the machine accuracy, postpone the
+ decision on the nature of eigenvalues
+*/
+
+ if (z__ >= eps * 4.) {
+
+/* Real eigenvalues. Compute A and D. */
+
+ d__1 = sqrt(scale) * sqrt(z__);
+ z__ = p + d_sign(&d__1, &p);
+ *a = *d__ + z__;
+ *d__ -= bcmax / z__ * bcmis;
+
+/* Compute B and the rotation matrix */
+
+ tau = dlapy2_(c__, &z__);
+ *cs = z__ / tau;
+ *sn = *c__ / tau;
+ *b -= *c__;
+ *c__ = 0.;
+ } else {
+
+/*
+ Complex eigenvalues, or real (almost) equal eigenvalues.
+ Make diagonal elements equal.
+*/
+
+ sigma = *b + *c__;
+ tau = dlapy2_(&sigma, &temp);
+ *cs = sqrt((abs(sigma) / tau + 1.) * .5);
+ *sn = -(p / (tau * *cs)) * d_sign(&c_b15, &sigma);
+
+/*
+ Compute [ AA BB ] = [ A B ] [ CS -SN ]
+ [ CC DD ] [ C D ] [ SN CS ]
+*/
+
+ aa = *a * *cs + *b * *sn;
+ bb = -(*a) * *sn + *b * *cs;
+ cc = *c__ * *cs + *d__ * *sn;
+ dd = -(*c__) * *sn + *d__ * *cs;
+
+/*
+ Compute [ A B ] = [ CS SN ] [ AA BB ]
+ [ C D ] [-SN CS ] [ CC DD ]
+*/
+
+ *a = aa * *cs + cc * *sn;
+ *b = bb * *cs + dd * *sn;
+ *c__ = -aa * *sn + cc * *cs;
+ *d__ = -bb * *sn + dd * *cs;
+
+ temp = (*a + *d__) * .5;
+ *a = temp;
+ *d__ = temp;
+
+ if (*c__ != 0.) {
+ if (*b != 0.) {
+ if (d_sign(&c_b15, b) == d_sign(&c_b15, c__)) {
+
+/* Real eigenvalues: reduce to upper triangular form */
+
+ sab = sqrt((abs(*b)));
+ sac = sqrt((abs(*c__)));
+ d__1 = sab * sac;
+ p = d_sign(&d__1, c__);
+ tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1)));
+ *a = temp + p;
+ *d__ = temp - p;
+ *b -= *c__;
+ *c__ = 0.;
+ cs1 = sab * tau;
+ sn1 = sac * tau;
+ temp = *cs * cs1 - *sn * sn1;
+ *sn = *cs * sn1 + *sn * cs1;
+ *cs = temp;
+ }
+ } else {
+ *b = -(*c__);
+ *c__ = 0.;
+ temp = *cs;
+ *cs = -(*sn);
+ *sn = temp;
+ }
+ }
+ }
+
+ }
+
+L10:
+
+/* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */
+
+ *rt1r = *a;
+ *rt2r = *d__;
+ if (*c__ == 0.) {
+ *rt1i = 0.;
+ *rt2i = 0.;
+ } else {
+ *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__)));
+ *rt2i = -(*rt1i);
+ }
+ return 0;
+
+/* End of DLANV2 */
+
+} /* dlanv2_ */
+
+doublereal dlapy2_(doublereal *x, doublereal *y)
+{
+ /* System generated locals */
+ doublereal ret_val, d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal w, z__, xabs, yabs;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
+ overflow.
+
+ Arguments
+ =========
+
+ X (input) DOUBLE PRECISION
+ Y (input) DOUBLE PRECISION
+ X and Y specify the values x and y.
+
+ =====================================================================
+*/
+
+
+ xabs = abs(*x);
+ yabs = abs(*y);
+ w = max(xabs,yabs);
+ z__ = min(xabs,yabs);
+ if (z__ == 0.) {
+ ret_val = w;
+ } else {
+/* Computing 2nd power */
+ d__1 = z__ / w;
+ ret_val = w * sqrt(d__1 * d__1 + 1.);
+ }
+ return ret_val;
+
+/* End of DLAPY2 */
+
+} /* dlapy2_ */
+
+doublereal dlapy3_(doublereal *x, doublereal *y, doublereal *z__)
+{
+ /* System generated locals */
+ doublereal ret_val, d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal w, xabs, yabs, zabs;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLAPY3 returns sqrt(x**2+y**2+z**2), taking care not to cause
+ unnecessary overflow.
+
+ Arguments
+ =========
+
+ X (input) DOUBLE PRECISION
+ Y (input) DOUBLE PRECISION
+ Z (input) DOUBLE PRECISION
+ X, Y and Z specify the values x, y and z.
+
+ =====================================================================
+*/
+
+
+ xabs = abs(*x);
+ yabs = abs(*y);
+ zabs = abs(*z__);
+/* Computing MAX */
+ d__1 = max(xabs,yabs);
+ w = max(d__1,zabs);
+ if (w == 0.) {
+ ret_val = 0.;
+ } else {
+/* Computing 2nd power */
+ d__1 = xabs / w;
+/* Computing 2nd power */
+ d__2 = yabs / w;
+/* Computing 2nd power */
+ d__3 = zabs / w;
+ ret_val = w * sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
+ }
+ return ret_val;
+
+/* End of DLAPY3 */
+
+} /* dlapy3_ */
+
+/* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v,
+ integer *incv, doublereal *tau, doublereal *c__, integer *ldc,
+ doublereal *work)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset;
+ doublereal d__1;
+
+ /* Local variables */
+ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLARF applies a real elementary reflector H to a real m by n matrix
+ C, from either the left or the right. H is represented in the form
+
+ H = I - tau * v * v'
+
+ where tau is a real scalar and v is a real vector.
+
+ If tau = 0, then H is taken to be the unit matrix.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': form H * C
+ = 'R': form C * H
+
+ M (input) INTEGER
+ The number of rows of the matrix C.
+
+ N (input) INTEGER
+ The number of columns of the matrix C.
+
+ V (input) DOUBLE PRECISION array, dimension
+ (1 + (M-1)*abs(INCV)) if SIDE = 'L'
+ or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
+ The vector v in the representation of H. V is not used if
+ TAU = 0.
+
+ INCV (input) INTEGER
+ The increment between elements of v. INCV <> 0.
+
+ TAU (input) DOUBLE PRECISION
+ The value tau in the representation of H.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by the matrix H * C if SIDE = 'L',
+ or C * H if SIDE = 'R'.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (N) if SIDE = 'L'
+ or (M) if SIDE = 'R'
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --v;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ if (lsame_(side, "L")) {
+
+/* Form H * C */
+
+ if (*tau != 0.) {
+
+/* w := C' * v */
+
+ dgemv_("Transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1],
+ incv, &c_b29, &work[1], &c__1);
+
+/* C := C - v * w' */
+
+ d__1 = -(*tau);
+ dger_(m, n, &d__1, &v[1], incv, &work[1], &c__1, &c__[c_offset],
+ ldc);
+ }
+ } else {
+
+/* Form C * H */
+
+ if (*tau != 0.) {
+
+/* w := C * v */
+
+ dgemv_("No transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1],
+ incv, &c_b29, &work[1], &c__1);
+
+/* C := C - w * v' */
+
+ d__1 = -(*tau);
+ dger_(m, n, &d__1, &work[1], &c__1, &v[1], incv, &c__[c_offset],
+ ldc);
+ }
+ }
+ return 0;
+
+/* End of DLARF */
+
+} /* dlarf_ */
+
+/* Subroutine */ int dlarfb_(char *side, char *trans, char *direct, char *
+ storev, integer *m, integer *n, integer *k, doublereal *v, integer *
+ ldv, doublereal *t, integer *ldt, doublereal *c__, integer *ldc,
+ doublereal *work, integer *ldwork)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
+ work_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dtrmm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *);
+ static char transt[1];
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLARFB applies a real block reflector H or its transpose H' to a
+ real m by n matrix C, from either the left or the right.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply H or H' from the Left
+ = 'R': apply H or H' from the Right
+
+ TRANS (input) CHARACTER*1
+ = 'N': apply H (No transpose)
+ = 'T': apply H' (Transpose)
+
+ DIRECT (input) CHARACTER*1
+ Indicates how H is formed from a product of elementary
+ reflectors
+ = 'F': H = H(1) H(2) . . . H(k) (Forward)
+ = 'B': H = H(k) . . . H(2) H(1) (Backward)
+
+ STOREV (input) CHARACTER*1
+ Indicates how the vectors which define the elementary
+ reflectors are stored:
+ = 'C': Columnwise
+ = 'R': Rowwise
+
+ M (input) INTEGER
+ The number of rows of the matrix C.
+
+ N (input) INTEGER
+ The number of columns of the matrix C.
+
+ K (input) INTEGER
+ The order of the matrix T (= the number of elementary
+ reflectors whose product defines the block reflector).
+
+ V (input) DOUBLE PRECISION array, dimension
+ (LDV,K) if STOREV = 'C'
+ (LDV,M) if STOREV = 'R' and SIDE = 'L'
+ (LDV,N) if STOREV = 'R' and SIDE = 'R'
+ The matrix V. See further details.
+
+ LDV (input) INTEGER
+ The leading dimension of the array V.
+ If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
+ if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
+ if STOREV = 'R', LDV >= K.
+
+ T (input) DOUBLE PRECISION array, dimension (LDT,K)
+ The triangular k by k matrix T in the representation of the
+ block reflector.
+
+ LDT (input) INTEGER
+ The leading dimension of the array T. LDT >= K.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDA >= max(1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
+
+ LDWORK (input) INTEGER
+ The leading dimension of the array WORK.
+ If SIDE = 'L', LDWORK >= max(1,N);
+ if SIDE = 'R', LDWORK >= max(1,M).
+
+ =====================================================================
+
+
+ Quick return if possible
+*/
+
+ /* Parameter adjustments */
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1 * 1;
+ v -= v_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1 * 1;
+ t -= t_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ work_dim1 = *ldwork;
+ work_offset = 1 + work_dim1 * 1;
+ work -= work_offset;
+
+ /* Function Body */
+ if (*m <= 0 || *n <= 0) {
+ return 0;
+ }
+
+ if (lsame_(trans, "N")) {
+ *(unsigned char *)transt = 'T';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+
+ if (lsame_(storev, "C")) {
+
+ if (lsame_(direct, "F")) {
+
+/*
+ Let V = ( V1 ) (first K rows)
+ ( V2 )
+ where V1 is unit lower triangular.
+*/
+
+ if (lsame_(side, "L")) {
+
+/*
+ Form H * C or H' * C where C = ( C1 )
+ ( C2 )
+
+ W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+
+ W := C1'
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
+ &c__1);
+/* L10: */
+ }
+
+/* W := W * V1 */
+
+ dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b15,
+ &v[v_offset], ldv, &work[work_offset], ldwork);
+ if (*m > *k) {
+
+/* W := W + C2'*V2 */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b15, &
+ c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
+ ldv, &c_b15, &work[work_offset], ldwork);
+ }
+
+/* W := W * T' or W * T */
+
+ dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - V * W' */
+
+ if (*m > *k) {
+
+/* C2 := C2 - V2 * W' */
+
+ i__1 = *m - *k;
+ dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b151,
+ &v[*k + 1 + v_dim1], ldv, &work[work_offset],
+ ldwork, &c_b15, &c__[*k + 1 + c_dim1], ldc);
+ }
+
+/* W := W * V1' */
+
+ dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b15, &
+ v[v_offset], ldv, &work[work_offset], ldwork);
+
+/* C1 := C1 - W' */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
+/* L20: */
+ }
+/* L30: */
+ }
+
+ } else if (lsame_(side, "R")) {
+
+/*
+ Form C * H or C * H' where C = ( C1 C2 )
+
+ W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+
+ W := C1
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
+ work_dim1 + 1], &c__1);
+/* L40: */
+ }
+
+/* W := W * V1 */
+
+ dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b15,
+ &v[v_offset], ldv, &work[work_offset], ldwork);
+ if (*n > *k) {
+
+/* W := W + C2 * V2 */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "No transpose", m, k, &i__1, &
+ c_b15, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
+ 1 + v_dim1], ldv, &c_b15, &work[work_offset],
+ ldwork);
+ }
+
+/* W := W * T or W * T' */
+
+ dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - W * V' */
+
+ if (*n > *k) {
+
+/* C2 := C2 - W * V2' */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b151,
+ &work[work_offset], ldwork, &v[*k + 1 + v_dim1],
+ ldv, &c_b15, &c__[(*k + 1) * c_dim1 + 1], ldc);
+ }
+
+/* W := W * V1' */
+
+ dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b15, &
+ v[v_offset], ldv, &work[work_offset], ldwork);
+
+/* C1 := C1 - W */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
+/* L50: */
+ }
+/* L60: */
+ }
+ }
+
+ } else {
+
+/*
+ Let V = ( V1 )
+ ( V2 ) (last K rows)
+ where V2 is unit upper triangular.
+*/
+
+ if (lsame_(side, "L")) {
+
+/*
+ Form H * C or H' * C where C = ( C1 )
+ ( C2 )
+
+ W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+
+ W := C2'
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
+ work_dim1 + 1], &c__1);
+/* L70: */
+ }
+
+/* W := W * V2 */
+
+ dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b15,
+ &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
+ ldwork);
+ if (*m > *k) {
+
+/* W := W + C1'*V1 */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b15, &
+ c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
+ work[work_offset], ldwork);
+ }
+
+/* W := W * T' or W * T */
+
+ dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - V * W' */
+
+ if (*m > *k) {
+
+/* C1 := C1 - V1 * W' */
+
+ i__1 = *m - *k;
+ dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b151,
+ &v[v_offset], ldv, &work[work_offset], ldwork, &
+ c_b15, &c__[c_offset], ldc)
+ ;
+ }
+
+/* W := W * V2' */
+
+ dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b15, &
+ v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
+ ldwork);
+
+/* C2 := C2 - W' */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
+ work_dim1];
+/* L80: */
+ }
+/* L90: */
+ }
+
+ } else if (lsame_(side, "R")) {
+
+/*
+ Form C * H or C * H' where C = ( C1 C2 )
+
+ W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+
+ W := C2
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
+ j * work_dim1 + 1], &c__1);
+/* L100: */
+ }
+
+/* W := W * V2 */
+
+ dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b15,
+ &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
+ ldwork);
+ if (*n > *k) {
+
+/* W := W + C1 * V1 */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "No transpose", m, k, &i__1, &
+ c_b15, &c__[c_offset], ldc, &v[v_offset], ldv, &
+ c_b15, &work[work_offset], ldwork);
+ }
+
+/* W := W * T or W * T' */
+
+ dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - W * V' */
+
+ if (*n > *k) {
+
+/* C1 := C1 - W * V1' */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b151,
+ &work[work_offset], ldwork, &v[v_offset], ldv, &
+ c_b15, &c__[c_offset], ldc)
+ ;
+ }
+
+/* W := W * V2' */
+
+ dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b15, &
+ v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
+ ldwork);
+
+/* C2 := C2 - W */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
+ work_dim1];
+/* L110: */
+ }
+/* L120: */
+ }
+ }
+ }
+
+ } else if (lsame_(storev, "R")) {
+
+ if (lsame_(direct, "F")) {
+
+/*
+ Let V = ( V1 V2 ) (V1: first K columns)
+ where V1 is unit upper triangular.
+*/
+
+ if (lsame_(side, "L")) {
+
+/*
+ Form H * C or H' * C where C = ( C1 )
+ ( C2 )
+
+ W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+
+ W := C1'
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
+ &c__1);
+/* L130: */
+ }
+
+/* W := W * V1' */
+
+ dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b15, &
+ v[v_offset], ldv, &work[work_offset], ldwork);
+ if (*m > *k) {
+
+/* W := W + C2'*V2' */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b15, &
+ c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
+ 1], ldv, &c_b15, &work[work_offset], ldwork);
+ }
+
+/* W := W * T' or W * T */
+
+ dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - V' * W' */
+
+ if (*m > *k) {
+
+/* C2 := C2 - V2' * W' */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b151, &v[
+ (*k + 1) * v_dim1 + 1], ldv, &work[work_offset],
+ ldwork, &c_b15, &c__[*k + 1 + c_dim1], ldc);
+ }
+
+/* W := W * V1 */
+
+ dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b15,
+ &v[v_offset], ldv, &work[work_offset], ldwork);
+
+/* C1 := C1 - W' */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
+/* L140: */
+ }
+/* L150: */
+ }
+
+ } else if (lsame_(side, "R")) {
+
+/*
+ Form C * H or C * H' where C = ( C1 C2 )
+
+ W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+
+ W := C1
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
+ work_dim1 + 1], &c__1);
+/* L160: */
+ }
+
+/* W := W * V1' */
+
+ dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b15, &
+ v[v_offset], ldv, &work[work_offset], ldwork);
+ if (*n > *k) {
+
+/* W := W + C2 * V2' */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b15, &
+ c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
+ v_dim1 + 1], ldv, &c_b15, &work[work_offset],
+ ldwork);
+ }
+
+/* W := W * T or W * T' */
+
+ dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - W * V */
+
+ if (*n > *k) {
+
+/* C2 := C2 - W * V2 */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "No transpose", m, &i__1, k, &
+ c_b151, &work[work_offset], ldwork, &v[(*k + 1) *
+ v_dim1 + 1], ldv, &c_b15, &c__[(*k + 1) * c_dim1
+ + 1], ldc);
+ }
+
+/* W := W * V1 */
+
+ dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b15,
+ &v[v_offset], ldv, &work[work_offset], ldwork);
+
+/* C1 := C1 - W */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
+/* L170: */
+ }
+/* L180: */
+ }
+
+ }
+
+ } else {
+
+/*
+ Let V = ( V1 V2 ) (V2: last K columns)
+ where V2 is unit lower triangular.
+*/
+
+ if (lsame_(side, "L")) {
+
+/*
+ Form H * C or H' * C where C = ( C1 )
+ ( C2 )
+
+ W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+
+ W := C2'
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
+ work_dim1 + 1], &c__1);
+/* L190: */
+ }
+
+/* W := W * V2' */
+
+ dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b15, &
+ v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
+ , ldwork);
+ if (*m > *k) {
+
+/* W := W + C1'*V1' */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b15, &
+ c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
+ work[work_offset], ldwork);
+ }
+
+/* W := W * T' or W * T */
+
+ dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - V' * W' */
+
+ if (*m > *k) {
+
+/* C1 := C1 - V1' * W' */
+
+ i__1 = *m - *k;
+ dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b151, &v[
+ v_offset], ldv, &work[work_offset], ldwork, &
+ c_b15, &c__[c_offset], ldc);
+ }
+
+/* W := W * V2 */
+
+ dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b15,
+ &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
+ work_offset], ldwork);
+
+/* C2 := C2 - W' */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
+ work_dim1];
+/* L200: */
+ }
+/* L210: */
+ }
+
+ } else if (lsame_(side, "R")) {
+
+/*
+ Form C * H or C * H' where C = ( C1 C2 )
+
+ W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+
+ W := C2
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
+ j * work_dim1 + 1], &c__1);
+/* L220: */
+ }
+
+/* W := W * V2' */
+
+ dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b15, &
+ v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
+ , ldwork);
+ if (*n > *k) {
+
+/* W := W + C1 * V1' */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b15, &
+ c__[c_offset], ldc, &v[v_offset], ldv, &c_b15, &
+ work[work_offset], ldwork);
+ }
+
+/* W := W * T or W * T' */
+
+ dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b15, &t[
+ t_offset], ldt, &work[work_offset], ldwork);
+
+/* C := C - W * V */
+
+ if (*n > *k) {
+
+/* C1 := C1 - W * V1 */
+
+ i__1 = *n - *k;
+ dgemm_("No transpose", "No transpose", m, &i__1, k, &
+ c_b151, &work[work_offset], ldwork, &v[v_offset],
+ ldv, &c_b15, &c__[c_offset], ldc);
+ }
+
+/* W := W * V2 */
+
+ dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b15,
+ &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
+ work_offset], ldwork);
+
+/* C1 := C1 - W */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
+ work_dim1];
+/* L230: */
+ }
+/* L240: */
+ }
+
+ }
+
+ }
+ }
+
+ return 0;
+
+/* End of DLARFB */
+
+} /* dlarfb_ */
+
+/* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x,
+ integer *incx, doublereal *tau)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer j, knt;
+ static doublereal beta;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ static doublereal xnorm;
+
+ static doublereal safmin, rsafmn;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLARFG generates a real elementary reflector H of order n, such
+ that
+
+ H * ( alpha ) = ( beta ), H' * H = I.
+ ( x ) ( 0 )
+
+ where alpha and beta are scalars, and x is an (n-1)-element real
+ vector. H is represented in the form
+
+ H = I - tau * ( 1 ) * ( 1 v' ) ,
+ ( v )
+
+ where tau is a real scalar and v is a real (n-1)-element
+ vector.
+
+ If the elements of x are all zero, then tau = 0 and H is taken to be
+ the unit matrix.
+
+ Otherwise 1 <= tau <= 2.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the elementary reflector.
+
+ ALPHA (input/output) DOUBLE PRECISION
+ On entry, the value alpha.
+ On exit, it is overwritten with the value beta.
+
+ X (input/output) DOUBLE PRECISION array, dimension
+ (1+(N-2)*abs(INCX))
+ On entry, the vector x.
+ On exit, it is overwritten with the vector v.
+
+ INCX (input) INTEGER
+ The increment between elements of X. INCX > 0.
+
+ TAU (output) DOUBLE PRECISION
+ The value tau.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if (*n <= 1) {
+ *tau = 0.;
+ return 0;
+ }
+
+ i__1 = *n - 1;
+ xnorm = dnrm2_(&i__1, &x[1], incx);
+
+ if (xnorm == 0.) {
+
+/* H = I */
+
+ *tau = 0.;
+ } else {
+
+/* general case */
+
+ d__1 = dlapy2_(alpha, &xnorm);
+ beta = -d_sign(&d__1, alpha);
+ safmin = SAFEMINIMUM / EPSILON;
+ if (abs(beta) < safmin) {
+
+/* XNORM, BETA may be inaccurate; scale X and recompute them */
+
+ rsafmn = 1. / safmin;
+ knt = 0;
+L10:
+ ++knt;
+ i__1 = *n - 1;
+ dscal_(&i__1, &rsafmn, &x[1], incx);
+ beta *= rsafmn;
+ *alpha *= rsafmn;
+ if (abs(beta) < safmin) {
+ goto L10;
+ }
+
+/* New BETA is at most 1, at least SAFMIN */
+
+ i__1 = *n - 1;
+ xnorm = dnrm2_(&i__1, &x[1], incx);
+ d__1 = dlapy2_(alpha, &xnorm);
+ beta = -d_sign(&d__1, alpha);
+ *tau = (beta - *alpha) / beta;
+ i__1 = *n - 1;
+ d__1 = 1. / (*alpha - beta);
+ dscal_(&i__1, &d__1, &x[1], incx);
+
+/* If ALPHA is subnormal, it may lose relative accuracy */
+
+ *alpha = beta;
+ i__1 = knt;
+ for (j = 1; j <= i__1; ++j) {
+ *alpha *= safmin;
+/* L20: */
+ }
+ } else {
+ *tau = (beta - *alpha) / beta;
+ i__1 = *n - 1;
+ d__1 = 1. / (*alpha - beta);
+ dscal_(&i__1, &d__1, &x[1], incx);
+ *alpha = beta;
+ }
+ }
+
+ return 0;
+
+/* End of DLARFG */
+
+} /* dlarfg_ */
+
+/* Subroutine */ int dlarft_(char *direct, char *storev, integer *n, integer *
+ k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t,
+ integer *ldt)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal vii;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), dtrmv_(char *,
+ char *, char *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLARFT forms the triangular factor T of a real block reflector H
+ of order n, which is defined as a product of k elementary reflectors.
+
+ If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
+
+ If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
+
+ If STOREV = 'C', the vector which defines the elementary reflector
+ H(i) is stored in the i-th column of the array V, and
+
+ H = I - V * T * V'
+
+ If STOREV = 'R', the vector which defines the elementary reflector
+ H(i) is stored in the i-th row of the array V, and
+
+ H = I - V' * T * V
+
+ Arguments
+ =========
+
+ DIRECT (input) CHARACTER*1
+ Specifies the order in which the elementary reflectors are
+ multiplied to form the block reflector:
+ = 'F': H = H(1) H(2) . . . H(k) (Forward)
+ = 'B': H = H(k) . . . H(2) H(1) (Backward)
+
+ STOREV (input) CHARACTER*1
+ Specifies how the vectors which define the elementary
+ reflectors are stored (see also Further Details):
+ = 'C': columnwise
+ = 'R': rowwise
+
+ N (input) INTEGER
+ The order of the block reflector H. N >= 0.
+
+ K (input) INTEGER
+ The order of the triangular factor T (= the number of
+ elementary reflectors). K >= 1.
+
+ V (input/output) DOUBLE PRECISION array, dimension
+ (LDV,K) if STOREV = 'C'
+ (LDV,N) if STOREV = 'R'
+ The matrix V. See further details.
+
+ LDV (input) INTEGER
+ The leading dimension of the array V.
+ If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i).
+
+ T (output) DOUBLE PRECISION array, dimension (LDT,K)
+ The k by k triangular factor T of the block reflector.
+ If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
+ lower triangular. The rest of the array is not used.
+
+ LDT (input) INTEGER
+ The leading dimension of the array T. LDT >= K.
+
+ Further Details
+ ===============
+
+ The shape of the matrix V and the storage of the vectors which define
+ the H(i) is best illustrated by the following example with n = 5 and
+ k = 3. The elements equal to 1 are not stored; the corresponding
+ array elements are modified but restored on exit. The rest of the
+ array is not used.
+
+ DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
+
+ V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
+ ( v1 1 ) ( 1 v2 v2 v2 )
+ ( v1 v2 1 ) ( 1 v3 v3 )
+ ( v1 v2 v3 )
+ ( v1 v2 v3 )
+
+ DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
+
+ V = ( v1 v2 v3 ) V = ( v1 v1 1 )
+ ( v1 v2 v3 ) ( v2 v2 v2 1 )
+ ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
+ ( 1 v3 )
+ ( 1 )
+
+ =====================================================================
+
+
+ Quick return if possible
+*/
+
+ /* Parameter adjustments */
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1 * 1;
+ v -= v_offset;
+ --tau;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1 * 1;
+ t -= t_offset;
+
+ /* Function Body */
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (lsame_(direct, "F")) {
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (tau[i__] == 0.) {
+
+/* H(i) = I */
+
+ i__2 = i__;
+ for (j = 1; j <= i__2; ++j) {
+ t[j + i__ * t_dim1] = 0.;
+/* L10: */
+ }
+ } else {
+
+/* general case */
+
+ vii = v[i__ + i__ * v_dim1];
+ v[i__ + i__ * v_dim1] = 1.;
+ if (lsame_(storev, "C")) {
+
+/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
+
+ i__2 = *n - i__ + 1;
+ i__3 = i__ - 1;
+ d__1 = -tau[i__];
+ dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1],
+ ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b29, &t[
+ i__ * t_dim1 + 1], &c__1);
+ } else {
+
+/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
+
+ i__2 = i__ - 1;
+ i__3 = *n - i__ + 1;
+ d__1 = -tau[i__];
+ dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ *
+ v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
+ c_b29, &t[i__ * t_dim1 + 1], &c__1);
+ }
+ v[i__ + i__ * v_dim1] = vii;
+
+/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
+
+ i__2 = i__ - 1;
+ dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
+ t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
+ t[i__ + i__ * t_dim1] = tau[i__];
+ }
+/* L20: */
+ }
+ } else {
+ for (i__ = *k; i__ >= 1; --i__) {
+ if (tau[i__] == 0.) {
+
+/* H(i) = I */
+
+ i__1 = *k;
+ for (j = i__; j <= i__1; ++j) {
+ t[j + i__ * t_dim1] = 0.;
+/* L30: */
+ }
+ } else {
+
+/* general case */
+
+ if (i__ < *k) {
+ if (lsame_(storev, "C")) {
+ vii = v[*n - *k + i__ + i__ * v_dim1];
+ v[*n - *k + i__ + i__ * v_dim1] = 1.;
+
+/*
+ T(i+1:k,i) :=
+ - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
+*/
+
+ i__1 = *n - *k + i__;
+ i__2 = *k - i__;
+ d__1 = -tau[i__];
+ dgemv_("Transpose", &i__1, &i__2, &d__1, &v[(i__ + 1)
+ * v_dim1 + 1], ldv, &v[i__ * v_dim1 + 1], &
+ c__1, &c_b29, &t[i__ + 1 + i__ * t_dim1], &
+ c__1);
+ v[*n - *k + i__ + i__ * v_dim1] = vii;
+ } else {
+ vii = v[i__ + (*n - *k + i__) * v_dim1];
+ v[i__ + (*n - *k + i__) * v_dim1] = 1.;
+
+/*
+ T(i+1:k,i) :=
+ - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
+*/
+
+ i__1 = *k - i__;
+ i__2 = *n - *k + i__;
+ d__1 = -tau[i__];
+ dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ +
+ 1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, &
+ c_b29, &t[i__ + 1 + i__ * t_dim1], &c__1);
+ v[i__ + (*n - *k + i__) * v_dim1] = vii;
+ }
+
+/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
+
+ i__1 = *k - i__;
+ dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
+ + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
+ t_dim1], &c__1)
+ ;
+ }
+ t[i__ + i__ * t_dim1] = tau[i__];
+ }
+/* L40: */
+ }
+ }
+ return 0;
+
+/* End of DLARFT */
+
+} /* dlarft_ */
+
+/* Subroutine */ int dlarfx_(char *side, integer *m, integer *n, doublereal *
+ v, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, i__1;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer j;
+ static doublereal t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4, v5,
+ v6, v7, v8, v9, t10, v10, sum;
+ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLARFX applies a real elementary reflector H to a real m by n
+ matrix C, from either the left or the right. H is represented in the
+ form
+
+ H = I - tau * v * v'
+
+ where tau is a real scalar and v is a real vector.
+
+ If tau = 0, then H is taken to be the unit matrix
+
+ This version uses inline code if H has order < 11.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': form H * C
+ = 'R': form C * H
+
+ M (input) INTEGER
+ The number of rows of the matrix C.
+
+ N (input) INTEGER
+ The number of columns of the matrix C.
+
+ V (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
+ or (N) if SIDE = 'R'
+ The vector v in the representation of H.
+
+ TAU (input) DOUBLE PRECISION
+ The value tau in the representation of H.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by the matrix H * C if SIDE = 'L',
+ or C * H if SIDE = 'R'.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDA >= (1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (N) if SIDE = 'L'
+ or (M) if SIDE = 'R'
+ WORK is not referenced if H has order < 11.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --v;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ if (*tau == 0.) {
+ return 0;
+ }
+ if (lsame_(side, "L")) {
+
+/* Form H * C, where H has order m. */
+
+ switch (*m) {
+ case 1: goto L10;
+ case 2: goto L30;
+ case 3: goto L50;
+ case 4: goto L70;
+ case 5: goto L90;
+ case 6: goto L110;
+ case 7: goto L130;
+ case 8: goto L150;
+ case 9: goto L170;
+ case 10: goto L190;
+ }
+
+/*
+ Code for general M
+
+ w := C'*v
+*/
+
+ dgemv_("Transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1], &c__1, &
+ c_b29, &work[1], &c__1);
+
+/* C := C - tau * v * w' */
+
+ d__1 = -(*tau);
+ dger_(m, n, &d__1, &v[1], &c__1, &work[1], &c__1, &c__[c_offset], ldc)
+ ;
+ goto L410;
+L10:
+
+/* Special code for 1 x 1 Householder */
+
+ t1 = 1. - *tau * v[1] * v[1];
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ c__[j * c_dim1 + 1] = t1 * c__[j * c_dim1 + 1];
+/* L20: */
+ }
+ goto L410;
+L30:
+
+/* Special code for 2 x 2 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+/* L40: */
+ }
+ goto L410;
+L50:
+
+/* Special code for 3 x 3 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+/* L60: */
+ }
+ goto L410;
+L70:
+
+/* Special code for 4 x 4 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+/* L80: */
+ }
+ goto L410;
+L90:
+
+/* Special code for 5 x 5 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+/* L100: */
+ }
+ goto L410;
+L110:
+
+/* Special code for 6 x 6 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+ c__[j * c_dim1 + 6] -= sum * t6;
+/* L120: */
+ }
+ goto L410;
+L130:
+
+/* Special code for 7 x 7 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
+ c_dim1 + 7];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+ c__[j * c_dim1 + 6] -= sum * t6;
+ c__[j * c_dim1 + 7] -= sum * t7;
+/* L140: */
+ }
+ goto L410;
+L150:
+
+/* Special code for 8 x 8 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
+ c_dim1 + 7] + v8 * c__[j * c_dim1 + 8];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+ c__[j * c_dim1 + 6] -= sum * t6;
+ c__[j * c_dim1 + 7] -= sum * t7;
+ c__[j * c_dim1 + 8] -= sum * t8;
+/* L160: */
+ }
+ goto L410;
+L170:
+
+/* Special code for 9 x 9 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ v9 = v[9];
+ t9 = *tau * v9;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
+ c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
+ c_dim1 + 9];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+ c__[j * c_dim1 + 6] -= sum * t6;
+ c__[j * c_dim1 + 7] -= sum * t7;
+ c__[j * c_dim1 + 8] -= sum * t8;
+ c__[j * c_dim1 + 9] -= sum * t9;
+/* L180: */
+ }
+ goto L410;
+L190:
+
+/* Special code for 10 x 10 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ v9 = v[9];
+ t9 = *tau * v9;
+ v10 = v[10];
+ t10 = *tau * v10;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
+ c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
+ j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
+ c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
+ c_dim1 + 9] + v10 * c__[j * c_dim1 + 10];
+ c__[j * c_dim1 + 1] -= sum * t1;
+ c__[j * c_dim1 + 2] -= sum * t2;
+ c__[j * c_dim1 + 3] -= sum * t3;
+ c__[j * c_dim1 + 4] -= sum * t4;
+ c__[j * c_dim1 + 5] -= sum * t5;
+ c__[j * c_dim1 + 6] -= sum * t6;
+ c__[j * c_dim1 + 7] -= sum * t7;
+ c__[j * c_dim1 + 8] -= sum * t8;
+ c__[j * c_dim1 + 9] -= sum * t9;
+ c__[j * c_dim1 + 10] -= sum * t10;
+/* L200: */
+ }
+ goto L410;
+ } else {
+
+/* Form C * H, where H has order n. */
+
+ switch (*n) {
+ case 1: goto L210;
+ case 2: goto L230;
+ case 3: goto L250;
+ case 4: goto L270;
+ case 5: goto L290;
+ case 6: goto L310;
+ case 7: goto L330;
+ case 8: goto L350;
+ case 9: goto L370;
+ case 10: goto L390;
+ }
+
+/*
+ Code for general N
+
+ w := C * v
+*/
+
+ dgemv_("No transpose", m, n, &c_b15, &c__[c_offset], ldc, &v[1], &
+ c__1, &c_b29, &work[1], &c__1);
+
+/* C := C - tau * w * v' */
+
+ d__1 = -(*tau);
+ dger_(m, n, &d__1, &work[1], &c__1, &v[1], &c__1, &c__[c_offset], ldc)
+ ;
+ goto L410;
+L210:
+
+/* Special code for 1 x 1 Householder */
+
+ t1 = 1. - *tau * v[1] * v[1];
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ c__[j + c_dim1] = t1 * c__[j + c_dim1];
+/* L220: */
+ }
+ goto L410;
+L230:
+
+/* Special code for 2 x 2 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+/* L240: */
+ }
+ goto L410;
+L250:
+
+/* Special code for 3 x 3 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+/* L260: */
+ }
+ goto L410;
+L270:
+
+/* Special code for 4 x 4 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+/* L280: */
+ }
+ goto L410;
+L290:
+
+/* Special code for 5 x 5 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+/* L300: */
+ }
+ goto L410;
+L310:
+
+/* Special code for 6 x 6 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+ c__[j + c_dim1 * 6] -= sum * t6;
+/* L320: */
+ }
+ goto L410;
+L330:
+
+/* Special code for 7 x 7 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
+ c__[j + c_dim1 * 7];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+ c__[j + c_dim1 * 6] -= sum * t6;
+ c__[j + c_dim1 * 7] -= sum * t7;
+/* L340: */
+ }
+ goto L410;
+L350:
+
+/* Special code for 8 x 8 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
+ c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+ c__[j + c_dim1 * 6] -= sum * t6;
+ c__[j + c_dim1 * 7] -= sum * t7;
+ c__[j + ((c_dim1) << (3))] -= sum * t8;
+/* L360: */
+ }
+ goto L410;
+L370:
+
+/* Special code for 9 x 9 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ v9 = v[9];
+ t9 = *tau * v9;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
+ c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))] +
+ v9 * c__[j + c_dim1 * 9];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+ c__[j + c_dim1 * 6] -= sum * t6;
+ c__[j + c_dim1 * 7] -= sum * t7;
+ c__[j + ((c_dim1) << (3))] -= sum * t8;
+ c__[j + c_dim1 * 9] -= sum * t9;
+/* L380: */
+ }
+ goto L410;
+L390:
+
+/* Special code for 10 x 10 Householder */
+
+ v1 = v[1];
+ t1 = *tau * v1;
+ v2 = v[2];
+ t2 = *tau * v2;
+ v3 = v[3];
+ t3 = *tau * v3;
+ v4 = v[4];
+ t4 = *tau * v4;
+ v5 = v[5];
+ t5 = *tau * v5;
+ v6 = v[6];
+ t6 = *tau * v6;
+ v7 = v[7];
+ t7 = *tau * v7;
+ v8 = v[8];
+ t8 = *tau * v8;
+ v9 = v[9];
+ t9 = *tau * v9;
+ v10 = v[10];
+ t10 = *tau * v10;
+ i__1 = *m;
+ for (j = 1; j <= i__1; ++j) {
+ sum = v1 * c__[j + c_dim1] + v2 * c__[j + ((c_dim1) << (1))] + v3
+ * c__[j + c_dim1 * 3] + v4 * c__[j + ((c_dim1) << (2))] +
+ v5 * c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 *
+ c__[j + c_dim1 * 7] + v8 * c__[j + ((c_dim1) << (3))] +
+ v9 * c__[j + c_dim1 * 9] + v10 * c__[j + c_dim1 * 10];
+ c__[j + c_dim1] -= sum * t1;
+ c__[j + ((c_dim1) << (1))] -= sum * t2;
+ c__[j + c_dim1 * 3] -= sum * t3;
+ c__[j + ((c_dim1) << (2))] -= sum * t4;
+ c__[j + c_dim1 * 5] -= sum * t5;
+ c__[j + c_dim1 * 6] -= sum * t6;
+ c__[j + c_dim1 * 7] -= sum * t7;
+ c__[j + ((c_dim1) << (3))] -= sum * t8;
+ c__[j + c_dim1 * 9] -= sum * t9;
+ c__[j + c_dim1 * 10] -= sum * t10;
+/* L400: */
+ }
+ goto L410;
+ }
+L410:
+ return 0;
+
+/* End of DLARFX */
+
+} /* dlarfx_ */
+
+/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
+ doublereal *sn, doublereal *r__)
+{
+ /* Initialized data */
+
+ static logical first = TRUE_;
+
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal f1, g1, eps, scale;
+ static integer count;
+ static doublereal safmn2, safmx2;
+
+ static doublereal safmin;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLARTG generate a plane rotation so that
+
+ [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
+ [ -SN CS ] [ G ] [ 0 ]
+
+ This is a slower, more accurate version of the BLAS1 routine DROTG,
+ with the following other differences:
+ F and G are unchanged on return.
+ If G=0, then CS=1 and SN=0.
+ If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
+ floating point operations (saves work in DBDSQR when
+ there are zeros on the diagonal).
+
+ If F exceeds G in magnitude, CS will be positive.
+
+ Arguments
+ =========
+
+ F (input) DOUBLE PRECISION
+ The first component of vector to be rotated.
+
+ G (input) DOUBLE PRECISION
+ The second component of vector to be rotated.
+
+ CS (output) DOUBLE PRECISION
+ The cosine of the rotation.
+
+ SN (output) DOUBLE PRECISION
+ The sine of the rotation.
+
+ R (output) DOUBLE PRECISION
+ The nonzero component of the rotated vector.
+
+ =====================================================================
+*/
+
+
+ if (first) {
+ first = FALSE_;
+ safmin = SAFEMINIMUM;
+ eps = EPSILON;
+ d__1 = BASE;
+ i__1 = (integer) (log(safmin / eps) / log(BASE) /
+ 2.);
+ safmn2 = pow_di(&d__1, &i__1);
+ safmx2 = 1. / safmn2;
+ }
+ if (*g == 0.) {
+ *cs = 1.;
+ *sn = 0.;
+ *r__ = *f;
+ } else if (*f == 0.) {
+ *cs = 0.;
+ *sn = 1.;
+ *r__ = *g;
+ } else {
+ f1 = *f;
+ g1 = *g;
+/* Computing MAX */
+ d__1 = abs(f1), d__2 = abs(g1);
+ scale = max(d__1,d__2);
+ if (scale >= safmx2) {
+ count = 0;
+L10:
+ ++count;
+ f1 *= safmn2;
+ g1 *= safmn2;
+/* Computing MAX */
+ d__1 = abs(f1), d__2 = abs(g1);
+ scale = max(d__1,d__2);
+ if (scale >= safmx2) {
+ goto L10;
+ }
+/* Computing 2nd power */
+ d__1 = f1;
+/* Computing 2nd power */
+ d__2 = g1;
+ *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
+ *cs = f1 / *r__;
+ *sn = g1 / *r__;
+ i__1 = count;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ *r__ *= safmx2;
+/* L20: */
+ }
+ } else if (scale <= safmn2) {
+ count = 0;
+L30:
+ ++count;
+ f1 *= safmx2;
+ g1 *= safmx2;
+/* Computing MAX */
+ d__1 = abs(f1), d__2 = abs(g1);
+ scale = max(d__1,d__2);
+ if (scale <= safmn2) {
+ goto L30;
+ }
+/* Computing 2nd power */
+ d__1 = f1;
+/* Computing 2nd power */
+ d__2 = g1;
+ *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
+ *cs = f1 / *r__;
+ *sn = g1 / *r__;
+ i__1 = count;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ *r__ *= safmn2;
+/* L40: */
+ }
+ } else {
+/* Computing 2nd power */
+ d__1 = f1;
+/* Computing 2nd power */
+ d__2 = g1;
+ *r__ = sqrt(d__1 * d__1 + d__2 * d__2);
+ *cs = f1 / *r__;
+ *sn = g1 / *r__;
+ }
+ if ((abs(*f) > abs(*g) && *cs < 0.)) {
+ *cs = -(*cs);
+ *sn = -(*sn);
+ *r__ = -(*r__);
+ }
+ }
+ return 0;
+
+/* End of DLARTG */
+
+} /* dlartg_ */
+
+/* Subroutine */ int dlas2_(doublereal *f, doublereal *g, doublereal *h__,
+ doublereal *ssmin, doublereal *ssmax)
+{
+ /* System generated locals */
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal c__, fa, ga, ha, as, at, au, fhmn, fhmx;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DLAS2 computes the singular values of the 2-by-2 matrix
+ [ F G ]
+ [ 0 H ].
+ On return, SSMIN is the smaller singular value and SSMAX is the
+ larger singular value.
+
+ Arguments
+ =========
+
+ F (input) DOUBLE PRECISION
+ The (1,1) element of the 2-by-2 matrix.
+
+ G (input) DOUBLE PRECISION
+ The (1,2) element of the 2-by-2 matrix.
+
+ H (input) DOUBLE PRECISION
+ The (2,2) element of the 2-by-2 matrix.
+
+ SSMIN (output) DOUBLE PRECISION
+ The smaller singular value.
+
+ SSMAX (output) DOUBLE PRECISION
+ The larger singular value.
+
+ Further Details
+ ===============
+
+ Barring over/underflow, all output quantities are correct to within
+ a few units in the last place (ulps), even in the absence of a guard
+ digit in addition/subtraction.
+
+ In IEEE arithmetic, the code works correctly if one matrix element is
+ infinite.
+
+ Overflow will not occur unless the largest singular value itself
+ overflows, or is within a few ulps of overflow. (On machines with
+ partial overflow, like the Cray, overflow may occur if the largest
+ singular value is within a factor of 2 of overflow.)
+
+ Underflow is harmless if underflow is gradual. Otherwise, results
+ may correspond to a matrix modified by perturbations of size near
+ the underflow threshold.
+
+ ====================================================================
+*/
+
+
+ fa = abs(*f);
+ ga = abs(*g);
+ ha = abs(*h__);
+ fhmn = min(fa,ha);
+ fhmx = max(fa,ha);
+ if (fhmn == 0.) {
+ *ssmin = 0.;
+ if (fhmx == 0.) {
+ *ssmax = ga;
+ } else {
+/* Computing 2nd power */
+ d__1 = min(fhmx,ga) / max(fhmx,ga);
+ *ssmax = max(fhmx,ga) * sqrt(d__1 * d__1 + 1.);
+ }
+ } else {
+ if (ga < fhmx) {
+ as = fhmn / fhmx + 1.;
+ at = (fhmx - fhmn) / fhmx;
+/* Computing 2nd power */
+ d__1 = ga / fhmx;
+ au = d__1 * d__1;
+ c__ = 2. / (sqrt(as * as + au) + sqrt(at * at + au));
+ *ssmin = fhmn * c__;
+ *ssmax = fhmx / c__;
+ } else {
+ au = fhmx / ga;
+ if (au == 0.) {
+
+/*
+ Avoid possible harmful underflow if exponent range
+ asymmetric (true SSMIN may not underflow even if
+ AU underflows)
+*/
+
+ *ssmin = fhmn * fhmx / ga;
+ *ssmax = ga;
+ } else {
+ as = fhmn / fhmx + 1.;
+ at = (fhmx - fhmn) / fhmx;
+/* Computing 2nd power */
+ d__1 = as * au;
+/* Computing 2nd power */
+ d__2 = at * au;
+ c__ = 1. / (sqrt(d__1 * d__1 + 1.) + sqrt(d__2 * d__2 + 1.));
+ *ssmin = fhmn * c__ * au;
+ *ssmin += *ssmin;
+ *ssmax = ga / (c__ + c__);
+ }
+ }
+ }
+ return 0;
+
+/* End of DLAS2 */
+
+} /* dlas2_ */
+
+/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku,
+ doublereal *cfrom, doublereal *cto, integer *m, integer *n,
+ doublereal *a, integer *lda, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+
+ /* Local variables */
+ static integer i__, j, k1, k2, k3, k4;
+ static doublereal mul, cto1;
+ static logical done;
+ static doublereal ctoc;
+ extern logical lsame_(char *, char *);
+ static integer itype;
+ static doublereal cfrom1;
+
+ static doublereal cfromc;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal bignum, smlnum;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DLASCL multiplies the M by N real matrix A by the real scalar
+ CTO/CFROM. This is done without over/underflow as long as the final
+ result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
+ A may be full, upper triangular, lower triangular, upper Hessenberg,
+ or banded.
+
+ Arguments
+ =========
+
+ TYPE (input) CHARACTER*1
+ TYPE indices the storage type of the input matrix.
+ = 'G': A is a full matrix.
+ = 'L': A is a lower triangular matrix.
+ = 'U': A is an upper triangular matrix.
+ = 'H': A is an upper Hessenberg matrix.
+ = 'B': A is a symmetric band matrix with lower bandwidth KL
+ and upper bandwidth KU and with the only the lower
+ half stored.
+ = 'Q': A is a symmetric band matrix with lower bandwidth KL
+ and upper bandwidth KU and with the only the upper
+ half stored.
+ = 'Z': A is a band matrix with lower bandwidth KL and upper
+ bandwidth KU.
+
+ KL (input) INTEGER
+ The lower bandwidth of A. Referenced only if TYPE = 'B',
+ 'Q' or 'Z'.
+
+ KU (input) INTEGER
+ The upper bandwidth of A. Referenced only if TYPE = 'B',
+ 'Q' or 'Z'.
+
+ CFROM (input) DOUBLE PRECISION
+ CTO (input) DOUBLE PRECISION
+ The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
+ without over/underflow if the final result CTO*A(I,J)/CFROM
+ can be represented without over/underflow. CFROM must be
+ nonzero.
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
+ The matrix to be multiplied by CTO/CFROM. See TYPE for the
+ storage type.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ INFO (output) INTEGER
+ 0 - successful exit
+ <0 - if INFO = -i, the i-th argument had an illegal value.
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+
+ if (lsame_(type__, "G")) {
+ itype = 0;
+ } else if (lsame_(type__, "L")) {
+ itype = 1;
+ } else if (lsame_(type__, "U")) {
+ itype = 2;
+ } else if (lsame_(type__, "H")) {
+ itype = 3;
+ } else if (lsame_(type__, "B")) {
+ itype = 4;
+ } else if (lsame_(type__, "Q")) {
+ itype = 5;
+ } else if (lsame_(type__, "Z")) {
+ itype = 6;
+ } else {
+ itype = -1;
+ }
+
+ if (itype == -1) {
+ *info = -1;
+ } else if (*cfrom == 0.) {
+ *info = -4;
+ } else if (*m < 0) {
+ *info = -6;
+ } else if (*n < 0 || (itype == 4 && *n != *m) || (itype == 5 && *n != *m))
+ {
+ *info = -7;
+ } else if ((itype <= 3 && *lda < max(1,*m))) {
+ *info = -9;
+ } else if (itype >= 4) {
+/* Computing MAX */
+ i__1 = *m - 1;
+ if (*kl < 0 || *kl > max(i__1,0)) {
+ *info = -2;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = *n - 1;
+ if (*ku < 0 || *ku > max(i__1,0) || ((itype == 4 || itype == 5) &&
+ *kl != *ku)) {
+ *info = -3;
+ } else if ((itype == 4 && *lda < *kl + 1) || (itype == 5 && *lda <
+ *ku + 1) || (itype == 6 && *lda < ((*kl) << (1)) + *ku +
+ 1)) {
+ *info = -9;
+ }
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASCL", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *m == 0) {
+ return 0;
+ }
+
+/* Get machine parameters */
+
+ smlnum = SAFEMINIMUM;
+ bignum = 1. / smlnum;
+
+ cfromc = *cfrom;
+ ctoc = *cto;
+
+L10:
+ cfrom1 = cfromc * smlnum;
+ cto1 = ctoc / bignum;
+ if ((abs(cfrom1) > abs(ctoc) && ctoc != 0.)) {
+ mul = smlnum;
+ done = FALSE_;
+ cfromc = cfrom1;
+ } else if (abs(cto1) > abs(cfromc)) {
+ mul = bignum;
+ done = FALSE_;
+ ctoc = cto1;
+ } else {
+ mul = ctoc / cfromc;
+ done = TRUE_;
+ }
+
+ if (itype == 0) {
+
+/* Full matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L20: */
+ }
+/* L30: */
+ }
+
+ } else if (itype == 1) {
+
+/* Lower triangular matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L40: */
+ }
+/* L50: */
+ }
+
+ } else if (itype == 2) {
+
+/* Upper triangular matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(j,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L60: */
+ }
+/* L70: */
+ }
+
+ } else if (itype == 3) {
+
+/* Upper Hessenberg matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = j + 1;
+ i__2 = min(i__3,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L80: */
+ }
+/* L90: */
+ }
+
+ } else if (itype == 4) {
+
+/* Lower half of a symmetric band matrix */
+
+ k3 = *kl + 1;
+ k4 = *n + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = k3, i__4 = k4 - j;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L100: */
+ }
+/* L110: */
+ }
+
+ } else if (itype == 5) {
+
+/* Upper half of a symmetric band matrix */
+
+ k1 = *ku + 2;
+ k3 = *ku + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__2 = k1 - j;
+ i__3 = k3;
+ for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L120: */
+ }
+/* L130: */
+ }
+
+ } else if (itype == 6) {
+
+/* Band matrix */
+
+ k1 = *kl + *ku + 2;
+ k2 = *kl + 1;
+ k3 = ((*kl) << (1)) + *ku + 1;
+ k4 = *kl + *ku + 1 + *m;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__3 = k1 - j;
+/* Computing MIN */
+ i__4 = k3, i__5 = k4 - j;
+ i__2 = min(i__4,i__5);
+ for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] *= mul;
+/* L140: */
+ }
+/* L150: */
+ }
+
+ }
+
+ if (! done) {
+ goto L10;
+ }
+
+ return 0;
+
+/* End of DLASCL */
+
+} /* dlascl_ */
+
+/* Subroutine */ int dlasd0_(integer *n, integer *sqre, doublereal *d__,
+ doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *
+ ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *
+ info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
+
+ /* Builtin functions */
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ static integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf,
+ iwk, lvl, ndb1, nlp1, nrp1;
+ static doublereal beta;
+ static integer idxq, nlvl;
+ static doublereal alpha;
+ static integer inode, ndiml, idxqc, ndimr, itemp, sqrei;
+ extern /* Subroutine */ int dlasd1_(integer *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, integer *, integer *, doublereal *,
+ integer *), dlasdq_(char *, integer *, integer *, integer *,
+ integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlasdt_(integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *), xerbla_(
+ char *, integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ Using a divide and conquer approach, DLASD0 computes the singular
+ value decomposition (SVD) of a real upper bidiagonal N-by-M
+ matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
+ The algorithm computes orthogonal matrices U and VT such that
+ B = U * S * VT. The singular values S are overwritten on D.
+
+ A related subroutine, DLASDA, computes only the singular values,
+ and optionally, the singular vectors in compact form.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ On entry, the row dimension of the upper bidiagonal matrix.
+ This is also the dimension of the main diagonal array D.
+
+ SQRE (input) INTEGER
+ Specifies the column dimension of the bidiagonal matrix.
+ = 0: The bidiagonal matrix has column dimension M = N;
+ = 1: The bidiagonal matrix has column dimension M = N+1;
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry D contains the main diagonal of the bidiagonal
+ matrix.
+ On exit D, if INFO = 0, contains its singular values.
+
+ E (input) DOUBLE PRECISION array, dimension (M-1)
+ Contains the subdiagonal entries of the bidiagonal matrix.
+ On exit, E has been destroyed.
+
+ U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
+ On exit, U contains the left singular vectors.
+
+ LDU (input) INTEGER
+ On entry, leading dimension of U.
+
+ VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
+ On exit, VT' contains the right singular vectors.
+
+ LDVT (input) INTEGER
+ On entry, leading dimension of VT.
+
+ SMLSIZ (input) INTEGER
+ On entry, maximum size of the subproblems at the
+ bottom of the computation tree.
+
+ IWORK INTEGER work array.
+ Dimension must be at least (8 * N)
+
+ WORK DOUBLE PRECISION work array.
+ Dimension must be at least (3 * M**2 + 2 * M)
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ --iwork;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*n < 0) {
+ *info = -1;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -2;
+ }
+
+ m = *n + *sqre;
+
+ if (*ldu < *n) {
+ *info = -6;
+ } else if (*ldvt < m) {
+ *info = -8;
+ } else if (*smlsiz < 3) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD0", &i__1);
+ return 0;
+ }
+
+/* If the input matrix is too small, call DLASDQ to find the SVD. */
+
+ if (*n <= *smlsiz) {
+ dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset],
+ ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);
+ return 0;
+ }
+
+/* Set up the computation tree. */
+
+ inode = 1;
+ ndiml = inode + *n;
+ ndimr = ndiml + *n;
+ idxq = ndimr + *n;
+ iwk = idxq + *n;
+ dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
+ smlsiz);
+
+/*
+ For the nodes on bottom level of the tree, solve
+ their subproblems by DLASDQ.
+*/
+
+ ndb1 = (nd + 1) / 2;
+ ncc = 0;
+ i__1 = nd;
+ for (i__ = ndb1; i__ <= i__1; ++i__) {
+
+/*
+ IC : center row of each node
+ NL : number of rows of left subproblem
+ NR : number of rows of right subproblem
+ NLF: starting row of the left subproblem
+ NRF: starting row of the right subproblem
+*/
+
+ i1 = i__ - 1;
+ ic = iwork[inode + i1];
+ nl = iwork[ndiml + i1];
+ nlp1 = nl + 1;
+ nr = iwork[ndimr + i1];
+ nrp1 = nr + 1;
+ nlf = ic - nl;
+ nrf = ic + 1;
+ sqrei = 1;
+ dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[
+ nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[
+ nlf + nlf * u_dim1], ldu, &work[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+ itemp = idxq + nlf - 2;
+ i__2 = nl;
+ for (j = 1; j <= i__2; ++j) {
+ iwork[itemp + j] = j;
+/* L10: */
+ }
+ if (i__ == nd) {
+ sqrei = *sqre;
+ } else {
+ sqrei = 1;
+ }
+ nrp1 = nr + sqrei;
+ dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[
+ nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[
+ nrf + nrf * u_dim1], ldu, &work[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+ itemp = idxq + ic;
+ i__2 = nr;
+ for (j = 1; j <= i__2; ++j) {
+ iwork[itemp + j - 1] = j;
+/* L20: */
+ }
+/* L30: */
+ }
+
+/* Now conquer each subproblem bottom-up. */
+
+ for (lvl = nlvl; lvl >= 1; --lvl) {
+
+/*
+ Find the first node LF and last node LL on the
+ current level LVL.
+*/
+
+ if (lvl == 1) {
+ lf = 1;
+ ll = 1;
+ } else {
+ i__1 = lvl - 1;
+ lf = pow_ii(&c__2, &i__1);
+ ll = ((lf) << (1)) - 1;
+ }
+ i__1 = ll;
+ for (i__ = lf; i__ <= i__1; ++i__) {
+ im1 = i__ - 1;
+ ic = iwork[inode + im1];
+ nl = iwork[ndiml + im1];
+ nr = iwork[ndimr + im1];
+ nlf = ic - nl;
+ if ((*sqre == 0 && i__ == ll)) {
+ sqrei = *sqre;
+ } else {
+ sqrei = 1;
+ }
+ idxqc = idxq + nlf - 1;
+ alpha = d__[ic];
+ beta = e[ic];
+ dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *
+ u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[
+ idxqc], &iwork[iwk], &work[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+
+ return 0;
+
+/* End of DLASD0 */
+
+} /* dlasd0_ */
+
+/* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre,
+ doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
+ integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
+ iwork, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2,
+ idxc, idxp, ldvt2;
+ extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *), dlasd3_(
+ integer *, integer *, integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, doublereal *, integer *),
+ dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
+ integer *, integer *, doublereal *, integer *, integer *),
+ dlamrg_(integer *, integer *, doublereal *, integer *, integer *,
+ integer *);
+ static integer isigma;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal orgnrm;
+ static integer coltyp;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
+ where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
+
+ A related subroutine DLASD7 handles the case in which the singular
+ values (and the singular vectors in factored form) are desired.
+
+ DLASD1 computes the SVD as follows:
+
+ ( D1(in) 0 0 0 )
+ B = U(in) * ( Z1' a Z2' b ) * VT(in)
+ ( 0 0 D2(in) 0 )
+
+ = U(out) * ( D(out) 0) * VT(out)
+
+ where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
+ with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
+ elsewhere; and the entry b is empty if SQRE = 0.
+
+ The left singular vectors of the original matrix are stored in U, and
+ the transpose of the right singular vectors are stored in VT, and the
+ singular values are in D. The algorithm consists of three stages:
+
+ The first stage consists of deflating the size of the problem
+ when there are multiple singular values or when there are zeros in
+ the Z vector. For each such occurence the dimension of the
+ secular equation problem is reduced by one. This stage is
+ performed by the routine DLASD2.
+
+ The second stage consists of calculating the updated
+ singular values. This is done by finding the square roots of the
+ roots of the secular equation via the routine DLASD4 (as called
+ by DLASD3). This routine also calculates the singular vectors of
+ the current problem.
+
+ The final stage consists of computing the updated singular vectors
+ directly using the updated singular values. The singular vectors
+ for the current problem are multiplied with the singular vectors
+ from the overall problem.
+
+ Arguments
+ =========
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has row dimension N = NL + NR + 1,
+ and column dimension M = N + SQRE.
+
+ D (input/output) DOUBLE PRECISION array,
+ dimension (N = NL+NR+1).
+ On entry D(1:NL,1:NL) contains the singular values of the
+ upper block; and D(NL+2:N) contains the singular values of
+ the lower block. On exit D(1:N) contains the singular values
+ of the modified matrix.
+
+ ALPHA (input) DOUBLE PRECISION
+ Contains the diagonal element associated with the added row.
+
+ BETA (input) DOUBLE PRECISION
+ Contains the off-diagonal element associated with the added
+ row.
+
+ U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
+ On entry U(1:NL, 1:NL) contains the left singular vectors of
+ the upper block; U(NL+2:N, NL+2:N) contains the left singular
+ vectors of the lower block. On exit U contains the left
+ singular vectors of the bidiagonal matrix.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= max( 1, N ).
+
+ VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
+ where M = N + SQRE.
+ On entry VT(1:NL+1, 1:NL+1)' contains the right singular
+ vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
+ the right singular vectors of the lower block. On exit
+ VT' contains the right singular vectors of the
+ bidiagonal matrix.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT. LDVT >= max( 1, M ).
+
+ IDXQ (output) INTEGER array, dimension(N)
+ This contains the permutation which will reintegrate the
+ subproblem just solved back into sorted order, i.e.
+ D( IDXQ( I = 1, N ) ) will be in ascending order.
+
+ IWORK (workspace) INTEGER array, dimension( 4 * N )
+
+ WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ --idxq;
+ --iwork;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -3;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD1", &i__1);
+ return 0;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+/*
+ The following values are for bookkeeping purposes only. They are
+ integer pointers which indicate the portion of the workspace
+ used by a particular array in DLASD2 and DLASD3.
+*/
+
+ ldu2 = n;
+ ldvt2 = m;
+
+ iz = 1;
+ isigma = iz + m;
+ iu2 = isigma + n;
+ ivt2 = iu2 + ldu2 * n;
+ iq = ivt2 + ldvt2 * m;
+
+ idx = 1;
+ idxc = idx + n;
+ coltyp = idxc + n;
+ idxp = coltyp + n;
+
+/*
+ Scale.
+
+ Computing MAX
+*/
+ d__1 = abs(*alpha), d__2 = abs(*beta);
+ orgnrm = max(d__1,d__2);
+ d__[*nl + 1] = 0.;
+ i__1 = n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
+ orgnrm = (d__1 = d__[i__], abs(d__1));
+ }
+/* L10: */
+ }
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &n, &c__1, &d__[1], &n, info);
+ *alpha /= orgnrm;
+ *beta /= orgnrm;
+
+/* Deflate singular values. */
+
+ dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
+ ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
+ work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
+ idxq[1], &iwork[coltyp], info);
+
+/* Solve Secular Equation and update singular vectors. */
+
+ ldq = k;
+ dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
+ u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
+ ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
+ if (*info != 0) {
+ return 0;
+ }
+
+/* Unscale. */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &n, &c__1, &d__[1], &n, info);
+
+/* Prepare the IDXQ sorting permutation. */
+
+ n1 = k;
+ n2 = n - k;
+ dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
+
+ return 0;
+
+/* End of DLASD1 */
+
+} /* dlasd1_ */
+
+/* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer
+ *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
+ beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
+ doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
+ integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
+ idxq, integer *coltyp, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
+ vt2_dim1, vt2_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static doublereal c__;
+ static integer i__, j, m, n;
+ static doublereal s;
+ static integer k2;
+ static doublereal z1;
+ static integer ct, jp;
+ static doublereal eps, tau, tol;
+ static integer psm[4], nlp1, nlp2, idxi, idxj;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer ctot[4], idxjp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer jprev;
+
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), dlacpy_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *), xerbla_(char *,
+ integer *);
+ static doublereal hlftol;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASD2 merges the two sets of singular values together into a single
+ sorted set. Then it tries to deflate the size of the problem.
+ There are two ways in which deflation can occur: when two or more
+ singular values are close together or if there is a tiny entry in the
+ Z vector. For each such occurrence the order of the related secular
+ equation problem is reduced by one.
+
+ DLASD2 is called from DLASD1.
+
+ Arguments
+ =========
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has N = NL + NR + 1 rows and
+ M = N + SQRE >= N columns.
+
+ K (output) INTEGER
+ Contains the dimension of the non-deflated matrix,
+ This is the order of the related secular equation. 1 <= K <=N.
+
+ D (input/output) DOUBLE PRECISION array, dimension(N)
+ On entry D contains the singular values of the two submatrices
+ to be combined. On exit D contains the trailing (N-K) updated
+ singular values (those which were deflated) sorted into
+ increasing order.
+
+ ALPHA (input) DOUBLE PRECISION
+ Contains the diagonal element associated with the added row.
+
+ BETA (input) DOUBLE PRECISION
+ Contains the off-diagonal element associated with the added
+ row.
+
+ U (input/output) DOUBLE PRECISION array, dimension(LDU,N)
+ On entry U contains the left singular vectors of two
+ submatrices in the two square blocks with corners at (1,1),
+ (NL, NL), and (NL+2, NL+2), (N,N).
+ On exit U contains the trailing (N-K) updated left singular
+ vectors (those which were deflated) in its last N-K columns.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= N.
+
+ Z (output) DOUBLE PRECISION array, dimension(N)
+ On exit Z contains the updating row vector in the secular
+ equation.
+
+ DSIGMA (output) DOUBLE PRECISION array, dimension (N)
+ Contains a copy of the diagonal elements (K-1 singular values
+ and one zero) in the secular equation.
+
+ U2 (output) DOUBLE PRECISION array, dimension(LDU2,N)
+ Contains a copy of the first K-1 left singular vectors which
+ will be used by DLASD3 in a matrix multiply (DGEMM) to solve
+ for the new left singular vectors. U2 is arranged into four
+ blocks. The first block contains a column with 1 at NL+1 and
+ zero everywhere else; the second block contains non-zero
+ entries only at and above NL; the third contains non-zero
+ entries only below NL+1; and the fourth is dense.
+
+ LDU2 (input) INTEGER
+ The leading dimension of the array U2. LDU2 >= N.
+
+ VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
+ On entry VT' contains the right singular vectors of two
+ submatrices in the two square blocks with corners at (1,1),
+ (NL+1, NL+1), and (NL+2, NL+2), (M,M).
+ On exit VT' contains the trailing (N-K) updated right singular
+ vectors (those which were deflated) in its last N-K columns.
+ In case SQRE =1, the last row of VT spans the right null
+ space.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT. LDVT >= M.
+
+ VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N)
+ VT2' contains a copy of the first K right singular vectors
+ which will be used by DLASD3 in a matrix multiply (DGEMM) to
+ solve for the new right singular vectors. VT2 is arranged into
+ three blocks. The first block contains a row that corresponds
+ to the special 0 diagonal element in SIGMA; the second block
+ contains non-zeros only at and before NL +1; the third block
+ contains non-zeros only at and after NL +2.
+
+ LDVT2 (input) INTEGER
+ The leading dimension of the array VT2. LDVT2 >= M.
+
+ IDXP (workspace) INTEGER array, dimension(N)
+ This will contain the permutation used to place deflated
+ values of D at the end of the array. On output IDXP(2:K)
+ points to the nondeflated D-values and IDXP(K+1:N)
+ points to the deflated singular values.
+
+ IDX (workspace) INTEGER array, dimension(N)
+ This will contain the permutation used to sort the contents of
+ D into ascending order.
+
+ IDXC (output) INTEGER array, dimension(N)
+ This will contain the permutation used to arrange the columns
+ of the deflated U matrix into three groups: the first group
+ contains non-zero entries only at and above NL, the second
+ contains non-zero entries only below NL+2, and the third is
+ dense.
+
+ COLTYP (workspace/output) INTEGER array, dimension(N)
+ As workspace, this will contain a label which will indicate
+ which of the following types a column in the U2 matrix or a
+ row in the VT2 matrix is:
+ 1 : non-zero in the upper half only
+ 2 : non-zero in the lower half only
+ 3 : dense
+ 4 : deflated
+
+ On exit, it is an array of dimension 4, with COLTYP(I) being
+ the dimension of the I-th type columns.
+
+ IDXQ (input) INTEGER array, dimension(N)
+ This contains the permutation which separately sorts the two
+ sub-problems in D into ascending order. Note that entries in
+ the first hlaf of this permutation must first be moved one
+ position backward; and entries in the second half
+ must first have NL+1 added to their values.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --z__;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ --dsigma;
+ u2_dim1 = *ldu2;
+ u2_offset = 1 + u2_dim1 * 1;
+ u2 -= u2_offset;
+ vt2_dim1 = *ldvt2;
+ vt2_offset = 1 + vt2_dim1 * 1;
+ vt2 -= vt2_offset;
+ --idxp;
+ --idx;
+ --idxc;
+ --idxq;
+ --coltyp;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if ((*sqre != 1 && *sqre != 0)) {
+ *info = -3;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+ if (*ldu < n) {
+ *info = -10;
+ } else if (*ldvt < m) {
+ *info = -12;
+ } else if (*ldu2 < n) {
+ *info = -15;
+ } else if (*ldvt2 < m) {
+ *info = -17;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD2", &i__1);
+ return 0;
+ }
+
+ nlp1 = *nl + 1;
+ nlp2 = *nl + 2;
+
+/*
+ Generate the first part of the vector Z; and move the singular
+ values in the first part of D one position backward.
+*/
+
+ z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
+ z__[1] = z1;
+ for (i__ = *nl; i__ >= 1; --i__) {
+ z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
+ d__[i__ + 1] = d__[i__];
+ idxq[i__ + 1] = idxq[i__] + 1;
+/* L10: */
+ }
+
+/* Generate the second part of the vector Z. */
+
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
+/* L20: */
+ }
+
+/* Initialize some reference arrays. */
+
+ i__1 = nlp1;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ coltyp[i__] = 1;
+/* L30: */
+ }
+ i__1 = n;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ coltyp[i__] = 2;
+/* L40: */
+ }
+
+/* Sort the singular values into increasing order */
+
+ i__1 = n;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ idxq[i__] += nlp1;
+/* L50: */
+ }
+
+/*
+ DSIGMA, IDXC, IDXC, and the first column of U2
+ are used as storage space.
+*/
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ dsigma[i__] = d__[idxq[i__]];
+ u2[i__ + u2_dim1] = z__[idxq[i__]];
+ idxc[i__] = coltyp[idxq[i__]];
+/* L60: */
+ }
+
+ dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ idxi = idx[i__] + 1;
+ d__[i__] = dsigma[idxi];
+ z__[i__] = u2[idxi + u2_dim1];
+ coltyp[i__] = idxc[idxi];
+/* L70: */
+ }
+
+/* Calculate the allowable deflation tolerance */
+
+ eps = EPSILON;
+/* Computing MAX */
+ d__1 = abs(*alpha), d__2 = abs(*beta);
+ tol = max(d__1,d__2);
+/* Computing MAX */
+ d__2 = (d__1 = d__[n], abs(d__1));
+ tol = eps * 8. * max(d__2,tol);
+
+/*
+ There are 2 kinds of deflation -- first a value in the z-vector
+ is small, second two (or more) singular values are very close
+ together (their difference is small).
+
+ If the value in the z-vector is small, we simply permute the
+ array so that the corresponding singular value is moved to the
+ end.
+
+ If two values in the D-vector are close, we perform a two-sided
+ rotation designed to make one of the corresponding z-vector
+ entries zero, and then permute the array so that the deflated
+ singular value is moved to the end.
+
+ If there are multiple singular values then the problem deflates.
+ Here the number of equal singular values are found. As each equal
+ singular value is found, an elementary reflector is computed to
+ rotate the corresponding singular subspace so that the
+ corresponding components of Z are zero in this new basis.
+*/
+
+ *k = 1;
+ k2 = n + 1;
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ if ((d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ coltyp[j] = 4;
+ if (j == n) {
+ goto L120;
+ }
+ } else {
+ jprev = j;
+ goto L90;
+ }
+/* L80: */
+ }
+L90:
+ j = jprev;
+L100:
+ ++j;
+ if (j > n) {
+ goto L110;
+ }
+ if ((d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ coltyp[j] = 4;
+ } else {
+
+/* Check if singular values are close enough to allow deflation. */
+
+ if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
+
+/* Deflation is possible. */
+
+ s = z__[jprev];
+ c__ = z__[j];
+
+/*
+ Find sqrt(a**2+b**2) without overflow or
+ destructive underflow.
+*/
+
+ tau = dlapy2_(&c__, &s);
+ c__ /= tau;
+ s = -s / tau;
+ z__[j] = tau;
+ z__[jprev] = 0.;
+
+/*
+ Apply back the Givens rotation to the left and right
+ singular vector matrices.
+*/
+
+ idxjp = idxq[idx[jprev] + 1];
+ idxj = idxq[idx[j] + 1];
+ if (idxjp <= nlp1) {
+ --idxjp;
+ }
+ if (idxj <= nlp1) {
+ --idxj;
+ }
+ drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
+ c__1, &c__, &s);
+ drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
+ c__, &s);
+ if (coltyp[j] != coltyp[jprev]) {
+ coltyp[j] = 3;
+ }
+ coltyp[jprev] = 4;
+ --k2;
+ idxp[k2] = jprev;
+ jprev = j;
+ } else {
+ ++(*k);
+ u2[*k + u2_dim1] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+ jprev = j;
+ }
+ }
+ goto L100;
+L110:
+
+/* Record the last singular value. */
+
+ ++(*k);
+ u2[*k + u2_dim1] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+
+L120:
+
+/*
+ Count up the total number of the various types of columns, then
+ form a permutation which positions the four column types into
+ four groups of uniform structure (although one or more of these
+ groups may be empty).
+*/
+
+ for (j = 1; j <= 4; ++j) {
+ ctot[j - 1] = 0;
+/* L130: */
+ }
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ ct = coltyp[j];
+ ++ctot[ct - 1];
+/* L140: */
+ }
+
+/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
+
+ psm[0] = 2;
+ psm[1] = ctot[0] + 2;
+ psm[2] = psm[1] + ctot[1];
+ psm[3] = psm[2] + ctot[2];
+
+/*
+ Fill out the IDXC array so that the permutation which it induces
+ will place all type-1 columns first, all type-2 columns next,
+ then all type-3's, and finally all type-4's, starting from the
+ second column. This applies similarly to the rows of VT.
+*/
+
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ ct = coltyp[jp];
+ idxc[psm[ct - 1]] = j;
+ ++psm[ct - 1];
+/* L150: */
+ }
+
+/*
+ Sort the singular values and corresponding singular vectors into
+ DSIGMA, U2, and VT2 respectively. The singular values/vectors
+ which were not deflated go into the first K slots of DSIGMA, U2,
+ and VT2 respectively, while those which were deflated go into the
+ last N - K slots, except that the first column/row will be treated
+ separately.
+*/
+
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ dsigma[j] = d__[jp];
+ idxj = idxq[idx[idxp[idxc[j]]] + 1];
+ if (idxj <= nlp1) {
+ --idxj;
+ }
+ dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
+ dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
+/* L160: */
+ }
+
+/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
+
+ dsigma[1] = 0.;
+ hlftol = tol / 2.;
+ if (abs(dsigma[2]) <= hlftol) {
+ dsigma[2] = hlftol;
+ }
+ if (m > n) {
+ z__[1] = dlapy2_(&z1, &z__[m]);
+ if (z__[1] <= tol) {
+ c__ = 1.;
+ s = 0.;
+ z__[1] = tol;
+ } else {
+ c__ = z1 / z__[1];
+ s = z__[m] / z__[1];
+ }
+ } else {
+ if (abs(z1) <= tol) {
+ z__[1] = tol;
+ } else {
+ z__[1] = z1;
+ }
+ }
+
+/* Move the rest of the updating row to Z. */
+
+ i__1 = *k - 1;
+ dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
+
+/*
+ Determine the first column of U2, the first row of VT2 and the
+ last row of VT.
+*/
+
+ dlaset_("A", &n, &c__1, &c_b29, &c_b29, &u2[u2_offset], ldu2);
+ u2[nlp1 + u2_dim1] = 1.;
+ if (m > n) {
+ i__1 = nlp1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
+ vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
+/* L170: */
+ }
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
+ vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
+/* L180: */
+ }
+ } else {
+ dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
+ }
+ if (m > n) {
+ dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
+ }
+
+/*
+ The deflated singular values and their corresponding vectors go
+ into the back of D, U, and V respectively.
+*/
+
+ if (n > *k) {
+ i__1 = n - *k;
+ dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
+ i__1 = n - *k;
+ dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
+ * u_dim1 + 1], ldu);
+ i__1 = n - *k;
+ dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
+ vt_dim1], ldvt);
+ }
+
+/* Copy CTOT into COLTYP for referencing in DLASD3. */
+
+ for (j = 1; j <= 4; ++j) {
+ coltyp[j] = ctot[j - 1];
+/* L190: */
+ }
+
+ return 0;
+
+/* End of DLASD2 */
+
+} /* dlasd2_ */
+
+/* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer
+ *k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma,
+ doublereal *u, integer *ldu, doublereal *u2, integer *ldu2,
+ doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2,
+ integer *idxc, integer *ctot, doublereal *z__, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
+ vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer i__, j, m, n, jc;
+ static doublereal rho;
+ static integer nlp1, nlp2, nrp1;
+ static doublereal temp;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ static integer ctemp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer ktemp;
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *), dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlacpy_(char *, integer *, integer
+ *, doublereal *, integer *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASD3 finds all the square roots of the roots of the secular
+ equation, as defined by the values in D and Z. It makes the
+ appropriate calls to DLASD4 and then updates the singular
+ vectors by matrix multiplication.
+
+ This code makes very mild assumptions about floating point
+ arithmetic. It will work on machines with a guard digit in
+ add/subtract, or on those binary machines without guard digits
+ which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
+ It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ DLASD3 is called from DLASD1.
+
+ Arguments
+ =========
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has N = NL + NR + 1 rows and
+ M = N + SQRE >= N columns.
+
+ K (input) INTEGER
+ The size of the secular equation, 1 =< K = < N.
+
+ D (output) DOUBLE PRECISION array, dimension(K)
+ On exit the square roots of the roots of the secular equation,
+ in ascending order.
+
+ Q (workspace) DOUBLE PRECISION array,
+ dimension at least (LDQ,K).
+
+ LDQ (input) INTEGER
+ The leading dimension of the array Q. LDQ >= K.
+
+ DSIGMA (input) DOUBLE PRECISION array, dimension(K)
+ The first K elements of this array contain the old roots
+ of the deflated updating problem. These are the poles
+ of the secular equation.
+
+ U (input) DOUBLE PRECISION array, dimension (LDU, N)
+ The last N - K columns of this matrix contain the deflated
+ left singular vectors.
+
+ LDU (input) INTEGER
+ The leading dimension of the array U. LDU >= N.
+
+ U2 (input) DOUBLE PRECISION array, dimension (LDU2, N)
+ The first K columns of this matrix contain the non-deflated
+ left singular vectors for the split problem.
+
+ LDU2 (input) INTEGER
+ The leading dimension of the array U2. LDU2 >= N.
+
+ VT (input) DOUBLE PRECISION array, dimension (LDVT, M)
+ The last M - K columns of VT' contain the deflated
+ right singular vectors.
+
+ LDVT (input) INTEGER
+ The leading dimension of the array VT. LDVT >= N.
+
+ VT2 (input) DOUBLE PRECISION array, dimension (LDVT2, N)
+ The first K columns of VT2' contain the non-deflated
+ right singular vectors for the split problem.
+
+ LDVT2 (input) INTEGER
+ The leading dimension of the array VT2. LDVT2 >= N.
+
+ IDXC (input) INTEGER array, dimension ( N )
+ The permutation used to arrange the columns of U (and rows of
+ VT) into three groups: the first group contains non-zero
+ entries only at and above (or before) NL +1; the second
+ contains non-zero entries only at and below (or after) NL+2;
+ and the third is dense. The first column of U and the row of
+ VT are treated separately, however.
+
+ The rows of the singular vectors found by DLASD4
+ must be likewise permuted before the matrix multiplies can
+ take place.
+
+ CTOT (input) INTEGER array, dimension ( 4 )
+ A count of the total number of the various types of columns
+ in U (or rows in VT), as described in IDXC. The fourth column
+ type is any column which has been deflated.
+
+ Z (input) DOUBLE PRECISION array, dimension (K)
+ The first K elements of this array contain the components
+ of the deflation-adjusted updating row vector.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1 * 1;
+ q -= q_offset;
+ --dsigma;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ u2_dim1 = *ldu2;
+ u2_offset = 1 + u2_dim1 * 1;
+ u2 -= u2_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ vt2_dim1 = *ldvt2;
+ vt2_offset = 1 + vt2_dim1 * 1;
+ vt2 -= vt2_offset;
+ --idxc;
+ --ctot;
+ --z__;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if ((*sqre != 1 && *sqre != 0)) {
+ *info = -3;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+ nlp1 = *nl + 1;
+ nlp2 = *nl + 2;
+
+ if (*k < 1 || *k > n) {
+ *info = -4;
+ } else if (*ldq < *k) {
+ *info = -7;
+ } else if (*ldu < n) {
+ *info = -10;
+ } else if (*ldu2 < n) {
+ *info = -12;
+ } else if (*ldvt < m) {
+ *info = -14;
+ } else if (*ldvt2 < m) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD3", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*k == 1) {
+ d__[1] = abs(z__[1]);
+ dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
+ if (z__[1] > 0.) {
+ dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
+ } else {
+ i__1 = n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ u[i__ + u_dim1] = -u2[i__ + u2_dim1];
+/* L10: */
+ }
+ }
+ return 0;
+ }
+
+/*
+ Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
+ be computed with high relative accuracy (barring over/underflow).
+ This is a problem on machines without a guard digit in
+ add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
+ The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
+ which on any of these machines zeros out the bottommost
+ bit of DSIGMA(I) if it is 1; this makes the subsequent
+ subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
+ occurs. On binary machines with a guard digit (almost all
+ machines) it does not change DSIGMA(I) at all. On hexadecimal
+ and decimal machines with a guard digit, it slightly
+ changes the bottommost bits of DSIGMA(I). It does not account
+ for hexadecimal or decimal machines without guard digits
+ (we know of none). We use a subroutine call to compute
+ 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
+ this code.
+*/
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
+/* L20: */
+ }
+
+/* Keep a copy of Z. */
+
+ dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
+
+/* Normalize Z. */
+
+ rho = dnrm2_(k, &z__[1], &c__1);
+ dlascl_("G", &c__0, &c__0, &rho, &c_b15, k, &c__1, &z__[1], k, info);
+ rho *= rho;
+
+/* Find the new singular values. */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
+ &vt[j * vt_dim1 + 1], info);
+
+/* If the zero finder fails, the computation is terminated. */
+
+ if (*info != 0) {
+ return 0;
+ }
+/* L30: */
+ }
+
+/* Compute updated Z. */
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
+ i__2 = i__ - 1;
+ for (j = 1; j <= i__2; ++j) {
+ z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
+ i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
+/* L40: */
+ }
+ i__2 = *k - 1;
+ for (j = i__; j <= i__2; ++j) {
+ z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
+ i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
+/* L50: */
+ }
+ d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
+ z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
+/* L60: */
+ }
+
+/*
+ Compute left singular vectors of the modified diagonal matrix,
+ and store related information for the right singular vectors.
+*/
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
+ vt_dim1 + 1];
+ u[i__ * u_dim1 + 1] = -1.;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
+ * vt_dim1];
+ u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
+/* L70: */
+ }
+ temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
+ q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ jc = idxc[j];
+ q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
+/* L80: */
+ }
+/* L90: */
+ }
+
+/* Update the left singular vector matrix. */
+
+ if (*k == 2) {
+ dgemm_("N", "N", &n, k, k, &c_b15, &u2[u2_offset], ldu2, &q[q_offset],
+ ldq, &c_b29, &u[u_offset], ldu);
+ goto L100;
+ }
+ if (ctot[1] > 0) {
+ dgemm_("N", "N", nl, k, &ctot[1], &c_b15, &u2[((u2_dim1) << (1)) + 1],
+ ldu2, &q[q_dim1 + 2], ldq, &c_b29, &u[u_dim1 + 1], ldu);
+ if (ctot[3] > 0) {
+ ktemp = ctot[1] + 2 + ctot[2];
+ dgemm_("N", "N", nl, k, &ctot[3], &c_b15, &u2[ktemp * u2_dim1 + 1]
+ , ldu2, &q[ktemp + q_dim1], ldq, &c_b15, &u[u_dim1 + 1],
+ ldu);
+ }
+ } else if (ctot[3] > 0) {
+ ktemp = ctot[1] + 2 + ctot[2];
+ dgemm_("N", "N", nl, k, &ctot[3], &c_b15, &u2[ktemp * u2_dim1 + 1],
+ ldu2, &q[ktemp + q_dim1], ldq, &c_b29, &u[u_dim1 + 1], ldu);
+ } else {
+ dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
+ }
+ dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
+ ktemp = ctot[1] + 2;
+ ctemp = ctot[2] + ctot[3];
+ dgemm_("N", "N", nr, k, &ctemp, &c_b15, &u2[nlp2 + ktemp * u2_dim1], ldu2,
+ &q[ktemp + q_dim1], ldq, &c_b29, &u[nlp2 + u_dim1], ldu);
+
+/* Generate the right singular vectors. */
+
+L100:
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
+ q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ jc = idxc[j];
+ q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
+/* L110: */
+ }
+/* L120: */
+ }
+
+/* Update the right singular vector matrix. */
+
+ if (*k == 2) {
+ dgemm_("N", "N", k, &m, k, &c_b15, &q[q_offset], ldq, &vt2[vt2_offset]
+ , ldvt2, &c_b29, &vt[vt_offset], ldvt);
+ return 0;
+ }
+ ktemp = ctot[1] + 1;
+ dgemm_("N", "N", k, &nlp1, &ktemp, &c_b15, &q[q_dim1 + 1], ldq, &vt2[
+ vt2_dim1 + 1], ldvt2, &c_b29, &vt[vt_dim1 + 1], ldvt);
+ ktemp = ctot[1] + 2 + ctot[2];
+ if (ktemp <= *ldvt2) {
+ dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b15, &q[ktemp * q_dim1 + 1],
+ ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b15, &vt[vt_dim1 + 1],
+ ldvt);
+ }
+
+ ktemp = ctot[1] + 1;
+ nrp1 = *nr + *sqre;
+ if (ktemp > 1) {
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
+/* L130: */
+ }
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
+/* L140: */
+ }
+ }
+ ctemp = ctot[2] + 1 + ctot[3];
+ dgemm_("N", "N", k, &nrp1, &ctemp, &c_b15, &q[ktemp * q_dim1 + 1], ldq, &
+ vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b29, &vt[nlp2 * vt_dim1 +
+ 1], ldvt);
+
+ return 0;
+
+/* End of DLASD3 */
+
+} /* dlasd3_ */
+
+/* Subroutine */ int dlasd4_(integer *n, integer *i__, doublereal *d__,
+ doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
+ sigma, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal a, b, c__;
+ static integer j;
+ static doublereal w, dd[3];
+ static integer ii;
+ static doublereal dw, zz[3];
+ static integer ip1;
+ static doublereal eta, phi, eps, tau, psi;
+ static integer iim1, iip1;
+ static doublereal dphi, dpsi;
+ static integer iter;
+ static doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq,
+ dtiip;
+ static integer niter;
+ static doublereal dtisq;
+ static logical swtch;
+ static doublereal dtnsq;
+ extern /* Subroutine */ int dlaed6_(integer *, logical *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *)
+ , dlasd5_(integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *);
+ static doublereal delsq2, dtnsq1;
+ static logical swtch3;
+
+ static logical orgati;
+ static doublereal erretm, dtipsq, rhoinv;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ This subroutine computes the square root of the I-th updated
+ eigenvalue of a positive symmetric rank-one modification to
+ a positive diagonal matrix whose entries are given as the squares
+ of the corresponding entries in the array d, and that
+
+ 0 <= D(i) < D(j) for i < j
+
+ and that RHO > 0. This is arranged by the calling routine, and is
+ no loss in generality. The rank-one modified system is thus
+
+ diag( D ) * diag( D ) + RHO * Z * Z_transpose.
+
+ where we assume the Euclidean norm of Z is 1.
+
+ The method consists of approximating the rational functions in the
+ secular equation by simpler interpolating rational functions.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The length of all arrays.
+
+ I (input) INTEGER
+ The index of the eigenvalue to be computed. 1 <= I <= N.
+
+ D (input) DOUBLE PRECISION array, dimension ( N )
+ The original eigenvalues. It is assumed that they are in
+ order, 0 <= D(I) < D(J) for I < J.
+
+ Z (input) DOUBLE PRECISION array, dimension ( N )
+ The components of the updating vector.
+
+ DELTA (output) DOUBLE PRECISION array, dimension ( N )
+ If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
+ component. If N = 1, then DELTA(1) = 1. The vector DELTA
+ contains the information necessary to construct the
+ (singular) eigenvectors.
+
+ RHO (input) DOUBLE PRECISION
+ The scalar in the symmetric updating formula.
+
+ SIGMA (output) DOUBLE PRECISION
+ The computed lambda_I, the I-th updated eigenvalue.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension ( N )
+ If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
+ component. If N = 1, then WORK( 1 ) = 1.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ > 0: if INFO = 1, the updating process failed.
+
+ Internal Parameters
+ ===================
+
+ Logical variable ORGATI (origin-at-i?) is used for distinguishing
+ whether D(i) or D(i+1) is treated as the origin.
+
+ ORGATI = .true. origin at i
+ ORGATI = .false. origin at i+1
+
+ Logical variable SWTCH3 (switch-for-3-poles?) is for noting
+ if we are working with THREE poles!
+
+ MAXIT is the maximum number of iterations allowed for each
+ eigenvalue.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ren-Cang Li, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+
+
+ Since this routine is called in an inner loop, we do no argument
+ checking.
+
+ Quick return for N=1 and 2.
+*/
+
+ /* Parameter adjustments */
+ --work;
+ --delta;
+ --z__;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ if (*n == 1) {
+
+/* Presumably, I=1 upon entry */
+
+ *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
+ delta[1] = 1.;
+ work[1] = 1.;
+ return 0;
+ }
+ if (*n == 2) {
+ dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
+ return 0;
+ }
+
+/* Compute machine epsilon */
+
+ eps = EPSILON;
+ rhoinv = 1. / *rho;
+
+/* The case I = N */
+
+ if (*i__ == *n) {
+
+/* Initialize some basic variables */
+
+ ii = *n - 1;
+ niter = 1;
+
+/* Calculate initial guess */
+
+ temp = *rho / 2.;
+
+/*
+ If ||Z||_2 is not one, then TEMP should be set to
+ RHO * ||Z||_2^2 / TWO
+*/
+
+ temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*n] + temp1;
+ delta[j] = d__[j] - d__[*n] - temp1;
+/* L10: */
+ }
+
+ psi = 0.;
+ i__1 = *n - 2;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / (delta[j] * work[j]);
+/* L20: */
+ }
+
+ c__ = rhoinv + psi;
+ w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
+ n] / (delta[*n] * work[*n]);
+
+ if (w <= 0.) {
+ temp1 = sqrt(d__[*n] * d__[*n] + *rho);
+ temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
+ n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] *
+ z__[*n] / *rho;
+
+/*
+ The following TAU is to approximate
+ SIGMA_n^2 - D( N )*D( N )
+*/
+
+ if (c__ <= temp) {
+ tau = *rho;
+ } else {
+ delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
+ a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
+ n];
+ b = z__[*n] * z__[*n] * delsq;
+ if (a < 0.) {
+ tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
+ }
+ }
+
+/*
+ It can be proved that
+ D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO
+*/
+
+ } else {
+ delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
+ a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
+ b = z__[*n] * z__[*n] * delsq;
+
+/*
+ The following TAU is to approximate
+ SIGMA_n^2 - D( N )*D( N )
+*/
+
+ if (a < 0.) {
+ tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
+ } else {
+ tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
+ }
+
+/*
+ It can be proved that
+ D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2
+*/
+
+ }
+
+/* The following ETA is to approximate SIGMA_n - D( N ) */
+
+ eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
+
+ *sigma = d__[*n] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] = d__[j] - d__[*i__] - eta;
+ work[j] = d__[j] + d__[*i__] + eta;
+/* L30: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (delta[j] * work[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L40: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (delta[*n] * work[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
+ + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ dtnsq1 = work[*n - 1] * delta[*n - 1];
+ dtnsq = work[*n] * delta[*n];
+ c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
+ a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
+ b = dtnsq * dtnsq1 * w;
+ if (c__ < 0.) {
+ c__ = abs(c__);
+ }
+ if (c__ == 0.) {
+ eta = *rho - *sigma * *sigma;
+ } else if (a >= 0.) {
+ eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
+ * 2.);
+ } else {
+ eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
+ );
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta > 0.) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = eta - dtnsq;
+ if (temp > *rho) {
+ eta = *rho + dtnsq;
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(eta + *sigma * *sigma);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+ work[j] += eta;
+/* L50: */
+ }
+
+ *sigma += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L60: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (work[*n] * delta[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
+ + dphi);
+
+ w = rhoinv + phi + psi;
+
+/* Main loop to update the values of the array DELTA */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 20; ++niter) {
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ dtnsq1 = work[*n - 1] * delta[*n - 1];
+ dtnsq = work[*n] * delta[*n];
+ c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
+ a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
+ b = dtnsq1 * dtnsq * w;
+ if (a >= 0.) {
+ eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ } else {
+ eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta > 0.) {
+ eta = -w / (dpsi + dphi);
+ }
+ temp = eta - dtnsq;
+ if (temp <= 0.) {
+ eta /= 2.;
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(eta + *sigma * *sigma);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ delta[j] -= eta;
+ work[j] += eta;
+/* L70: */
+ }
+
+ *sigma += eta;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = ii;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L80: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ temp = z__[*n] / (work[*n] * delta[*n]);
+ phi = z__[*n] * temp;
+ dphi = temp * temp;
+ erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
+ dpsi + dphi);
+
+ w = rhoinv + phi + psi;
+/* L90: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+ goto L240;
+
+/* End for the case I = N */
+
+ } else {
+
+/* The case for I < N */
+
+ niter = 1;
+ ip1 = *i__ + 1;
+
+/* Calculate initial guess */
+
+ delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
+ delsq2 = delsq / 2.;
+ temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*i__] + temp;
+ delta[j] = d__[j] - d__[*i__] - temp;
+/* L100: */
+ }
+
+ psi = 0.;
+ i__1 = *i__ - 1;
+ for (j = 1; j <= i__1; ++j) {
+ psi += z__[j] * z__[j] / (work[j] * delta[j]);
+/* L110: */
+ }
+
+ phi = 0.;
+ i__1 = *i__ + 2;
+ for (j = *n; j >= i__1; --j) {
+ phi += z__[j] * z__[j] / (work[j] * delta[j]);
+/* L120: */
+ }
+ c__ = rhoinv + psi + phi;
+ w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
+ ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
+
+ if (w > 0.) {
+
+/*
+ d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2
+
+ We choose d(i) as origin.
+*/
+
+ orgati = TRUE_;
+ sg2lb = 0.;
+ sg2ub = delsq2;
+ a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
+ b = z__[*i__] * z__[*i__] * delsq;
+ if (a > 0.) {
+ tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ } else {
+ tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ }
+
+/*
+ TAU now is an estimation of SIGMA^2 - D( I )^2. The
+ following, however, is the corresponding estimation of
+ SIGMA - D( I ).
+*/
+
+ eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
+ } else {
+
+/*
+ (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2
+
+ We choose d(i+1) as origin.
+*/
+
+ orgati = FALSE_;
+ sg2lb = -delsq2;
+ sg2ub = 0.;
+ a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
+ b = z__[ip1] * z__[ip1] * delsq;
+ if (a < 0.) {
+ tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
+ d__1))));
+ } else {
+ tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
+ (c__ * 2.);
+ }
+
+/*
+ TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The
+ following, however, is the corresponding estimation of
+ SIGMA - D( IP1 ).
+*/
+
+ eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau,
+ abs(d__1))));
+ }
+
+ if (orgati) {
+ ii = *i__;
+ *sigma = d__[*i__] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[*i__] + eta;
+ delta[j] = d__[j] - d__[*i__] - eta;
+/* L130: */
+ }
+ } else {
+ ii = *i__ + 1;
+ *sigma = d__[ip1] + eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] = d__[j] + d__[ip1] + eta;
+ delta[j] = d__[j] - d__[ip1] - eta;
+/* L140: */
+ }
+ }
+ iim1 = ii - 1;
+ iip1 = ii + 1;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L150: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L160: */
+ }
+
+ w = rhoinv + phi + psi;
+
+/*
+ W is the value of the secular function with
+ its ii-th element removed.
+*/
+
+ swtch3 = FALSE_;
+ if (orgati) {
+ if (w < 0.) {
+ swtch3 = TRUE_;
+ }
+ } else {
+ if (w > 0.) {
+ swtch3 = TRUE_;
+ }
+ }
+ if (ii == 1 || ii == *n) {
+ swtch3 = FALSE_;
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w += temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
+ abs(tau) * dw;
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+ if (w <= 0.) {
+ sg2lb = max(sg2lb,tau);
+ } else {
+ sg2ub = min(sg2ub,tau);
+ }
+
+/* Calculate the new step */
+
+ ++niter;
+ if (! swtch3) {
+ dtipsq = work[ip1] * delta[ip1];
+ dtisq = work[*i__] * delta[*i__];
+ if (orgati) {
+/* Computing 2nd power */
+ d__1 = z__[*i__] / dtisq;
+ c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
+ } else {
+/* Computing 2nd power */
+ d__1 = z__[ip1] / dtipsq;
+ c__ = w - dtisq * dw - delsq * (d__1 * d__1);
+ }
+ a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
+ b = dtipsq * dtisq * w;
+ if (c__ == 0.) {
+ if (a == 0.) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi +
+ dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
+ dphi);
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.) {
+ eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
+ c__ * 2.);
+ } else {
+ eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
+ d__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ dtiim = work[iim1] * delta[iim1];
+ dtiip = work[iip1] * delta[iip1];
+ temp = rhoinv + psi + phi;
+ if (orgati) {
+ temp1 = z__[iim1] / dtiim;
+ temp1 *= temp1;
+ c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
+ (d__[iim1] + d__[iip1]) * temp1;
+ zz[0] = z__[iim1] * z__[iim1];
+ if (dpsi < temp1) {
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
+ }
+ } else {
+ temp1 = z__[iip1] / dtiip;
+ temp1 *= temp1;
+ c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
+ (d__[iim1] + d__[iip1]) * temp1;
+ if (dphi < temp1) {
+ zz[0] = dtiim * dtiim * dpsi;
+ } else {
+ zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
+ }
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ zz[1] = z__[ii] * z__[ii];
+ dd[0] = dtiim;
+ dd[1] = delta[ii] * work[ii];
+ dd[2] = dtiip;
+ dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
+ if (*info != 0) {
+ goto L240;
+ }
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta >= 0.) {
+ eta = -w / dw;
+ }
+ if (orgati) {
+ temp1 = work[*i__] * delta[*i__];
+ temp = eta - temp1;
+ } else {
+ temp1 = work[ip1] * delta[ip1];
+ temp = eta - temp1;
+ }
+ if (temp > sg2ub || temp < sg2lb) {
+ if (w < 0.) {
+ eta = (sg2ub - tau) / 2.;
+ } else {
+ eta = (sg2lb - tau) / 2.;
+ }
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(*sigma * *sigma + eta);
+
+ prew = w;
+
+ *sigma += eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] += eta;
+ delta[j] -= eta;
+/* L170: */
+ }
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L180: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L190: */
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
+ abs(tau) * dw;
+
+ if (w <= 0.) {
+ sg2lb = max(sg2lb,tau);
+ } else {
+ sg2ub = min(sg2ub,tau);
+ }
+
+ swtch = FALSE_;
+ if (orgati) {
+ if (-w > abs(prew) / 10.) {
+ swtch = TRUE_;
+ }
+ } else {
+ if (w > abs(prew) / 10.) {
+ swtch = TRUE_;
+ }
+ }
+
+/* Main loop to update the values of the array DELTA and WORK */
+
+ iter = niter + 1;
+
+ for (niter = iter; niter <= 20; ++niter) {
+
+/* Test for convergence */
+
+ if (abs(w) <= eps * erretm) {
+ goto L240;
+ }
+
+/* Calculate the new step */
+
+ if (! swtch3) {
+ dtipsq = work[ip1] * delta[ip1];
+ dtisq = work[*i__] * delta[*i__];
+ if (! swtch) {
+ if (orgati) {
+/* Computing 2nd power */
+ d__1 = z__[*i__] / dtisq;
+ c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
+ } else {
+/* Computing 2nd power */
+ d__1 = z__[ip1] / dtipsq;
+ c__ = w - dtisq * dw - delsq * (d__1 * d__1);
+ }
+ } else {
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ if (orgati) {
+ dpsi += temp * temp;
+ } else {
+ dphi += temp * temp;
+ }
+ c__ = w - dtisq * dpsi - dtipsq * dphi;
+ }
+ a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
+ b = dtipsq * dtisq * w;
+ if (c__ == 0.) {
+ if (a == 0.) {
+ if (! swtch) {
+ if (orgati) {
+ a = z__[*i__] * z__[*i__] + dtipsq * dtipsq *
+ (dpsi + dphi);
+ } else {
+ a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
+ dpsi + dphi);
+ }
+ } else {
+ a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
+ }
+ }
+ eta = b / a;
+ } else if (a <= 0.) {
+ eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
+ / (c__ * 2.);
+ } else {
+ eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
+ abs(d__1))));
+ }
+ } else {
+
+/* Interpolation using THREE most relevant poles */
+
+ dtiim = work[iim1] * delta[iim1];
+ dtiip = work[iip1] * delta[iip1];
+ temp = rhoinv + psi + phi;
+ if (swtch) {
+ c__ = temp - dtiim * dpsi - dtiip * dphi;
+ zz[0] = dtiim * dtiim * dpsi;
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ if (orgati) {
+ temp1 = z__[iim1] / dtiim;
+ temp1 *= temp1;
+ temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
+ iip1]) * temp1;
+ c__ = temp - dtiip * (dpsi + dphi) - temp2;
+ zz[0] = z__[iim1] * z__[iim1];
+ if (dpsi < temp1) {
+ zz[2] = dtiip * dtiip * dphi;
+ } else {
+ zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
+ }
+ } else {
+ temp1 = z__[iip1] / dtiip;
+ temp1 *= temp1;
+ temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
+ iip1]) * temp1;
+ c__ = temp - dtiim * (dpsi + dphi) - temp2;
+ if (dphi < temp1) {
+ zz[0] = dtiim * dtiim * dpsi;
+ } else {
+ zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
+ }
+ zz[2] = z__[iip1] * z__[iip1];
+ }
+ }
+ dd[0] = dtiim;
+ dd[1] = delta[ii] * work[ii];
+ dd[2] = dtiip;
+ dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
+ if (*info != 0) {
+ goto L240;
+ }
+ }
+
+/*
+ Note, eta should be positive if w is negative, and
+ eta should be negative otherwise. However,
+ if for some reason caused by roundoff, eta*w > 0,
+ we simply use one Newton step instead. This way
+ will guarantee eta*w < 0.
+*/
+
+ if (w * eta >= 0.) {
+ eta = -w / dw;
+ }
+ if (orgati) {
+ temp1 = work[*i__] * delta[*i__];
+ temp = eta - temp1;
+ } else {
+ temp1 = work[ip1] * delta[ip1];
+ temp = eta - temp1;
+ }
+ if (temp > sg2ub || temp < sg2lb) {
+ if (w < 0.) {
+ eta = (sg2ub - tau) / 2.;
+ } else {
+ eta = (sg2lb - tau) / 2.;
+ }
+ }
+
+ tau += eta;
+ eta /= *sigma + sqrt(*sigma * *sigma + eta);
+
+ *sigma += eta;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ work[j] += eta;
+ delta[j] -= eta;
+/* L200: */
+ }
+
+ prew = w;
+
+/* Evaluate PSI and the derivative DPSI */
+
+ dpsi = 0.;
+ psi = 0.;
+ erretm = 0.;
+ i__1 = iim1;
+ for (j = 1; j <= i__1; ++j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ psi += z__[j] * temp;
+ dpsi += temp * temp;
+ erretm += psi;
+/* L210: */
+ }
+ erretm = abs(erretm);
+
+/* Evaluate PHI and the derivative DPHI */
+
+ dphi = 0.;
+ phi = 0.;
+ i__1 = iip1;
+ for (j = *n; j >= i__1; --j) {
+ temp = z__[j] / (work[j] * delta[j]);
+ phi += z__[j] * temp;
+ dphi += temp * temp;
+ erretm += phi;
+/* L220: */
+ }
+
+ temp = z__[ii] / (work[ii] * delta[ii]);
+ dw = dpsi + dphi + temp * temp;
+ temp = z__[ii] * temp;
+ w = rhoinv + phi + psi + temp;
+ erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
+ + abs(tau) * dw;
+ if ((w * prew > 0. && abs(w) > abs(prew) / 10.)) {
+ swtch = ! swtch;
+ }
+
+ if (w <= 0.) {
+ sg2lb = max(sg2lb,tau);
+ } else {
+ sg2ub = min(sg2ub,tau);
+ }
+
+/* L230: */
+ }
+
+/* Return with INFO = 1, NITER = MAXIT and not converged */
+
+ *info = 1;
+
+ }
+
+L240:
+ return 0;
+
+/* End of DLASD4 */
+
+} /* dlasd4_ */
+
+/* Subroutine */ int dlasd5_(integer *i__, doublereal *d__, doublereal *z__,
+ doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *
+ work)
+{
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal b, c__, w, del, tau, delsq;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ This subroutine computes the square root of the I-th eigenvalue
+ of a positive symmetric rank-one modification of a 2-by-2 diagonal
+ matrix
+
+ diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
+
+ The diagonal entries in the array D are assumed to satisfy
+
+ 0 <= D(i) < D(j) for i < j .
+
+ We also assume RHO > 0 and that the Euclidean norm of the vector
+ Z is one.
+
+ Arguments
+ =========
+
+ I (input) INTEGER
+ The index of the eigenvalue to be computed. I = 1 or I = 2.
+
+ D (input) DOUBLE PRECISION array, dimension ( 2 )
+ The original eigenvalues. We assume 0 <= D(1) < D(2).
+
+ Z (input) DOUBLE PRECISION array, dimension ( 2 )
+ The components of the updating vector.
+
+ DELTA (output) DOUBLE PRECISION array, dimension ( 2 )
+ Contains (D(j) - lambda_I) in its j-th component.
+ The vector DELTA contains the information necessary
+ to construct the eigenvectors.
+
+ RHO (input) DOUBLE PRECISION
+ The scalar in the symmetric updating formula.
+
+ DSIGMA (output) DOUBLE PRECISION
+ The computed lambda_I, the I-th updated eigenvalue.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension ( 2 )
+ WORK contains (D(j) + sigma_I) in its j-th component.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ren-Cang Li, Computer Science Division, University of California
+ at Berkeley, USA
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --work;
+ --delta;
+ --z__;
+ --d__;
+
+ /* Function Body */
+ del = d__[2] - d__[1];
+ delsq = del * (d__[2] + d__[1]);
+ if (*i__ == 1) {
+ w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] *
+ z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;
+ if (w > 0.) {
+ b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[1] * z__[1] * delsq;
+
+/*
+ B > ZERO, always
+
+ The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
+*/
+
+ tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
+
+/* The following TAU is DSIGMA - D( 1 ) */
+
+ tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
+ *dsigma = d__[1] + tau;
+ delta[1] = -tau;
+ delta[2] = del - tau;
+ work[1] = d__[1] * 2. + tau;
+ work[2] = d__[1] + tau + d__[2];
+/*
+ DELTA( 1 ) = -Z( 1 ) / TAU
+ DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
+*/
+ } else {
+ b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[2] * z__[2] * delsq;
+
+/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
+
+ if (b > 0.) {
+ tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
+ } else {
+ tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
+ }
+
+/* The following TAU is DSIGMA - D( 2 ) */
+
+ tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));
+ *dsigma = d__[2] + tau;
+ delta[1] = -(del + tau);
+ delta[2] = -tau;
+ work[1] = d__[1] + tau + d__[2];
+ work[2] = d__[2] * 2. + tau;
+/*
+ DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
+ DELTA( 2 ) = -Z( 2 ) / TAU
+*/
+ }
+/*
+ TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
+ DELTA( 1 ) = DELTA( 1 ) / TEMP
+ DELTA( 2 ) = DELTA( 2 ) / TEMP
+*/
+ } else {
+
+/* Now I=2 */
+
+ b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
+ c__ = *rho * z__[2] * z__[2] * delsq;
+
+/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
+
+ if (b > 0.) {
+ tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
+ } else {
+ tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
+ }
+
+/* The following TAU is DSIGMA - D( 2 ) */
+
+ tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
+ *dsigma = d__[2] + tau;
+ delta[1] = -(del + tau);
+ delta[2] = -tau;
+ work[1] = d__[1] + tau + d__[2];
+ work[2] = d__[2] * 2. + tau;
+/*
+ DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
+ DELTA( 2 ) = -Z( 2 ) / TAU
+ TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
+ DELTA( 1 ) = DELTA( 1 ) / TEMP
+ DELTA( 2 ) = DELTA( 2 ) / TEMP
+*/
+ }
+ return 0;
+
+/* End of DLASD5 */
+
+} /* dlasd5_ */
+
+/* Subroutine */ int dlasd6_(integer *icompq, integer *nl, integer *nr,
+ integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl,
+ doublereal *alpha, doublereal *beta, integer *idxq, integer *perm,
+ integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
+ integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *
+ difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s,
+ doublereal *work, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset,
+ poles_dim1, poles_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static integer i__, m, n, n1, n2, iw, idx, idxc, idxp, ivfw, ivlw;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dlasd7_(integer *, integer *, integer *,
+ integer *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), dlasd8_(
+ integer *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlamrg_(integer *, integer *,
+ doublereal *, integer *, integer *, integer *);
+ static integer isigma;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal orgnrm;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASD6 computes the SVD of an updated upper bidiagonal matrix B
+ obtained by merging two smaller ones by appending a row. This
+ routine is used only for the problem which requires all singular
+ values and optionally singular vector matrices in factored form.
+ B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
+ A related subroutine, DLASD1, handles the case in which all singular
+ values and singular vectors of the bidiagonal matrix are desired.
+
+ DLASD6 computes the SVD as follows:
+
+ ( D1(in) 0 0 0 )
+ B = U(in) * ( Z1' a Z2' b ) * VT(in)
+ ( 0 0 D2(in) 0 )
+
+ = U(out) * ( D(out) 0) * VT(out)
+
+ where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
+ with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
+ elsewhere; and the entry b is empty if SQRE = 0.
+
+ The singular values of B can be computed using D1, D2, the first
+ components of all the right singular vectors of the lower block, and
+ the last components of all the right singular vectors of the upper
+ block. These components are stored and updated in VF and VL,
+ respectively, in DLASD6. Hence U and VT are not explicitly
+ referenced.
+
+ The singular values are stored in D. The algorithm consists of two
+ stages:
+
+ The first stage consists of deflating the size of the problem
+ when there are multiple singular values or if there is a zero
+ in the Z vector. For each such occurence the dimension of the
+ secular equation problem is reduced by one. This stage is
+ performed by the routine DLASD7.
+
+ The second stage consists of calculating the updated
+ singular values. This is done by finding the roots of the
+ secular equation via the routine DLASD4 (as called by DLASD8).
+ This routine also updates VF and VL and computes the distances
+ between the updated singular values and the old singular
+ values.
+
+ DLASD6 is called from DLASDA.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ Specifies whether singular vectors are to be computed in
+ factored form:
+ = 0: Compute singular values only.
+ = 1: Compute singular vectors in factored form as well.
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has row dimension N = NL + NR + 1,
+ and column dimension M = N + SQRE.
+
+ D (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
+ On entry D(1:NL,1:NL) contains the singular values of the
+ upper block, and D(NL+2:N) contains the singular values
+ of the lower block. On exit D(1:N) contains the singular
+ values of the modified matrix.
+
+ VF (input/output) DOUBLE PRECISION array, dimension ( M )
+ On entry, VF(1:NL+1) contains the first components of all
+ right singular vectors of the upper block; and VF(NL+2:M)
+ contains the first components of all right singular vectors
+ of the lower block. On exit, VF contains the first components
+ of all right singular vectors of the bidiagonal matrix.
+
+ VL (input/output) DOUBLE PRECISION array, dimension ( M )
+ On entry, VL(1:NL+1) contains the last components of all
+ right singular vectors of the upper block; and VL(NL+2:M)
+ contains the last components of all right singular vectors of
+ the lower block. On exit, VL contains the last components of
+ all right singular vectors of the bidiagonal matrix.
+
+ ALPHA (input) DOUBLE PRECISION
+ Contains the diagonal element associated with the added row.
+
+ BETA (input) DOUBLE PRECISION
+ Contains the off-diagonal element associated with the added
+ row.
+
+ IDXQ (output) INTEGER array, dimension ( N )
+ This contains the permutation which will reintegrate the
+ subproblem just solved back into sorted order, i.e.
+ D( IDXQ( I = 1, N ) ) will be in ascending order.
+
+ PERM (output) INTEGER array, dimension ( N )
+ The permutations (from deflation and sorting) to be applied
+ to each block. Not referenced if ICOMPQ = 0.
+
+ GIVPTR (output) INTEGER
+ The number of Givens rotations which took place in this
+ subproblem. Not referenced if ICOMPQ = 0.
+
+ GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
+ Each pair of numbers indicates a pair of columns to take place
+ in a Givens rotation. Not referenced if ICOMPQ = 0.
+
+ LDGCOL (input) INTEGER
+ leading dimension of GIVCOL, must be at least N.
+
+ GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+ Each number indicates the C or S value to be used in the
+ corresponding Givens rotation. Not referenced if ICOMPQ = 0.
+
+ LDGNUM (input) INTEGER
+ The leading dimension of GIVNUM and POLES, must be at least N.
+
+ POLES (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+ On exit, POLES(1,*) is an array containing the new singular
+ values obtained from solving the secular equation, and
+ POLES(2,*) is an array containing the poles in the secular
+ equation. Not referenced if ICOMPQ = 0.
+
+ DIFL (output) DOUBLE PRECISION array, dimension ( N )
+ On exit, DIFL(I) is the distance between I-th updated
+ (undeflated) singular value and the I-th (undeflated) old
+ singular value.
+
+ DIFR (output) DOUBLE PRECISION array,
+ dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
+ dimension ( N ) if ICOMPQ = 0.
+ On exit, DIFR(I, 1) is the distance between I-th updated
+ (undeflated) singular value and the I+1-th (undeflated) old
+ singular value.
+
+ If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
+ normalizing factors for the right singular vector matrix.
+
+ See DLASD8 for details on DIFL and DIFR.
+
+ Z (output) DOUBLE PRECISION array, dimension ( M )
+ The first elements of this array contain the components
+ of the deflation-adjusted updating row vector.
+
+ K (output) INTEGER
+ Contains the dimension of the non-deflated matrix,
+ This is the order of the related secular equation. 1 <= K <=N.
+
+ C (output) DOUBLE PRECISION
+ C contains garbage if SQRE =0 and the C-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ S (output) DOUBLE PRECISION
+ S contains garbage if SQRE =0 and the S-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
+
+ IWORK (workspace) INTEGER array, dimension ( 3 * N )
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --vf;
+ --vl;
+ --idxq;
+ --perm;
+ givcol_dim1 = *ldgcol;
+ givcol_offset = 1 + givcol_dim1 * 1;
+ givcol -= givcol_offset;
+ poles_dim1 = *ldgnum;
+ poles_offset = 1 + poles_dim1 * 1;
+ poles -= poles_offset;
+ givnum_dim1 = *ldgnum;
+ givnum_offset = 1 + givnum_dim1 * 1;
+ givnum -= givnum_offset;
+ --difl;
+ --difr;
+ --z__;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*nl < 1) {
+ *info = -2;
+ } else if (*nr < 1) {
+ *info = -3;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -4;
+ } else if (*ldgcol < n) {
+ *info = -14;
+ } else if (*ldgnum < n) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD6", &i__1);
+ return 0;
+ }
+
+/*
+ The following values are for bookkeeping purposes only. They are
+ integer pointers which indicate the portion of the workspace
+ used by a particular array in DLASD7 and DLASD8.
+*/
+
+ isigma = 1;
+ iw = isigma + n;
+ ivfw = iw + m;
+ ivlw = ivfw + m;
+
+ idx = 1;
+ idxc = idx + n;
+ idxp = idxc + n;
+
+/*
+ Scale.
+
+ Computing MAX
+*/
+ d__1 = abs(*alpha), d__2 = abs(*beta);
+ orgnrm = max(d__1,d__2);
+ d__[*nl + 1] = 0.;
+ i__1 = n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
+ orgnrm = (d__1 = d__[i__], abs(d__1));
+ }
+/* L10: */
+ }
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &n, &c__1, &d__[1], &n, info);
+ *alpha /= orgnrm;
+ *beta /= orgnrm;
+
+/* Sort and Deflate singular values. */
+
+ dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
+ work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
+ iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
+ givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s,
+ info);
+
+/* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
+
+ dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1],
+ ldgnum, &work[isigma], &work[iw], info);
+
+/* Save the poles if ICOMPQ = 1. */
+
+ if (*icompq == 1) {
+ dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
+ dcopy_(k, &work[isigma], &c__1, &poles[((poles_dim1) << (1)) + 1], &
+ c__1);
+ }
+
+/* Unscale. */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &n, &c__1, &d__[1], &n, info);
+
+/* Prepare the IDXQ sorting permutation. */
+
+ n1 = *k;
+ n2 = n - *k;
+ dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
+
+ return 0;
+
+/* End of DLASD6 */
+
+} /* dlasd6_ */
+
+/* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr,
+ integer *sqre, integer *k, doublereal *d__, doublereal *z__,
+ doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl,
+ doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
+ dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm,
+ integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
+ integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
+{
+ /* System generated locals */
+ integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static integer i__, j, m, n, k2;
+ static doublereal z1;
+ static integer jp;
+ static doublereal eps, tau, tol;
+ static integer nlp1, nlp2, idxi, idxj;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ static integer idxjp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer jprev;
+
+ extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
+ integer *, integer *, integer *), xerbla_(char *, integer *);
+ static doublereal hlftol;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASD7 merges the two sets of singular values together into a single
+ sorted set. Then it tries to deflate the size of the problem. There
+ are two ways in which deflation can occur: when two or more singular
+ values are close together or if there is a tiny entry in the Z
+ vector. For each such occurrence the order of the related
+ secular equation problem is reduced by one.
+
+ DLASD7 is called from DLASD6.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ Specifies whether singular vectors are to be computed
+ in compact form, as follows:
+ = 0: Compute singular values only.
+ = 1: Compute singular vectors of upper
+ bidiagonal matrix in compact form.
+
+ NL (input) INTEGER
+ The row dimension of the upper block. NL >= 1.
+
+ NR (input) INTEGER
+ The row dimension of the lower block. NR >= 1.
+
+ SQRE (input) INTEGER
+ = 0: the lower block is an NR-by-NR square matrix.
+ = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+
+ The bidiagonal matrix has
+ N = NL + NR + 1 rows and
+ M = N + SQRE >= N columns.
+
+ K (output) INTEGER
+ Contains the dimension of the non-deflated matrix, this is
+ the order of the related secular equation. 1 <= K <=N.
+
+ D (input/output) DOUBLE PRECISION array, dimension ( N )
+ On entry D contains the singular values of the two submatrices
+ to be combined. On exit D contains the trailing (N-K) updated
+ singular values (those which were deflated) sorted into
+ increasing order.
+
+ Z (output) DOUBLE PRECISION array, dimension ( M )
+ On exit Z contains the updating row vector in the secular
+ equation.
+
+ ZW (workspace) DOUBLE PRECISION array, dimension ( M )
+ Workspace for Z.
+
+ VF (input/output) DOUBLE PRECISION array, dimension ( M )
+ On entry, VF(1:NL+1) contains the first components of all
+ right singular vectors of the upper block; and VF(NL+2:M)
+ contains the first components of all right singular vectors
+ of the lower block. On exit, VF contains the first components
+ of all right singular vectors of the bidiagonal matrix.
+
+ VFW (workspace) DOUBLE PRECISION array, dimension ( M )
+ Workspace for VF.
+
+ VL (input/output) DOUBLE PRECISION array, dimension ( M )
+ On entry, VL(1:NL+1) contains the last components of all
+ right singular vectors of the upper block; and VL(NL+2:M)
+ contains the last components of all right singular vectors
+ of the lower block. On exit, VL contains the last components
+ of all right singular vectors of the bidiagonal matrix.
+
+ VLW (workspace) DOUBLE PRECISION array, dimension ( M )
+ Workspace for VL.
+
+ ALPHA (input) DOUBLE PRECISION
+ Contains the diagonal element associated with the added row.
+
+ BETA (input) DOUBLE PRECISION
+ Contains the off-diagonal element associated with the added
+ row.
+
+ DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
+ Contains a copy of the diagonal elements (K-1 singular values
+ and one zero) in the secular equation.
+
+ IDX (workspace) INTEGER array, dimension ( N )
+ This will contain the permutation used to sort the contents of
+ D into ascending order.
+
+ IDXP (workspace) INTEGER array, dimension ( N )
+ This will contain the permutation used to place deflated
+ values of D at the end of the array. On output IDXP(2:K)
+ points to the nondeflated D-values and IDXP(K+1:N)
+ points to the deflated singular values.
+
+ IDXQ (input) INTEGER array, dimension ( N )
+ This contains the permutation which separately sorts the two
+ sub-problems in D into ascending order. Note that entries in
+ the first half of this permutation must first be moved one
+ position backward; and entries in the second half
+ must first have NL+1 added to their values.
+
+ PERM (output) INTEGER array, dimension ( N )
+ The permutations (from deflation and sorting) to be applied
+ to each singular block. Not referenced if ICOMPQ = 0.
+
+ GIVPTR (output) INTEGER
+ The number of Givens rotations which took place in this
+ subproblem. Not referenced if ICOMPQ = 0.
+
+ GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
+ Each pair of numbers indicates a pair of columns to take place
+ in a Givens rotation. Not referenced if ICOMPQ = 0.
+
+ LDGCOL (input) INTEGER
+ The leading dimension of GIVCOL, must be at least N.
+
+ GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+ Each number indicates the C or S value to be used in the
+ corresponding Givens rotation. Not referenced if ICOMPQ = 0.
+
+ LDGNUM (input) INTEGER
+ The leading dimension of GIVNUM, must be at least N.
+
+ C (output) DOUBLE PRECISION
+ C contains garbage if SQRE =0 and the C-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ S (output) DOUBLE PRECISION
+ S contains garbage if SQRE =0 and the S-value of a Givens
+ rotation related to the right null space if SQRE = 1.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --z__;
+ --zw;
+ --vf;
+ --vfw;
+ --vl;
+ --vlw;
+ --dsigma;
+ --idx;
+ --idxp;
+ --idxq;
+ --perm;
+ givcol_dim1 = *ldgcol;
+ givcol_offset = 1 + givcol_dim1 * 1;
+ givcol -= givcol_offset;
+ givnum_dim1 = *ldgnum;
+ givnum_offset = 1 + givnum_dim1 * 1;
+ givnum -= givnum_offset;
+
+ /* Function Body */
+ *info = 0;
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*nl < 1) {
+ *info = -2;
+ } else if (*nr < 1) {
+ *info = -3;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -4;
+ } else if (*ldgcol < n) {
+ *info = -22;
+ } else if (*ldgnum < n) {
+ *info = -24;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD7", &i__1);
+ return 0;
+ }
+
+ nlp1 = *nl + 1;
+ nlp2 = *nl + 2;
+ if (*icompq == 1) {
+ *givptr = 0;
+ }
+
+/*
+ Generate the first part of the vector Z and move the singular
+ values in the first part of D one position backward.
+*/
+
+ z1 = *alpha * vl[nlp1];
+ vl[nlp1] = 0.;
+ tau = vf[nlp1];
+ for (i__ = *nl; i__ >= 1; --i__) {
+ z__[i__ + 1] = *alpha * vl[i__];
+ vl[i__] = 0.;
+ vf[i__ + 1] = vf[i__];
+ d__[i__ + 1] = d__[i__];
+ idxq[i__ + 1] = idxq[i__] + 1;
+/* L10: */
+ }
+ vf[1] = tau;
+
+/* Generate the second part of the vector Z. */
+
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ z__[i__] = *beta * vf[i__];
+ vf[i__] = 0.;
+/* L20: */
+ }
+
+/* Sort the singular values into increasing order */
+
+ i__1 = n;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ idxq[i__] += nlp1;
+/* L30: */
+ }
+
+/* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ dsigma[i__] = d__[idxq[i__]];
+ zw[i__] = z__[idxq[i__]];
+ vfw[i__] = vf[idxq[i__]];
+ vlw[i__] = vl[idxq[i__]];
+/* L40: */
+ }
+
+ dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
+
+ i__1 = n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ idxi = idx[i__] + 1;
+ d__[i__] = dsigma[idxi];
+ z__[i__] = zw[idxi];
+ vf[i__] = vfw[idxi];
+ vl[i__] = vlw[idxi];
+/* L50: */
+ }
+
+/* Calculate the allowable deflation tolerence */
+
+ eps = EPSILON;
+/* Computing MAX */
+ d__1 = abs(*alpha), d__2 = abs(*beta);
+ tol = max(d__1,d__2);
+/* Computing MAX */
+ d__2 = (d__1 = d__[n], abs(d__1));
+ tol = eps * 64. * max(d__2,tol);
+
+/*
+ There are 2 kinds of deflation -- first a value in the z-vector
+ is small, second two (or more) singular values are very close
+ together (their difference is small).
+
+ If the value in the z-vector is small, we simply permute the
+ array so that the corresponding singular value is moved to the
+ end.
+
+ If two values in the D-vector are close, we perform a two-sided
+ rotation designed to make one of the corresponding z-vector
+ entries zero, and then permute the array so that the deflated
+ singular value is moved to the end.
+
+ If there are multiple singular values then the problem deflates.
+ Here the number of equal singular values are found. As each equal
+ singular value is found, an elementary reflector is computed to
+ rotate the corresponding singular subspace so that the
+ corresponding components of Z are zero in this new basis.
+*/
+
+ *k = 1;
+ k2 = n + 1;
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ if ((d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ if (j == n) {
+ goto L100;
+ }
+ } else {
+ jprev = j;
+ goto L70;
+ }
+/* L60: */
+ }
+L70:
+ j = jprev;
+L80:
+ ++j;
+ if (j > n) {
+ goto L90;
+ }
+ if ((d__1 = z__[j], abs(d__1)) <= tol) {
+
+/* Deflate due to small z component. */
+
+ --k2;
+ idxp[k2] = j;
+ } else {
+
+/* Check if singular values are close enough to allow deflation. */
+
+ if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
+
+/* Deflation is possible. */
+
+ *s = z__[jprev];
+ *c__ = z__[j];
+
+/*
+ Find sqrt(a**2+b**2) without overflow or
+ destructive underflow.
+*/
+
+ tau = dlapy2_(c__, s);
+ z__[j] = tau;
+ z__[jprev] = 0.;
+ *c__ /= tau;
+ *s = -(*s) / tau;
+
+/* Record the appropriate Givens rotation */
+
+ if (*icompq == 1) {
+ ++(*givptr);
+ idxjp = idxq[idx[jprev] + 1];
+ idxj = idxq[idx[j] + 1];
+ if (idxjp <= nlp1) {
+ --idxjp;
+ }
+ if (idxj <= nlp1) {
+ --idxj;
+ }
+ givcol[*givptr + ((givcol_dim1) << (1))] = idxjp;
+ givcol[*givptr + givcol_dim1] = idxj;
+ givnum[*givptr + ((givnum_dim1) << (1))] = *c__;
+ givnum[*givptr + givnum_dim1] = *s;
+ }
+ drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
+ drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
+ --k2;
+ idxp[k2] = jprev;
+ jprev = j;
+ } else {
+ ++(*k);
+ zw[*k] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+ jprev = j;
+ }
+ }
+ goto L80;
+L90:
+
+/* Record the last singular value. */
+
+ ++(*k);
+ zw[*k] = z__[jprev];
+ dsigma[*k] = d__[jprev];
+ idxp[*k] = jprev;
+
+L100:
+
+/*
+ Sort the singular values into DSIGMA. The singular values which
+ were not deflated go into the first K slots of DSIGMA, except
+ that DSIGMA(1) is treated separately.
+*/
+
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ dsigma[j] = d__[jp];
+ vfw[j] = vf[jp];
+ vlw[j] = vl[jp];
+/* L110: */
+ }
+ if (*icompq == 1) {
+ i__1 = n;
+ for (j = 2; j <= i__1; ++j) {
+ jp = idxp[j];
+ perm[j] = idxq[idx[jp] + 1];
+ if (perm[j] <= nlp1) {
+ --perm[j];
+ }
+/* L120: */
+ }
+ }
+
+/*
+ The deflated singular values go back into the last N - K slots of
+ D.
+*/
+
+ i__1 = n - *k;
+ dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
+
+/*
+ Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
+ VL(M).
+*/
+
+ dsigma[1] = 0.;
+ hlftol = tol / 2.;
+ if (abs(dsigma[2]) <= hlftol) {
+ dsigma[2] = hlftol;
+ }
+ if (m > n) {
+ z__[1] = dlapy2_(&z1, &z__[m]);
+ if (z__[1] <= tol) {
+ *c__ = 1.;
+ *s = 0.;
+ z__[1] = tol;
+ } else {
+ *c__ = z1 / z__[1];
+ *s = -z__[m] / z__[1];
+ }
+ drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
+ drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
+ } else {
+ if (abs(z1) <= tol) {
+ z__[1] = tol;
+ } else {
+ z__[1] = z1;
+ }
+ }
+
+/* Restore Z, VF, and VL. */
+
+ i__1 = *k - 1;
+ dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
+ i__1 = n - 1;
+ dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
+ i__1 = n - 1;
+ dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
+
+ return 0;
+
+/* End of DLASD7 */
+
+} /* dlasd7_ */
+
+/* Subroutine */ int dlasd8_(integer *icompq, integer *k, doublereal *d__,
+ doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl,
+ doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal *
+ work, integer *info)
+{
+ /* System generated locals */
+ integer difr_dim1, difr_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal dj, rho;
+ static integer iwk1, iwk2, iwk3;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static doublereal temp;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ static integer iwk2i, iwk3i;
+ static doublereal diflj, difrj, dsigj;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *), dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlaset_(char *, integer *, integer
+ *, doublereal *, doublereal *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+ static doublereal dsigjp;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
+ Courant Institute, NAG Ltd., and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASD8 finds the square roots of the roots of the secular equation,
+ as defined by the values in DSIGMA and Z. It makes the appropriate
+ calls to DLASD4, and stores, for each element in D, the distance
+ to its two nearest poles (elements in DSIGMA). It also updates
+ the arrays VF and VL, the first and last components of all the
+ right singular vectors of the original bidiagonal matrix.
+
+ DLASD8 is called from DLASD6.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ Specifies whether singular vectors are to be computed in
+ factored form in the calling routine:
+ = 0: Compute singular values only.
+ = 1: Compute singular vectors in factored form as well.
+
+ K (input) INTEGER
+ The number of terms in the rational function to be solved
+ by DLASD4. K >= 1.
+
+ D (output) DOUBLE PRECISION array, dimension ( K )
+ On output, D contains the updated singular values.
+
+ Z (input) DOUBLE PRECISION array, dimension ( K )
+ The first K elements of this array contain the components
+ of the deflation-adjusted updating row vector.
+
+ VF (input/output) DOUBLE PRECISION array, dimension ( K )
+ On entry, VF contains information passed through DBEDE8.
+ On exit, VF contains the first K components of the first
+ components of all right singular vectors of the bidiagonal
+ matrix.
+
+ VL (input/output) DOUBLE PRECISION array, dimension ( K )
+ On entry, VL contains information passed through DBEDE8.
+ On exit, VL contains the first K components of the last
+ components of all right singular vectors of the bidiagonal
+ matrix.
+
+ DIFL (output) DOUBLE PRECISION array, dimension ( K )
+ On exit, DIFL(I) = D(I) - DSIGMA(I).
+
+ DIFR (output) DOUBLE PRECISION array,
+ dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
+ dimension ( K ) if ICOMPQ = 0.
+ On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
+ defined and will not be referenced.
+
+ If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
+ normalizing factors for the right singular vector matrix.
+
+ LDDIFR (input) INTEGER
+ The leading dimension of DIFR, must be at least K.
+
+ DSIGMA (input) DOUBLE PRECISION array, dimension ( K )
+ The first K elements of this array contain the old roots
+ of the deflated updating problem. These are the poles
+ of the secular equation.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --z__;
+ --vf;
+ --vl;
+ --difl;
+ difr_dim1 = *lddifr;
+ difr_offset = 1 + difr_dim1 * 1;
+ difr -= difr_offset;
+ --dsigma;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*k < 1) {
+ *info = -2;
+ } else if (*lddifr < *k) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD8", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*k == 1) {
+ d__[1] = abs(z__[1]);
+ difl[1] = d__[1];
+ if (*icompq == 1) {
+ difl[2] = 1.;
+ difr[((difr_dim1) << (1)) + 1] = 1.;
+ }
+ return 0;
+ }
+
+/*
+ Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
+ be computed with high relative accuracy (barring over/underflow).
+ This is a problem on machines without a guard digit in
+ add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
+ The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
+ which on any of these machines zeros out the bottommost
+ bit of DSIGMA(I) if it is 1; this makes the subsequent
+ subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
+ occurs. On binary machines with a guard digit (almost all
+ machines) it does not change DSIGMA(I) at all. On hexadecimal
+ and decimal machines with a guard digit, it slightly
+ changes the bottommost bits of DSIGMA(I). It does not account
+ for hexadecimal or decimal machines without guard digits
+ (we know of none). We use a subroutine call to compute
+ 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
+ this code.
+*/
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
+/* L10: */
+ }
+
+/* Book keeping. */
+
+ iwk1 = 1;
+ iwk2 = iwk1 + *k;
+ iwk3 = iwk2 + *k;
+ iwk2i = iwk2 - 1;
+ iwk3i = iwk3 - 1;
+
+/* Normalize Z. */
+
+ rho = dnrm2_(k, &z__[1], &c__1);
+ dlascl_("G", &c__0, &c__0, &rho, &c_b15, k, &c__1, &z__[1], k, info);
+ rho *= rho;
+
+/* Initialize WORK(IWK3). */
+
+ dlaset_("A", k, &c__1, &c_b15, &c_b15, &work[iwk3], k);
+
+/*
+ Compute the updated singular values, the arrays DIFL, DIFR,
+ and the updated Z.
+*/
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
+ iwk2], info);
+
+/* If the root finder fails, the computation is terminated. */
+
+ if (*info != 0) {
+ return 0;
+ }
+ work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
+ difl[j] = -work[j];
+ difr[j + difr_dim1] = -work[j + 1];
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
+ i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
+ j]);
+/* L20: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
+ i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
+ j]);
+/* L30: */
+ }
+/* L40: */
+ }
+
+/* Compute updated Z. */
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));
+ z__[i__] = d_sign(&d__2, &z__[i__]);
+/* L50: */
+ }
+
+/* Update VF and VL. */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ diflj = difl[j];
+ dj = d__[j];
+ dsigj = -dsigma[j];
+ if (j < *k) {
+ difrj = -difr[j + difr_dim1];
+ dsigjp = -dsigma[j + 1];
+ }
+ work[j] = -z__[j] / diflj / (dsigma[j] + dj);
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / (
+ dsigma[i__] + dj);
+/* L60: */
+ }
+ i__2 = *k;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) /
+ (dsigma[i__] + dj);
+/* L70: */
+ }
+ temp = dnrm2_(k, &work[1], &c__1);
+ work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
+ work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
+ if (*icompq == 1) {
+ difr[j + ((difr_dim1) << (1))] = temp;
+ }
+/* L80: */
+ }
+
+ dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
+ dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
+
+ return 0;
+
+/* End of DLASD8 */
+
+} /* dlasd8_ */
+
+/* Subroutine */ int dlasda_(integer *icompq, integer *smlsiz, integer *n,
+ integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer
+ *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr,
+ doublereal *z__, doublereal *poles, integer *givptr, integer *givcol,
+ integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__,
+ doublereal *s, doublereal *work, integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
+ difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
+ poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
+ z_dim1, z_offset, i__1, i__2;
+
+ /* Builtin functions */
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ static integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc,
+ nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
+ static doublereal beta;
+ static integer idxq, nlvl;
+ static doublereal alpha;
+ static integer inode, ndiml, ndimr, idxqi, itemp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer sqrei;
+ extern /* Subroutine */ int dlasd6_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *);
+ static integer nwork1, nwork2;
+ extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
+ *, integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlasdt_(integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *), dlaset_(
+ char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *), xerbla_(char *, integer *);
+ static integer smlszp;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ Using a divide and conquer approach, DLASDA computes the singular
+ value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
+ B with diagonal D and offdiagonal E, where M = N + SQRE. The
+ algorithm computes the singular values in the SVD B = U * S * VT.
+ The orthogonal matrices U and VT are optionally computed in
+ compact form.
+
+ A related subroutine, DLASD0, computes the singular values and
+ the singular vectors in explicit form.
+
+ Arguments
+ =========
+
+ ICOMPQ (input) INTEGER
+ Specifies whether singular vectors are to be computed
+ in compact form, as follows
+ = 0: Compute singular values only.
+ = 1: Compute singular vectors of upper bidiagonal
+ matrix in compact form.
+
+ SMLSIZ (input) INTEGER
+ The maximum size of the subproblems at the bottom of the
+ computation tree.
+
+ N (input) INTEGER
+ The row dimension of the upper bidiagonal matrix. This is
+ also the dimension of the main diagonal array D.
+
+ SQRE (input) INTEGER
+ Specifies the column dimension of the bidiagonal matrix.
+ = 0: The bidiagonal matrix has column dimension M = N;
+ = 1: The bidiagonal matrix has column dimension M = N + 1.
+
+ D (input/output) DOUBLE PRECISION array, dimension ( N )
+ On entry D contains the main diagonal of the bidiagonal
+ matrix. On exit D, if INFO = 0, contains its singular values.
+
+ E (input) DOUBLE PRECISION array, dimension ( M-1 )
+ Contains the subdiagonal entries of the bidiagonal matrix.
+ On exit, E has been destroyed.
+
+ U (output) DOUBLE PRECISION array,
+ dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
+ if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
+ singular vector matrices of all subproblems at the bottom
+ level.
+
+ LDU (input) INTEGER, LDU = > N.
+ The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
+ GIVNUM, and Z.
+
+ VT (output) DOUBLE PRECISION array,
+ dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
+ if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
+ singular vector matrices of all subproblems at the bottom
+ level.
+
+ K (output) INTEGER array,
+ dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
+ If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
+ secular equation on the computation tree.
+
+ DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
+ where NLVL = floor(log_2 (N/SMLSIZ))).
+
+ DIFR (output) DOUBLE PRECISION array,
+ dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
+ dimension ( N ) if ICOMPQ = 0.
+ If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
+ record distances between singular values on the I-th
+ level and singular values on the (I -1)-th level, and
+ DIFR(1:N, 2 * I ) contains the normalizing factors for
+ the right singular vector matrix. See DLASD8 for details.
+
+ Z (output) DOUBLE PRECISION array,
+ dimension ( LDU, NLVL ) if ICOMPQ = 1 and
+ dimension ( N ) if ICOMPQ = 0.
+ The first K elements of Z(1, I) contain the components of
+ the deflation-adjusted updating row vector for subproblems
+ on the I-th level.
+
+ POLES (output) DOUBLE PRECISION array,
+ dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
+ if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
+ POLES(1, 2*I) contain the new and old singular values
+ involved in the secular equations on the I-th level.
+
+ GIVPTR (output) INTEGER array,
+ dimension ( N ) if ICOMPQ = 1, and not referenced if
+ ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
+ the number of Givens rotations performed on the I-th
+ problem on the computation tree.
+
+ GIVCOL (output) INTEGER array,
+ dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
+ referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
+ GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
+ of Givens rotations performed on the I-th level on the
+ computation tree.
+
+ LDGCOL (input) INTEGER, LDGCOL = > N.
+ The leading dimension of arrays GIVCOL and PERM.
+
+ PERM (output) INTEGER array,
+ dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
+ if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
+ permutations done on the I-th level of the computation tree.
+
+ GIVNUM (output) DOUBLE PRECISION array,
+ dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
+ referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
+ GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
+ values of Givens rotations performed on the I-th level on
+ the computation tree.
+
+ C (output) DOUBLE PRECISION array,
+ dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
+ If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
+ C( I ) contains the C-value of a Givens rotation related to
+ the right null space of the I-th subproblem.
+
+ S (output) DOUBLE PRECISION array, dimension ( N ) if
+ ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
+ and the I-th subproblem is not square, on exit, S( I )
+ contains the S-value of a Givens rotation related to
+ the right null space of the I-th subproblem.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
+
+ IWORK (workspace) INTEGER array.
+ Dimension must be at least (7 * N).
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: if INFO = 1, an singular value did not converge
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ givnum_dim1 = *ldu;
+ givnum_offset = 1 + givnum_dim1 * 1;
+ givnum -= givnum_offset;
+ poles_dim1 = *ldu;
+ poles_offset = 1 + poles_dim1 * 1;
+ poles -= poles_offset;
+ z_dim1 = *ldu;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+ difr_dim1 = *ldu;
+ difr_offset = 1 + difr_dim1 * 1;
+ difr -= difr_offset;
+ difl_dim1 = *ldu;
+ difl_offset = 1 + difl_dim1 * 1;
+ difl -= difl_offset;
+ vt_dim1 = *ldu;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ --k;
+ --givptr;
+ perm_dim1 = *ldgcol;
+ perm_offset = 1 + perm_dim1 * 1;
+ perm -= perm_offset;
+ givcol_dim1 = *ldgcol;
+ givcol_offset = 1 + givcol_dim1 * 1;
+ givcol -= givcol_offset;
+ --c__;
+ --s;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*icompq < 0 || *icompq > 1) {
+ *info = -1;
+ } else if (*smlsiz < 3) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -4;
+ } else if (*ldu < *n + *sqre) {
+ *info = -8;
+ } else if (*ldgcol < *n) {
+ *info = -17;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASDA", &i__1);
+ return 0;
+ }
+
+ m = *n + *sqre;
+
+/* If the input matrix is too small, call DLASDQ to find the SVD. */
+
+ if (*n <= *smlsiz) {
+ if (*icompq == 0) {
+ dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
+ vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
+ work[1], info);
+ } else {
+ dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
+ , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
+ info);
+ }
+ return 0;
+ }
+
+/* Book-keeping and set up the computation tree. */
+
+ inode = 1;
+ ndiml = inode + *n;
+ ndimr = ndiml + *n;
+ idxq = ndimr + *n;
+ iwk = idxq + *n;
+
+ ncc = 0;
+ nru = 0;
+
+ smlszp = *smlsiz + 1;
+ vf = 1;
+ vl = vf + m;
+ nwork1 = vl + m;
+ nwork2 = nwork1 + smlszp * smlszp;
+
+ dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
+ smlsiz);
+
+/*
+ for the nodes on bottom level of the tree, solve
+ their subproblems by DLASDQ.
+*/
+
+ ndb1 = (nd + 1) / 2;
+ i__1 = nd;
+ for (i__ = ndb1; i__ <= i__1; ++i__) {
+
+/*
+ IC : center row of each node
+ NL : number of rows of left subproblem
+ NR : number of rows of right subproblem
+ NLF: starting row of the left subproblem
+ NRF: starting row of the right subproblem
+*/
+
+ i1 = i__ - 1;
+ ic = iwork[inode + i1];
+ nl = iwork[ndiml + i1];
+ nlp1 = nl + 1;
+ nr = iwork[ndimr + i1];
+ nlf = ic - nl;
+ nrf = ic + 1;
+ idxqi = idxq + nlf - 2;
+ vfi = vf + nlf - 1;
+ vli = vl + nlf - 1;
+ sqrei = 1;
+ if (*icompq == 0) {
+ dlaset_("A", &nlp1, &nlp1, &c_b29, &c_b15, &work[nwork1], &smlszp);
+ dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
+ work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
+ &nl, &work[nwork2], info);
+ itemp = nwork1 + nl * smlszp;
+ dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
+ dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
+ } else {
+ dlaset_("A", &nl, &nl, &c_b29, &c_b15, &u[nlf + u_dim1], ldu);
+ dlaset_("A", &nlp1, &nlp1, &c_b29, &c_b15, &vt[nlf + vt_dim1],
+ ldu);
+ dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
+ vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
+ u_dim1], ldu, &work[nwork1], info);
+ dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
+ dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
+ ;
+ }
+ if (*info != 0) {
+ return 0;
+ }
+ i__2 = nl;
+ for (j = 1; j <= i__2; ++j) {
+ iwork[idxqi + j] = j;
+/* L10: */
+ }
+ if ((i__ == nd && *sqre == 0)) {
+ sqrei = 0;
+ } else {
+ sqrei = 1;
+ }
+ idxqi += nlp1;
+ vfi += nlp1;
+ vli += nlp1;
+ nrp1 = nr + sqrei;
+ if (*icompq == 0) {
+ dlaset_("A", &nrp1, &nrp1, &c_b29, &c_b15, &work[nwork1], &smlszp);
+ dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
+ work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
+ &nr, &work[nwork2], info);
+ itemp = nwork1 + (nrp1 - 1) * smlszp;
+ dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
+ dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
+ } else {
+ dlaset_("A", &nr, &nr, &c_b29, &c_b15, &u[nrf + u_dim1], ldu);
+ dlaset_("A", &nrp1, &nrp1, &c_b29, &c_b15, &vt[nrf + vt_dim1],
+ ldu);
+ dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
+ vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
+ u_dim1], ldu, &work[nwork1], info);
+ dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
+ dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
+ ;
+ }
+ if (*info != 0) {
+ return 0;
+ }
+ i__2 = nr;
+ for (j = 1; j <= i__2; ++j) {
+ iwork[idxqi + j] = j;
+/* L20: */
+ }
+/* L30: */
+ }
+
+/* Now conquer each subproblem bottom-up. */
+
+ j = pow_ii(&c__2, &nlvl);
+ for (lvl = nlvl; lvl >= 1; --lvl) {
+ lvl2 = ((lvl) << (1)) - 1;
+
+/*
+ Find the first node LF and last node LL on
+ the current level LVL.
+*/
+
+ if (lvl == 1) {
+ lf = 1;
+ ll = 1;
+ } else {
+ i__1 = lvl - 1;
+ lf = pow_ii(&c__2, &i__1);
+ ll = ((lf) << (1)) - 1;
+ }
+ i__1 = ll;
+ for (i__ = lf; i__ <= i__1; ++i__) {
+ im1 = i__ - 1;
+ ic = iwork[inode + im1];
+ nl = iwork[ndiml + im1];
+ nr = iwork[ndimr + im1];
+ nlf = ic - nl;
+ nrf = ic + 1;
+ if (i__ == ll) {
+ sqrei = *sqre;
+ } else {
+ sqrei = 1;
+ }
+ vfi = vf + nlf - 1;
+ vli = vl + nlf - 1;
+ idxqi = idxq + nlf - 1;
+ alpha = d__[ic];
+ beta = e[ic];
+ if (*icompq == 0) {
+ dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
+ work[vli], &alpha, &beta, &iwork[idxqi], &perm[
+ perm_offset], &givptr[1], &givcol[givcol_offset],
+ ldgcol, &givnum[givnum_offset], ldu, &poles[
+ poles_offset], &difl[difl_offset], &difr[difr_offset],
+ &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
+ &iwork[iwk], info);
+ } else {
+ --j;
+ dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
+ work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
+ lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
+ givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
+ givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
+ difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
+ difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
+ &s[j], &work[nwork1], &iwork[iwk], info);
+ }
+ if (*info != 0) {
+ return 0;
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+
+ return 0;
+
+/* End of DLASDA */
+
+} /* dlasda_ */
+
+/* Subroutine */ int dlasdq_(char *uplo, integer *sqre, integer *n, integer *
+ ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e,
+ doublereal *vt, integer *ldvt, doublereal *u, integer *ldu,
+ doublereal *c__, integer *ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
+ i__2;
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal r__, cs, sn;
+ static integer np1, isub;
+ static doublereal smin;
+ static integer sqre1;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *
+ , doublereal *, integer *);
+ static integer iuplo;
+ extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *), xerbla_(char *,
+ integer *), dbdsqr_(char *, integer *, integer *, integer
+ *, integer *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static logical rotate;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASDQ computes the singular value decomposition (SVD) of a real
+ (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
+ E, accumulating the transformations if desired. Letting B denote
+ the input bidiagonal matrix, the algorithm computes orthogonal
+ matrices Q and P such that B = Q * S * P' (P' denotes the transpose
+ of P). The singular values S are overwritten on D.
+
+ The input matrix U is changed to U * Q if desired.
+ The input matrix VT is changed to P' * VT if desired.
+ The input matrix C is changed to Q' * C if desired.
+
+ See "Computing Small Singular Values of Bidiagonal Matrices With
+ Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
+ LAPACK Working Note #3, for a detailed description of the algorithm.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ On entry, UPLO specifies whether the input bidiagonal matrix
+ is upper or lower bidiagonal, and wether it is square are
+ not.
+ UPLO = 'U' or 'u' B is upper bidiagonal.
+ UPLO = 'L' or 'l' B is lower bidiagonal.
+
+ SQRE (input) INTEGER
+ = 0: then the input matrix is N-by-N.
+ = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
+ (N+1)-by-N if UPLU = 'L'.
+
+ The bidiagonal matrix has
+ N = NL + NR + 1 rows and
+ M = N + SQRE >= N columns.
+
+ N (input) INTEGER
+ On entry, N specifies the number of rows and columns
+ in the matrix. N must be at least 0.
+
+ NCVT (input) INTEGER
+ On entry, NCVT specifies the number of columns of
+ the matrix VT. NCVT must be at least 0.
+
+ NRU (input) INTEGER
+ On entry, NRU specifies the number of rows of
+ the matrix U. NRU must be at least 0.
+
+ NCC (input) INTEGER
+ On entry, NCC specifies the number of columns of
+ the matrix C. NCC must be at least 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, D contains the diagonal entries of the
+ bidiagonal matrix whose SVD is desired. On normal exit,
+ D contains the singular values in ascending order.
+
+ E (input/output) DOUBLE PRECISION array.
+ dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
+ On entry, the entries of E contain the offdiagonal entries
+ of the bidiagonal matrix whose SVD is desired. On normal
+ exit, E will contain 0. If the algorithm does not converge,
+ D and E will contain the diagonal and superdiagonal entries
+ of a bidiagonal matrix orthogonally equivalent to the one
+ given as input.
+
+ VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
+ On entry, contains a matrix which on exit has been
+ premultiplied by P', dimension N-by-NCVT if SQRE = 0
+ and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
+
+ LDVT (input) INTEGER
+ On entry, LDVT specifies the leading dimension of VT as
+ declared in the calling (sub) program. LDVT must be at
+ least 1. If NCVT is nonzero LDVT must also be at least N.
+
+ U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
+ On entry, contains a matrix which on exit has been
+ postmultiplied by Q, dimension NRU-by-N if SQRE = 0
+ and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
+
+ LDU (input) INTEGER
+ On entry, LDU specifies the leading dimension of U as
+ declared in the calling (sub) program. LDU must be at
+ least max( 1, NRU ) .
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
+ On entry, contains an N-by-NCC matrix which on exit
+ has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
+ and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
+
+ LDC (input) INTEGER
+ On entry, LDC specifies the leading dimension of C as
+ declared in the calling (sub) program. LDC must be at
+ least 1. If NCC is nonzero, LDC must also be at least N.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
+ Workspace. Only referenced if one of NCVT, NRU, or NCC is
+ nonzero, and if N is at least 2.
+
+ INFO (output) INTEGER
+ On exit, a value of 0 indicates a successful exit.
+ If INFO < 0, argument number -INFO is illegal.
+ If INFO > 0, the algorithm did not converge, and INFO
+ specifies how many superdiagonals did not converge.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1 * 1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1 * 1;
+ u -= u_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ iuplo = 0;
+ if (lsame_(uplo, "U")) {
+ iuplo = 1;
+ }
+ if (lsame_(uplo, "L")) {
+ iuplo = 2;
+ }
+ if (iuplo == 0) {
+ *info = -1;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ncvt < 0) {
+ *info = -4;
+ } else if (*nru < 0) {
+ *info = -5;
+ } else if (*ncc < 0) {
+ *info = -6;
+ } else if ((*ncvt == 0 && *ldvt < 1) || (*ncvt > 0 && *ldvt < max(1,*n)))
+ {
+ *info = -10;
+ } else if (*ldu < max(1,*nru)) {
+ *info = -12;
+ } else if ((*ncc == 0 && *ldc < 1) || (*ncc > 0 && *ldc < max(1,*n))) {
+ *info = -14;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASDQ", &i__1);
+ return 0;
+ }
+ if (*n == 0) {
+ return 0;
+ }
+
+/* ROTATE is true if any singular vectors desired, false otherwise */
+
+ rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
+ np1 = *n + 1;
+ sqre1 = *sqre;
+
+/*
+ If matrix non-square upper bidiagonal, rotate to be lower
+ bidiagonal. The rotations are on the right.
+*/
+
+ if ((iuplo == 1 && sqre1 == 1)) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (rotate) {
+ work[i__] = cs;
+ work[*n + i__] = sn;
+ }
+/* L10: */
+ }
+ dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
+ d__[*n] = r__;
+ e[*n] = 0.;
+ if (rotate) {
+ work[*n] = cs;
+ work[*n + *n] = sn;
+ }
+ iuplo = 2;
+ sqre1 = 0;
+
+/* Update singular vectors if desired. */
+
+ if (*ncvt > 0) {
+ dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
+ vt_offset], ldvt);
+ }
+ }
+
+/*
+ If matrix lower bidiagonal, rotate to be upper bidiagonal
+ by applying Givens rotations on the left.
+*/
+
+ if (iuplo == 2) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (rotate) {
+ work[i__] = cs;
+ work[*n + i__] = sn;
+ }
+/* L20: */
+ }
+
+/*
+ If matrix (N+1)-by-N lower bidiagonal, one additional
+ rotation is needed.
+*/
+
+ if (sqre1 == 1) {
+ dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
+ d__[*n] = r__;
+ if (rotate) {
+ work[*n] = cs;
+ work[*n + *n] = sn;
+ }
+ }
+
+/* Update singular vectors if desired. */
+
+ if (*nru > 0) {
+ if (sqre1 == 0) {
+ dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
+ u_offset], ldu);
+ } else {
+ dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
+ u_offset], ldu);
+ }
+ }
+ if (*ncc > 0) {
+ if (sqre1 == 0) {
+ dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
+ c_offset], ldc);
+ } else {
+ dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
+ c_offset], ldc);
+ }
+ }
+ }
+
+/*
+ Call DBDSQR to compute the SVD of the reduced real
+ N-by-N upper bidiagonal matrix.
+*/
+
+ dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
+ u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
+
+/*
+ Sort the singular values into ascending order (insertion sort on
+ singular values, but only one transposition per singular vector)
+*/
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Scan for smallest D(I). */
+
+ isub = i__;
+ smin = d__[i__];
+ i__2 = *n;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ if (d__[j] < smin) {
+ isub = j;
+ smin = d__[j];
+ }
+/* L30: */
+ }
+ if (isub != i__) {
+
+/* Swap singular values and vectors. */
+
+ d__[isub] = d__[i__];
+ d__[i__] = smin;
+ if (*ncvt > 0) {
+ dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1],
+ ldvt);
+ }
+ if (*nru > 0) {
+ dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
+ , &c__1);
+ }
+ if (*ncc > 0) {
+ dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
+ ;
+ }
+ }
+/* L40: */
+ }
+
+ return 0;
+
+/* End of DLASDQ */
+
+} /* dlasdq_ */
+
+/* Subroutine */ int dlasdt_(integer *n, integer *lvl, integer *nd, integer *
+ inode, integer *ndiml, integer *ndimr, integer *msub)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Builtin functions */
+ double log(doublereal);
+
+ /* Local variables */
+ static integer i__, il, ir, maxn;
+ static doublereal temp;
+ static integer nlvl, llst, ncrnt;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASDT creates a tree of subproblems for bidiagonal divide and
+ conquer.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ On entry, the number of diagonal elements of the
+ bidiagonal matrix.
+
+ LVL (output) INTEGER
+ On exit, the number of levels on the computation tree.
+
+ ND (output) INTEGER
+ On exit, the number of nodes on the tree.
+
+ INODE (output) INTEGER array, dimension ( N )
+ On exit, centers of subproblems.
+
+ NDIML (output) INTEGER array, dimension ( N )
+ On exit, row dimensions of left children.
+
+ NDIMR (output) INTEGER array, dimension ( N )
+ On exit, row dimensions of right children.
+
+ MSUB (input) INTEGER.
+ On entry, the maximum row dimension each subproblem at the
+ bottom of the tree can be of.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Ming Gu and Huan Ren, Computer Science Division, University of
+ California at Berkeley, USA
+
+ =====================================================================
+
+
+ Find the number of levels on the tree.
+*/
+
+ /* Parameter adjustments */
+ --ndimr;
+ --ndiml;
+ --inode;
+
+ /* Function Body */
+ maxn = max(1,*n);
+ temp = log((doublereal) maxn / (doublereal) (*msub + 1)) / log(2.);
+ *lvl = (integer) temp + 1;
+
+ i__ = *n / 2;
+ inode[1] = i__ + 1;
+ ndiml[1] = i__;
+ ndimr[1] = *n - i__ - 1;
+ il = 0;
+ ir = 1;
+ llst = 1;
+ i__1 = *lvl - 1;
+ for (nlvl = 1; nlvl <= i__1; ++nlvl) {
+
+/*
+ Constructing the tree at (NLVL+1)-st level. The number of
+ nodes created on this level is LLST * 2.
+*/
+
+ i__2 = llst - 1;
+ for (i__ = 0; i__ <= i__2; ++i__) {
+ il += 2;
+ ir += 2;
+ ncrnt = llst + i__;
+ ndiml[il] = ndiml[ncrnt] / 2;
+ ndimr[il] = ndiml[ncrnt] - ndiml[il] - 1;
+ inode[il] = inode[ncrnt] - ndimr[il] - 1;
+ ndiml[ir] = ndimr[ncrnt] / 2;
+ ndimr[ir] = ndimr[ncrnt] - ndiml[ir] - 1;
+ inode[ir] = inode[ncrnt] + ndiml[ir] + 1;
+/* L10: */
+ }
+ llst <<= 1;
+/* L20: */
+ }
+ *nd = ((llst) << (1)) - 1;
+
+ return 0;
+
+/* End of DLASDT */
+
+} /* dlasdt_ */
+
+/* Subroutine */ int dlaset_(char *uplo, integer *m, integer *n, doublereal *
+ alpha, doublereal *beta, doublereal *a, integer *lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j;
+ extern logical lsame_(char *, char *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLASET initializes an m-by-n matrix A to BETA on the diagonal and
+ ALPHA on the offdiagonals.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ Specifies the part of the matrix A to be set.
+ = 'U': Upper triangular part is set; the strictly lower
+ triangular part of A is not changed.
+ = 'L': Lower triangular part is set; the strictly upper
+ triangular part of A is not changed.
+ Otherwise: All of the matrix A is set.
+
+ M (input) INTEGER
+ The number of rows of the matrix A. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. N >= 0.
+
+ ALPHA (input) DOUBLE PRECISION
+ The constant to which the offdiagonal elements are to be set.
+
+ BETA (input) DOUBLE PRECISION
+ The constant to which the diagonal elements are to be set.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On exit, the leading m-by-n submatrix of A is set as follows:
+
+ if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
+ if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
+ otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
+
+ and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+
+ /* Function Body */
+ if (lsame_(uplo, "U")) {
+
+/*
+ Set the strictly upper triangular or trapezoidal part of the
+ array to ALPHA.
+*/
+
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = j - 1;
+ i__2 = min(i__3,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = *alpha;
+/* L10: */
+ }
+/* L20: */
+ }
+
+ } else if (lsame_(uplo, "L")) {
+
+/*
+ Set the strictly lower triangular or trapezoidal part of the
+ array to ALPHA.
+*/
+
+ i__1 = min(*m,*n);
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = *alpha;
+/* L30: */
+ }
+/* L40: */
+ }
+
+ } else {
+
+/* Set the leading m-by-n submatrix to ALPHA. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = *alpha;
+/* L50: */
+ }
+/* L60: */
+ }
+ }
+
+/* Set the first min(M,N) diagonal elements to BETA. */
+
+ i__1 = min(*m,*n);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ a[i__ + i__ * a_dim1] = *beta;
+/* L70: */
+ }
+
+ return 0;
+
+/* End of DLASET */
+
+} /* dlaset_ */
+
+/* Subroutine */ int dlasq1_(integer *n, doublereal *d__, doublereal *e,
+ doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ doublereal d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal eps;
+ extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal
+ *, doublereal *, doublereal *);
+ static doublereal scale;
+ static integer iinfo;
+ static doublereal sigmn;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static doublereal sigmx;
+ extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
+
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *);
+ static doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *), dlasrt_(
+ char *, integer *, doublereal *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASQ1 computes the singular values of a real N-by-N bidiagonal
+ matrix with diagonal D and off-diagonal E. The singular values
+ are computed to high relative accuracy, in the absence of
+ denormalization, underflow and overflow. The algorithm was first
+ presented in
+
+ "Accurate singular values and differential qd algorithms" by K. V.
+ Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
+ 1994,
+
+ and the present implementation is described in "An implementation of
+ the dqds Algorithm (Positive Case)", LAPACK Working Note.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The number of rows and columns in the matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, D contains the diagonal elements of the
+ bidiagonal matrix whose SVD is desired. On normal exit,
+ D contains the singular values in decreasing order.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, elements E(1:N-1) contain the off-diagonal elements
+ of the bidiagonal matrix whose SVD is desired.
+ On exit, E is overwritten.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: the algorithm failed
+ = 1, a split was marked by a positive value in E
+ = 2, current block of Z not diagonalized after 30*N
+ iterations (in inner while loop)
+ = 3, termination criterion of outer while loop not met
+ (program created more than N unreduced blocks)
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --work;
+ --e;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ if (*n < 0) {
+ *info = -2;
+ i__1 = -(*info);
+ xerbla_("DLASQ1", &i__1);
+ return 0;
+ } else if (*n == 0) {
+ return 0;
+ } else if (*n == 1) {
+ d__[1] = abs(d__[1]);
+ return 0;
+ } else if (*n == 2) {
+ dlas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx);
+ d__[1] = sigmx;
+ d__[2] = sigmn;
+ return 0;
+ }
+
+/* Estimate the largest singular value. */
+
+ sigmx = 0.;
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = (d__1 = d__[i__], abs(d__1));
+/* Computing MAX */
+ d__2 = sigmx, d__3 = (d__1 = e[i__], abs(d__1));
+ sigmx = max(d__2,d__3);
+/* L10: */
+ }
+ d__[*n] = (d__1 = d__[*n], abs(d__1));
+
+/* Early return if SIGMX is zero (matrix is already diagonal). */
+
+ if (sigmx == 0.) {
+ dlasrt_("D", n, &d__[1], &iinfo);
+ return 0;
+ }
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = sigmx, d__2 = d__[i__];
+ sigmx = max(d__1,d__2);
+/* L20: */
+ }
+
+/*
+ Copy D and E into WORK (in the Z format) and scale (squaring the
+ input data makes scaling by a power of the radix pointless).
+*/
+
+ eps = PRECISION;
+ safmin = SAFEMINIMUM;
+ scale = sqrt(eps / safmin);
+ dcopy_(n, &d__[1], &c__1, &work[1], &c__2);
+ i__1 = *n - 1;
+ dcopy_(&i__1, &e[1], &c__1, &work[2], &c__2);
+ i__1 = ((*n) << (1)) - 1;
+ i__2 = ((*n) << (1)) - 1;
+ dlascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2,
+ &iinfo);
+
+/* Compute the q's and e's. */
+
+ i__1 = ((*n) << (1)) - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing 2nd power */
+ d__1 = work[i__];
+ work[i__] = d__1 * d__1;
+/* L30: */
+ }
+ work[*n * 2] = 0.;
+
+ dlasq2_(n, &work[1], info);
+
+ if (*info == 0) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = sqrt(work[i__]);
+/* L40: */
+ }
+ dlascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, &
+ iinfo);
+ }
+
+ return 0;
+
+/* End of DLASQ1 */
+
+} /* dlasq1_ */
+
+/* Subroutine */ int dlasq2_(integer *n, doublereal *z__, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal d__, e;
+ static integer k;
+ static doublereal s, t;
+ static integer i0, i4, n0, pp;
+ static doublereal eps, tol;
+ static integer ipn4;
+ static doublereal tol2;
+ static logical ieee;
+ static integer nbig;
+ static doublereal dmin__, emin, emax;
+ static integer ndiv, iter;
+ static doublereal qmin, temp, qmax, zmax;
+ static integer splt, nfail;
+ static doublereal desig, trace, sigma;
+ static integer iinfo;
+ extern /* Subroutine */ int dlasq3_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ integer *, integer *, integer *, logical *);
+
+ static integer iwhila, iwhilb;
+ static doublereal oldemn, safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
+ integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASQ2 computes all the eigenvalues of the symmetric positive
+ definite tridiagonal matrix associated with the qd array Z to high
+ relative accuracy are computed to high relative accuracy, in the
+ absence of denormalization, underflow and overflow.
+
+ To see the relation of Z to the tridiagonal matrix, let L be a
+ unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
+ let U be an upper bidiagonal matrix with 1's above and diagonal
+ Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
+ symmetric tridiagonal to which it is similar.
+
+ Note : DLASQ2 defines a logical variable, IEEE, which is true
+ on machines which follow ieee-754 floating-point standard in their
+ handling of infinities and NaNs, and false otherwise. This variable
+ is passed to DLASQ3.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The number of rows and columns in the matrix. N >= 0.
+
+ Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )
+ On entry Z holds the qd array. On exit, entries 1 to N hold
+ the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
+ trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
+ N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
+ holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
+ shifts that failed.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if the i-th argument is a scalar and had an illegal
+ value, then INFO = -i, if the i-th argument is an
+ array and the j-entry had an illegal value, then
+ INFO = -(i*100+j)
+ > 0: the algorithm failed
+ = 1, a split was marked by a positive value in E
+ = 2, current block of Z not diagonalized after 30*N
+ iterations (in inner while loop)
+ = 3, termination criterion of outer while loop not met
+ (program created more than N unreduced blocks)
+
+ Further Details
+ ===============
+ Local Variables: I0:N0 defines a current unreduced segment of Z.
+ The shifts are accumulated in SIGMA. Iteration count is in ITER.
+ Ping-pong is controlled by PP (alternates between 0 and 1).
+
+ =====================================================================
+
+
+ Test the input arguments.
+ (in case DLASQ2 is not called by DLASQ1)
+*/
+
+ /* Parameter adjustments */
+ --z__;
+
+ /* Function Body */
+ *info = 0;
+ eps = PRECISION;
+ safmin = SAFEMINIMUM;
+ tol = eps * 100.;
+/* Computing 2nd power */
+ d__1 = tol;
+ tol2 = d__1 * d__1;
+
+ if (*n < 0) {
+ *info = -1;
+ xerbla_("DLASQ2", &c__1);
+ return 0;
+ } else if (*n == 0) {
+ return 0;
+ } else if (*n == 1) {
+
+/* 1-by-1 case. */
+
+ if (z__[1] < 0.) {
+ *info = -201;
+ xerbla_("DLASQ2", &c__2);
+ }
+ return 0;
+ } else if (*n == 2) {
+
+/* 2-by-2 case. */
+
+ if (z__[2] < 0. || z__[3] < 0.) {
+ *info = -2;
+ xerbla_("DLASQ2", &c__2);
+ return 0;
+ } else if (z__[3] > z__[1]) {
+ d__ = z__[3];
+ z__[3] = z__[1];
+ z__[1] = d__;
+ }
+ z__[5] = z__[1] + z__[2] + z__[3];
+ if (z__[2] > z__[3] * tol2) {
+ t = (z__[1] - z__[3] + z__[2]) * .5;
+ s = z__[3] * (z__[2] / t);
+ if (s <= t) {
+ s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));
+ } else {
+ s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
+ }
+ t = z__[1] + (s + z__[2]);
+ z__[3] *= z__[1] / t;
+ z__[1] = t;
+ }
+ z__[2] = z__[3];
+ z__[6] = z__[2] + z__[1];
+ return 0;
+ }
+
+/* Check for negative data and compute sums of q's and e's. */
+
+ z__[*n * 2] = 0.;
+ emin = z__[2];
+ qmax = 0.;
+ zmax = 0.;
+ d__ = 0.;
+ e = 0.;
+
+ i__1 = (*n - 1) << (1);
+ for (k = 1; k <= i__1; k += 2) {
+ if (z__[k] < 0.) {
+ *info = -(k + 200);
+ xerbla_("DLASQ2", &c__2);
+ return 0;
+ } else if (z__[k + 1] < 0.) {
+ *info = -(k + 201);
+ xerbla_("DLASQ2", &c__2);
+ return 0;
+ }
+ d__ += z__[k];
+ e += z__[k + 1];
+/* Computing MAX */
+ d__1 = qmax, d__2 = z__[k];
+ qmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[k + 1];
+ emin = min(d__1,d__2);
+/* Computing MAX */
+ d__1 = max(qmax,zmax), d__2 = z__[k + 1];
+ zmax = max(d__1,d__2);
+/* L10: */
+ }
+ if (z__[((*n) << (1)) - 1] < 0.) {
+ *info = -(((*n) << (1)) + 199);
+ xerbla_("DLASQ2", &c__2);
+ return 0;
+ }
+ d__ += z__[((*n) << (1)) - 1];
+/* Computing MAX */
+ d__1 = qmax, d__2 = z__[((*n) << (1)) - 1];
+ qmax = max(d__1,d__2);
+ zmax = max(qmax,zmax);
+
+/* Check for diagonality. */
+
+ if (e == 0.) {
+ i__1 = *n;
+ for (k = 2; k <= i__1; ++k) {
+ z__[k] = z__[((k) << (1)) - 1];
+/* L20: */
+ }
+ dlasrt_("D", n, &z__[1], &iinfo);
+ z__[((*n) << (1)) - 1] = d__;
+ return 0;
+ }
+
+ trace = d__ + e;
+
+/* Check for zero data. */
+
+ if (trace == 0.) {
+ z__[((*n) << (1)) - 1] = 0.;
+ return 0;
+ }
+
+/* Check whether the machine is IEEE conformable. */
+
+ ieee = (ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4, (
+ ftnlen)6, (ftnlen)1) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1,
+ &c__2, &c__3, &c__4, (ftnlen)6, (ftnlen)1) == 1);
+
+/* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
+
+ for (k = (*n) << (1); k >= 2; k += -2) {
+ z__[k * 2] = 0.;
+ z__[((k) << (1)) - 1] = z__[k];
+ z__[((k) << (1)) - 2] = 0.;
+ z__[((k) << (1)) - 3] = z__[k - 1];
+/* L30: */
+ }
+
+ i0 = 1;
+ n0 = *n;
+
+/* Reverse the qd-array, if warranted. */
+
+ if (z__[((i0) << (2)) - 3] * 1.5 < z__[((n0) << (2)) - 3]) {
+ ipn4 = (i0 + n0) << (2);
+ i__1 = (i0 + n0 - 1) << (1);
+ for (i4 = (i0) << (2); i4 <= i__1; i4 += 4) {
+ temp = z__[i4 - 3];
+ z__[i4 - 3] = z__[ipn4 - i4 - 3];
+ z__[ipn4 - i4 - 3] = temp;
+ temp = z__[i4 - 1];
+ z__[i4 - 1] = z__[ipn4 - i4 - 5];
+ z__[ipn4 - i4 - 5] = temp;
+/* L40: */
+ }
+ }
+
+/* Initial split checking via dqd and Li's test. */
+
+ pp = 0;
+
+ for (k = 1; k <= 2; ++k) {
+
+ d__ = z__[((n0) << (2)) + pp - 3];
+ i__1 = ((i0) << (2)) + pp;
+ for (i4 = ((n0 - 1) << (2)) + pp; i4 >= i__1; i4 += -4) {
+ if (z__[i4 - 1] <= tol2 * d__) {
+ z__[i4 - 1] = -0.;
+ d__ = z__[i4 - 3];
+ } else {
+ d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
+ }
+/* L50: */
+ }
+
+/* dqd maps Z to ZZ plus Li's test. */
+
+ emin = z__[((i0) << (2)) + pp + 1];
+ d__ = z__[((i0) << (2)) + pp - 3];
+ i__1 = ((n0 - 1) << (2)) + pp;
+ for (i4 = ((i0) << (2)) + pp; i4 <= i__1; i4 += 4) {
+ z__[i4 - ((pp) << (1)) - 2] = d__ + z__[i4 - 1];
+ if (z__[i4 - 1] <= tol2 * d__) {
+ z__[i4 - 1] = -0.;
+ z__[i4 - ((pp) << (1)) - 2] = d__;
+ z__[i4 - ((pp) << (1))] = 0.;
+ d__ = z__[i4 + 1];
+ } else if ((safmin * z__[i4 + 1] < z__[i4 - ((pp) << (1)) - 2] &&
+ safmin * z__[i4 - ((pp) << (1)) - 2] < z__[i4 + 1])) {
+ temp = z__[i4 + 1] / z__[i4 - ((pp) << (1)) - 2];
+ z__[i4 - ((pp) << (1))] = z__[i4 - 1] * temp;
+ d__ *= temp;
+ } else {
+ z__[i4 - ((pp) << (1))] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4
+ - ((pp) << (1)) - 2]);
+ d__ = z__[i4 + 1] * (d__ / z__[i4 - ((pp) << (1)) - 2]);
+ }
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[i4 - ((pp) << (1))];
+ emin = min(d__1,d__2);
+/* L60: */
+ }
+ z__[((n0) << (2)) - pp - 2] = d__;
+
+/* Now find qmax. */
+
+ qmax = z__[((i0) << (2)) - pp - 2];
+ i__1 = ((n0) << (2)) - pp - 2;
+ for (i4 = ((i0) << (2)) - pp + 2; i4 <= i__1; i4 += 4) {
+/* Computing MAX */
+ d__1 = qmax, d__2 = z__[i4];
+ qmax = max(d__1,d__2);
+/* L70: */
+ }
+
+/* Prepare for the next iteration on K. */
+
+ pp = 1 - pp;
+/* L80: */
+ }
+
+ iter = 2;
+ nfail = 0;
+ ndiv = (n0 - i0) << (1);
+
+ i__1 = *n + 1;
+ for (iwhila = 1; iwhila <= i__1; ++iwhila) {
+ if (n0 < 1) {
+ goto L150;
+ }
+
+/*
+ While array unfinished do
+
+ E(N0) holds the value of SIGMA when submatrix in I0:N0
+ splits from the rest of the array, but is negated.
+*/
+
+ desig = 0.;
+ if (n0 == *n) {
+ sigma = 0.;
+ } else {
+ sigma = -z__[((n0) << (2)) - 1];
+ }
+ if (sigma < 0.) {
+ *info = 1;
+ return 0;
+ }
+
+/*
+ Find last unreduced submatrix's top index I0, find QMAX and
+ EMIN. Find Gershgorin-type bound if Q's much greater than E's.
+*/
+
+ emax = 0.;
+ if (n0 > i0) {
+ emin = (d__1 = z__[((n0) << (2)) - 5], abs(d__1));
+ } else {
+ emin = 0.;
+ }
+ qmin = z__[((n0) << (2)) - 3];
+ qmax = qmin;
+ for (i4 = (n0) << (2); i4 >= 8; i4 += -4) {
+ if (z__[i4 - 5] <= 0.) {
+ goto L100;
+ }
+ if (qmin >= emax * 4.) {
+/* Computing MIN */
+ d__1 = qmin, d__2 = z__[i4 - 3];
+ qmin = min(d__1,d__2);
+/* Computing MAX */
+ d__1 = emax, d__2 = z__[i4 - 5];
+ emax = max(d__1,d__2);
+ }
+/* Computing MAX */
+ d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];
+ qmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[i4 - 5];
+ emin = min(d__1,d__2);
+/* L90: */
+ }
+ i4 = 4;
+
+L100:
+ i0 = i4 / 4;
+
+/* Store EMIN for passing to DLASQ3. */
+
+ z__[((n0) << (2)) - 1] = emin;
+
+/*
+ Put -(initial shift) into DMIN.
+
+ Computing MAX
+*/
+ d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);
+ dmin__ = -max(d__1,d__2);
+
+/* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong. */
+
+ pp = 0;
+
+ nbig = (n0 - i0 + 1) * 30;
+ i__2 = nbig;
+ for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
+ if (i0 > n0) {
+ goto L130;
+ }
+
+/* While submatrix unfinished take a good dqds step. */
+
+ dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
+ nfail, &iter, &ndiv, &ieee);
+
+ pp = 1 - pp;
+
+/* When EMIN is very small check for splits. */
+
+ if ((pp == 0 && n0 - i0 >= 3)) {
+ if (z__[n0 * 4] <= tol2 * qmax || z__[((n0) << (2)) - 1] <=
+ tol2 * sigma) {
+ splt = i0 - 1;
+ qmax = z__[((i0) << (2)) - 3];
+ emin = z__[((i0) << (2)) - 1];
+ oldemn = z__[i0 * 4];
+ i__3 = (n0 - 3) << (2);
+ for (i4 = (i0) << (2); i4 <= i__3; i4 += 4) {
+ if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
+ tol2 * sigma) {
+ z__[i4 - 1] = -sigma;
+ splt = i4 / 4;
+ qmax = 0.;
+ emin = z__[i4 + 3];
+ oldemn = z__[i4 + 4];
+ } else {
+/* Computing MAX */
+ d__1 = qmax, d__2 = z__[i4 + 1];
+ qmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[i4 - 1];
+ emin = min(d__1,d__2);
+/* Computing MIN */
+ d__1 = oldemn, d__2 = z__[i4];
+ oldemn = min(d__1,d__2);
+ }
+/* L110: */
+ }
+ z__[((n0) << (2)) - 1] = emin;
+ z__[n0 * 4] = oldemn;
+ i0 = splt + 1;
+ }
+ }
+
+/* L120: */
+ }
+
+ *info = 2;
+ return 0;
+
+/* end IWHILB */
+
+L130:
+
+/* L140: */
+ ;
+ }
+
+ *info = 3;
+ return 0;
+
+/* end IWHILA */
+
+L150:
+
+/* Move q's to the front. */
+
+ i__1 = *n;
+ for (k = 2; k <= i__1; ++k) {
+ z__[k] = z__[((k) << (2)) - 3];
+/* L160: */
+ }
+
+/* Sort and compute sum of eigenvalues. */
+
+ dlasrt_("D", n, &z__[1], &iinfo);
+
+ e = 0.;
+ for (k = *n; k >= 1; --k) {
+ e += z__[k];
+/* L170: */
+ }
+
+/* Store trace, sum(eigenvalues) and information on performance. */
+
+ z__[((*n) << (1)) + 1] = trace;
+ z__[((*n) << (1)) + 2] = e;
+ z__[((*n) << (1)) + 3] = (doublereal) iter;
+/* Computing 2nd power */
+ i__1 = *n;
+ z__[((*n) << (1)) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);
+ z__[((*n) << (1)) + 5] = nfail * 100. / (doublereal) iter;
+ return 0;
+
+/* End of DLASQ2 */
+
+} /* dlasq2_ */
+
+/* Subroutine */ int dlasq3_(integer *i0, integer *n0, doublereal *z__,
+ integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig,
+ doublereal *qmax, integer *nfail, integer *iter, integer *ndiv,
+ logical *ieee)
+{
+ /* Initialized data */
+
+ static integer ttype = 0;
+ static doublereal dmin1 = 0.;
+ static doublereal dmin2 = 0.;
+ static doublereal dn = 0.;
+ static doublereal dn1 = 0.;
+ static doublereal dn2 = 0.;
+ static doublereal tau = 0.;
+
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal s, t;
+ static integer j4, nn;
+ static doublereal eps, tol;
+ static integer n0in, ipn4;
+ static doublereal tol2, temp;
+ extern /* Subroutine */ int dlasq4_(integer *, integer *, doublereal *,
+ integer *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *)
+ , dlasq5_(integer *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, logical *), dlasq6_(
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *);
+
+ static doublereal safmin;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ May 17, 2000
+
+
+ Purpose
+ =======
+
+ DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
+ In case of failure it changes shifts, and tries again until output
+ is positive.
+
+ Arguments
+ =========
+
+ I0 (input) INTEGER
+ First index.
+
+ N0 (input) INTEGER
+ Last index.
+
+ Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+ Z holds the qd array.
+
+ PP (input) INTEGER
+ PP=0 for ping, PP=1 for pong.
+
+ DMIN (output) DOUBLE PRECISION
+ Minimum value of d.
+
+ SIGMA (output) DOUBLE PRECISION
+ Sum of shifts used in current segment.
+
+ DESIG (input/output) DOUBLE PRECISION
+ Lower order part of SIGMA
+
+ QMAX (input) DOUBLE PRECISION
+ Maximum value of q.
+
+ NFAIL (output) INTEGER
+ Number of times shift was too big.
+
+ ITER (output) INTEGER
+ Number of iterations.
+
+ NDIV (output) INTEGER
+ Number of divisions.
+
+ TTYPE (output) INTEGER
+ Shift type.
+
+ IEEE (input) LOGICAL
+ Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
+
+ =====================================================================
+*/
+
+ /* Parameter adjustments */
+ --z__;
+
+ /* Function Body */
+
+ n0in = *n0;
+ eps = PRECISION;
+ safmin = SAFEMINIMUM;
+ tol = eps * 100.;
+/* Computing 2nd power */
+ d__1 = tol;
+ tol2 = d__1 * d__1;
+
+/* Check for deflation. */
+
+L10:
+
+ if (*n0 < *i0) {
+ return 0;
+ }
+ if (*n0 == *i0) {
+ goto L20;
+ }
+ nn = ((*n0) << (2)) + *pp;
+ if (*n0 == *i0 + 1) {
+ goto L40;
+ }
+
+/* Check whether E(N0-1) is negligible, 1 eigenvalue. */
+
+ if ((z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - ((*pp) << (1)
+ ) - 4] > tol2 * z__[nn - 7])) {
+ goto L30;
+ }
+
+L20:
+
+ z__[((*n0) << (2)) - 3] = z__[((*n0) << (2)) + *pp - 3] + *sigma;
+ --(*n0);
+ goto L10;
+
+/* Check whether E(N0-2) is negligible, 2 eigenvalues. */
+
+L30:
+
+ if ((z__[nn - 9] > tol2 * *sigma && z__[nn - ((*pp) << (1)) - 8] > tol2 *
+ z__[nn - 11])) {
+ goto L50;
+ }
+
+L40:
+
+ if (z__[nn - 3] > z__[nn - 7]) {
+ s = z__[nn - 3];
+ z__[nn - 3] = z__[nn - 7];
+ z__[nn - 7] = s;
+ }
+ if (z__[nn - 5] > z__[nn - 3] * tol2) {
+ t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5;
+ s = z__[nn - 3] * (z__[nn - 5] / t);
+ if (s <= t) {
+ s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.)));
+ } else {
+ s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));
+ }
+ t = z__[nn - 7] + (s + z__[nn - 5]);
+ z__[nn - 3] *= z__[nn - 7] / t;
+ z__[nn - 7] = t;
+ }
+ z__[((*n0) << (2)) - 7] = z__[nn - 7] + *sigma;
+ z__[((*n0) << (2)) - 3] = z__[nn - 3] + *sigma;
+ *n0 += -2;
+ goto L10;
+
+L50:
+
+/* Reverse the qd-array, if warranted. */
+
+ if (*dmin__ <= 0. || *n0 < n0in) {
+ if (z__[((*i0) << (2)) + *pp - 3] * 1.5 < z__[((*n0) << (2)) + *pp -
+ 3]) {
+ ipn4 = (*i0 + *n0) << (2);
+ i__1 = (*i0 + *n0 - 1) << (1);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ temp = z__[j4 - 3];
+ z__[j4 - 3] = z__[ipn4 - j4 - 3];
+ z__[ipn4 - j4 - 3] = temp;
+ temp = z__[j4 - 2];
+ z__[j4 - 2] = z__[ipn4 - j4 - 2];
+ z__[ipn4 - j4 - 2] = temp;
+ temp = z__[j4 - 1];
+ z__[j4 - 1] = z__[ipn4 - j4 - 5];
+ z__[ipn4 - j4 - 5] = temp;
+ temp = z__[j4];
+ z__[j4] = z__[ipn4 - j4 - 4];
+ z__[ipn4 - j4 - 4] = temp;
+/* L60: */
+ }
+ if (*n0 - *i0 <= 4) {
+ z__[((*n0) << (2)) + *pp - 1] = z__[((*i0) << (2)) + *pp - 1];
+ z__[((*n0) << (2)) - *pp] = z__[((*i0) << (2)) - *pp];
+ }
+/* Computing MIN */
+ d__1 = dmin2, d__2 = z__[((*n0) << (2)) + *pp - 1];
+ dmin2 = min(d__1,d__2);
+/* Computing MIN */
+ d__1 = z__[((*n0) << (2)) + *pp - 1], d__2 = z__[((*i0) << (2)) +
+ *pp - 1], d__1 = min(d__1,d__2), d__2 = z__[((*i0) << (2))
+ + *pp + 3];
+ z__[((*n0) << (2)) + *pp - 1] = min(d__1,d__2);
+/* Computing MIN */
+ d__1 = z__[((*n0) << (2)) - *pp], d__2 = z__[((*i0) << (2)) - *pp]
+ , d__1 = min(d__1,d__2), d__2 = z__[((*i0) << (2)) - *pp
+ + 4];
+ z__[((*n0) << (2)) - *pp] = min(d__1,d__2);
+/* Computing MAX */
+ d__1 = *qmax, d__2 = z__[((*i0) << (2)) + *pp - 3], d__1 = max(
+ d__1,d__2), d__2 = z__[((*i0) << (2)) + *pp + 1];
+ *qmax = max(d__1,d__2);
+ *dmin__ = -0.;
+ }
+ }
+
+/*
+ L70:
+
+ Computing MIN
+*/
+ d__1 = z__[((*n0) << (2)) + *pp - 1], d__2 = z__[((*n0) << (2)) + *pp - 9]
+ , d__1 = min(d__1,d__2), d__2 = dmin2 + z__[((*n0) << (2)) - *pp];
+ if (*dmin__ < 0. || safmin * *qmax < min(d__1,d__2)) {
+
+/* Choose a shift. */
+
+ dlasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, &dmin1, &dmin2, &dn, &dn1,
+ &dn2, &tau, &ttype);
+
+/* Call dqds until DMIN > 0. */
+
+L80:
+
+ dlasq5_(i0, n0, &z__[1], pp, &tau, dmin__, &dmin1, &dmin2, &dn, &dn1,
+ &dn2, ieee);
+
+ *ndiv += *n0 - *i0 + 2;
+ ++(*iter);
+
+/* Check status. */
+
+ if ((*dmin__ >= 0. && dmin1 > 0.)) {
+
+/* Success. */
+
+ goto L100;
+
+ } else if ((((*dmin__ < 0. && dmin1 > 0.) && z__[((*n0 - 1) << (2)) -
+ *pp] < tol * (*sigma + dn1)) && abs(dn) < tol * *sigma)) {
+
+/* Convergence hidden by negative DN. */
+
+ z__[((*n0 - 1) << (2)) - *pp + 2] = 0.;
+ *dmin__ = 0.;
+ goto L100;
+ } else if (*dmin__ < 0.) {
+
+/* TAU too big. Select new TAU and try again. */
+
+ ++(*nfail);
+ if (ttype < -22) {
+
+/* Failed twice. Play it safe. */
+
+ tau = 0.;
+ } else if (dmin1 > 0.) {
+
+/* Late failure. Gives excellent shift. */
+
+ tau = (tau + *dmin__) * (1. - eps * 2.);
+ ttype += -11;
+ } else {
+
+/* Early failure. Divide by 4. */
+
+ tau *= .25;
+ ttype += -12;
+ }
+ goto L80;
+ } else if (*dmin__ != *dmin__) {
+
+/* NaN. */
+
+ tau = 0.;
+ goto L80;
+ } else {
+
+/* Possible underflow. Play it safe. */
+
+ goto L90;
+ }
+ }
+
+/* Risk of underflow. */
+
+L90:
+ dlasq6_(i0, n0, &z__[1], pp, dmin__, &dmin1, &dmin2, &dn, &dn1, &dn2);
+ *ndiv += *n0 - *i0 + 2;
+ ++(*iter);
+ tau = 0.;
+
+L100:
+ if (tau < *sigma) {
+ *desig += tau;
+ t = *sigma + *desig;
+ *desig -= t - *sigma;
+ } else {
+ t = *sigma + tau;
+ *desig = *sigma - (t - tau) + *desig;
+ }
+ *sigma = t;
+
+ return 0;
+
+/* End of DLASQ3 */
+
+} /* dlasq3_ */
+
+/* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__,
+ integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
+ doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
+ doublereal *tau, integer *ttype)
+{
+ /* Initialized data */
+
+ static doublereal g = 0.;
+
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal s, a2, b1, b2;
+ static integer i4, nn, np;
+ static doublereal gam, gap1, gap2;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASQ4 computes an approximation TAU to the smallest eigenvalue
+ using values of d from the previous transform.
+
+ I0 (input) INTEGER
+ First index.
+
+ N0 (input) INTEGER
+ Last index.
+
+ Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+ Z holds the qd array.
+
+ PP (input) INTEGER
+ PP=0 for ping, PP=1 for pong.
+
+ NOIN (input) INTEGER
+ The value of N0 at start of EIGTEST.
+
+ DMIN (input) DOUBLE PRECISION
+ Minimum value of d.
+
+ DMIN1 (input) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ).
+
+ DMIN2 (input) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ) and D( N0-1 ).
+
+ DN (input) DOUBLE PRECISION
+ d(N)
+
+ DN1 (input) DOUBLE PRECISION
+ d(N-1)
+
+ DN2 (input) DOUBLE PRECISION
+ d(N-2)
+
+ TAU (output) DOUBLE PRECISION
+ This is the shift.
+
+ TTYPE (output) INTEGER
+ Shift type.
+
+ Further Details
+ ===============
+ CNST1 = 9/16
+
+ =====================================================================
+*/
+
+ /* Parameter adjustments */
+ --z__;
+
+ /* Function Body */
+
+/*
+ A negative DMIN forces the shift to take that absolute value
+ TTYPE records the type of shift.
+*/
+
+ if (*dmin__ <= 0.) {
+ *tau = -(*dmin__);
+ *ttype = -1;
+ return 0;
+ }
+
+ nn = ((*n0) << (2)) + *pp;
+ if (*n0in == *n0) {
+
+/* No eigenvalues deflated. */
+
+ if (*dmin__ == *dn || *dmin__ == *dn1) {
+
+ b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
+ b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
+ a2 = z__[nn - 7] + z__[nn - 5];
+
+/* Cases 2 and 3. */
+
+ if ((*dmin__ == *dn && *dmin1 == *dn1)) {
+ gap2 = *dmin2 - a2 - *dmin2 * .25;
+ if ((gap2 > 0. && gap2 > b2)) {
+ gap1 = a2 - *dn - b2 / gap2 * b2;
+ } else {
+ gap1 = a2 - *dn - (b1 + b2);
+ }
+ if ((gap1 > 0. && gap1 > b1)) {
+/* Computing MAX */
+ d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
+ s = max(d__1,d__2);
+ *ttype = -2;
+ } else {
+ s = 0.;
+ if (*dn > b1) {
+ s = *dn - b1;
+ }
+ if (a2 > b1 + b2) {
+/* Computing MIN */
+ d__1 = s, d__2 = a2 - (b1 + b2);
+ s = min(d__1,d__2);
+ }
+/* Computing MAX */
+ d__1 = s, d__2 = *dmin__ * .333;
+ s = max(d__1,d__2);
+ *ttype = -3;
+ }
+ } else {
+
+/* Case 4. */
+
+ *ttype = -4;
+ s = *dmin__ * .25;
+ if (*dmin__ == *dn) {
+ gam = *dn;
+ a2 = 0.;
+ if (z__[nn - 5] > z__[nn - 7]) {
+ return 0;
+ }
+ b2 = z__[nn - 5] / z__[nn - 7];
+ np = nn - 9;
+ } else {
+ np = nn - ((*pp) << (1));
+ b2 = z__[np - 2];
+ gam = *dn1;
+ if (z__[np - 4] > z__[np - 2]) {
+ return 0;
+ }
+ a2 = z__[np - 4] / z__[np - 2];
+ if (z__[nn - 9] > z__[nn - 11]) {
+ return 0;
+ }
+ b2 = z__[nn - 9] / z__[nn - 11];
+ np = nn - 13;
+ }
+
+/* Approximate contribution to norm squared from I < NN-1. */
+
+ a2 += b2;
+ i__1 = ((*i0) << (2)) - 1 + *pp;
+ for (i4 = np; i4 >= i__1; i4 += -4) {
+ if (b2 == 0.) {
+ goto L20;
+ }
+ b1 = b2;
+ if (z__[i4] > z__[i4 - 2]) {
+ return 0;
+ }
+ b2 *= z__[i4] / z__[i4 - 2];
+ a2 += b2;
+ if (max(b2,b1) * 100. < a2 || .563 < a2) {
+ goto L20;
+ }
+/* L10: */
+ }
+L20:
+ a2 *= 1.05;
+
+/* Rayleigh quotient residual bound. */
+
+ if (a2 < .563) {
+ s = gam * (1. - sqrt(a2)) / (a2 + 1.);
+ }
+ }
+ } else if (*dmin__ == *dn2) {
+
+/* Case 5. */
+
+ *ttype = -5;
+ s = *dmin__ * .25;
+
+/* Compute contribution to norm squared from I > NN-2. */
+
+ np = nn - ((*pp) << (1));
+ b1 = z__[np - 2];
+ b2 = z__[np - 6];
+ gam = *dn2;
+ if (z__[np - 8] > b2 || z__[np - 4] > b1) {
+ return 0;
+ }
+ a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
+
+/* Approximate contribution to norm squared from I < NN-2. */
+
+ if (*n0 - *i0 > 2) {
+ b2 = z__[nn - 13] / z__[nn - 15];
+ a2 += b2;
+ i__1 = ((*i0) << (2)) - 1 + *pp;
+ for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
+ if (b2 == 0.) {
+ goto L40;
+ }
+ b1 = b2;
+ if (z__[i4] > z__[i4 - 2]) {
+ return 0;
+ }
+ b2 *= z__[i4] / z__[i4 - 2];
+ a2 += b2;
+ if (max(b2,b1) * 100. < a2 || .563 < a2) {
+ goto L40;
+ }
+/* L30: */
+ }
+L40:
+ a2 *= 1.05;
+ }
+
+ if (a2 < .563) {
+ s = gam * (1. - sqrt(a2)) / (a2 + 1.);
+ }
+ } else {
+
+/* Case 6, no information to guide us. */
+
+ if (*ttype == -6) {
+ g += (1. - g) * .333;
+ } else if (*ttype == -18) {
+ g = .083250000000000005;
+ } else {
+ g = .25;
+ }
+ s = g * *dmin__;
+ *ttype = -6;
+ }
+
+ } else if (*n0in == *n0 + 1) {
+
+/* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
+
+ if ((*dmin1 == *dn1 && *dmin2 == *dn2)) {
+
+/* Cases 7 and 8. */
+
+ *ttype = -7;
+ s = *dmin1 * .333;
+ if (z__[nn - 5] > z__[nn - 7]) {
+ return 0;
+ }
+ b1 = z__[nn - 5] / z__[nn - 7];
+ b2 = b1;
+ if (b2 == 0.) {
+ goto L60;
+ }
+ i__1 = ((*i0) << (2)) - 1 + *pp;
+ for (i4 = ((*n0) << (2)) - 9 + *pp; i4 >= i__1; i4 += -4) {
+ a2 = b1;
+ if (z__[i4] > z__[i4 - 2]) {
+ return 0;
+ }
+ b1 *= z__[i4] / z__[i4 - 2];
+ b2 += b1;
+ if (max(b1,a2) * 100. < b2) {
+ goto L60;
+ }
+/* L50: */
+ }
+L60:
+ b2 = sqrt(b2 * 1.05);
+/* Computing 2nd power */
+ d__1 = b2;
+ a2 = *dmin1 / (d__1 * d__1 + 1.);
+ gap2 = *dmin2 * .5 - a2;
+ if ((gap2 > 0. && gap2 > b2 * a2)) {
+/* Computing MAX */
+ d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
+ s = max(d__1,d__2);
+ } else {
+/* Computing MAX */
+ d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
+ s = max(d__1,d__2);
+ *ttype = -8;
+ }
+ } else {
+
+/* Case 9. */
+
+ s = *dmin1 * .25;
+ if (*dmin1 == *dn1) {
+ s = *dmin1 * .5;
+ }
+ *ttype = -9;
+ }
+
+ } else if (*n0in == *n0 + 2) {
+
+/*
+ Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
+
+ Cases 10 and 11.
+*/
+
+ if ((*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7])) {
+ *ttype = -10;
+ s = *dmin2 * .333;
+ if (z__[nn - 5] > z__[nn - 7]) {
+ return 0;
+ }
+ b1 = z__[nn - 5] / z__[nn - 7];
+ b2 = b1;
+ if (b2 == 0.) {
+ goto L80;
+ }
+ i__1 = ((*i0) << (2)) - 1 + *pp;
+ for (i4 = ((*n0) << (2)) - 9 + *pp; i4 >= i__1; i4 += -4) {
+ if (z__[i4] > z__[i4 - 2]) {
+ return 0;
+ }
+ b1 *= z__[i4] / z__[i4 - 2];
+ b2 += b1;
+ if (b1 * 100. < b2) {
+ goto L80;
+ }
+/* L70: */
+ }
+L80:
+ b2 = sqrt(b2 * 1.05);
+/* Computing 2nd power */
+ d__1 = b2;
+ a2 = *dmin2 / (d__1 * d__1 + 1.);
+ gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
+ nn - 9]) - a2;
+ if ((gap2 > 0. && gap2 > b2 * a2)) {
+/* Computing MAX */
+ d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
+ s = max(d__1,d__2);
+ } else {
+/* Computing MAX */
+ d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
+ s = max(d__1,d__2);
+ }
+ } else {
+ s = *dmin2 * .25;
+ *ttype = -11;
+ }
+ } else if (*n0in > *n0 + 2) {
+
+/* Case 12, more than two eigenvalues deflated. No information. */
+
+ s = 0.;
+ *ttype = -12;
+ }
+
+ *tau = s;
+ return 0;
+
+/* End of DLASQ4 */
+
+} /* dlasq4_ */
+
+/* Subroutine */ int dlasq5_(integer *i0, integer *n0, doublereal *z__,
+ integer *pp, doublereal *tau, doublereal *dmin__, doublereal *dmin1,
+ doublereal *dmin2, doublereal *dn, doublereal *dnm1, doublereal *dnm2,
+ logical *ieee)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static doublereal d__;
+ static integer j4, j4p2;
+ static doublereal emin, temp;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ May 17, 2000
+
+
+ Purpose
+ =======
+
+ DLASQ5 computes one dqds transform in ping-pong form, one
+ version for IEEE machines another for non IEEE machines.
+
+ Arguments
+ =========
+
+ I0 (input) INTEGER
+ First index.
+
+ N0 (input) INTEGER
+ Last index.
+
+ Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+ Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
+ an extra argument.
+
+ PP (input) INTEGER
+ PP=0 for ping, PP=1 for pong.
+
+ TAU (input) DOUBLE PRECISION
+ This is the shift.
+
+ DMIN (output) DOUBLE PRECISION
+ Minimum value of d.
+
+ DMIN1 (output) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ).
+
+ DMIN2 (output) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ) and D( N0-1 ).
+
+ DN (output) DOUBLE PRECISION
+ d(N0), the last value of d.
+
+ DNM1 (output) DOUBLE PRECISION
+ d(N0-1).
+
+ DNM2 (output) DOUBLE PRECISION
+ d(N0-2).
+
+ IEEE (input) LOGICAL
+ Flag for IEEE or non IEEE arithmetic.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --z__;
+
+ /* Function Body */
+ if (*n0 - *i0 - 1 <= 0) {
+ return 0;
+ }
+
+ j4 = ((*i0) << (2)) + *pp - 3;
+ emin = z__[j4 + 4];
+ d__ = z__[j4] - *tau;
+ *dmin__ = d__;
+ *dmin1 = -z__[j4];
+
+ if (*ieee) {
+
+/* Code for IEEE arithmetic. */
+
+ if (*pp == 0) {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 2] = d__ + z__[j4 - 1];
+ temp = z__[j4 + 1] / z__[j4 - 2];
+ d__ = d__ * temp - *tau;
+ *dmin__ = min(*dmin__,d__);
+ z__[j4] = z__[j4 - 1] * temp;
+/* Computing MIN */
+ d__1 = z__[j4];
+ emin = min(d__1,emin);
+/* L10: */
+ }
+ } else {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 3] = d__ + z__[j4];
+ temp = z__[j4 + 2] / z__[j4 - 3];
+ d__ = d__ * temp - *tau;
+ *dmin__ = min(*dmin__,d__);
+ z__[j4 - 1] = z__[j4] * temp;
+/* Computing MIN */
+ d__1 = z__[j4 - 1];
+ emin = min(d__1,emin);
+/* L20: */
+ }
+ }
+
+/* Unroll last two steps. */
+
+ *dnm2 = d__;
+ *dmin2 = *dmin__;
+ j4 = ((*n0 - 2) << (2)) - *pp;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm2 + z__[j4p2];
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]) - *tau;
+ *dmin__ = min(*dmin__,*dnm1);
+
+ *dmin1 = *dmin__;
+ j4 += 4;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm1 + z__[j4p2];
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]) - *tau;
+ *dmin__ = min(*dmin__,*dn);
+
+ } else {
+
+/* Code for non IEEE arithmetic. */
+
+ if (*pp == 0) {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 2] = d__ + z__[j4 - 1];
+ if (d__ < 0.) {
+ return 0;
+ } else {
+ z__[j4] = z__[j4 + 1] * (z__[j4 - 1] / z__[j4 - 2]);
+ d__ = z__[j4 + 1] * (d__ / z__[j4 - 2]) - *tau;
+ }
+ *dmin__ = min(*dmin__,d__);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[j4];
+ emin = min(d__1,d__2);
+/* L30: */
+ }
+ } else {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 3] = d__ + z__[j4];
+ if (d__ < 0.) {
+ return 0;
+ } else {
+ z__[j4 - 1] = z__[j4 + 2] * (z__[j4] / z__[j4 - 3]);
+ d__ = z__[j4 + 2] * (d__ / z__[j4 - 3]) - *tau;
+ }
+ *dmin__ = min(*dmin__,d__);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[j4 - 1];
+ emin = min(d__1,d__2);
+/* L40: */
+ }
+ }
+
+/* Unroll last two steps. */
+
+ *dnm2 = d__;
+ *dmin2 = *dmin__;
+ j4 = ((*n0 - 2) << (2)) - *pp;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm2 + z__[j4p2];
+ if (*dnm2 < 0.) {
+ return 0;
+ } else {
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]) - *tau;
+ }
+ *dmin__ = min(*dmin__,*dnm1);
+
+ *dmin1 = *dmin__;
+ j4 += 4;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm1 + z__[j4p2];
+ if (*dnm1 < 0.) {
+ return 0;
+ } else {
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]) - *tau;
+ }
+ *dmin__ = min(*dmin__,*dn);
+
+ }
+
+ z__[j4 + 2] = *dn;
+ z__[((*n0) << (2)) - *pp] = emin;
+ return 0;
+
+/* End of DLASQ5 */
+
+} /* dlasq5_ */
+
+/* Subroutine */ int dlasq6_(integer *i0, integer *n0, doublereal *z__,
+ integer *pp, doublereal *dmin__, doublereal *dmin1, doublereal *dmin2,
+ doublereal *dn, doublereal *dnm1, doublereal *dnm2)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ static doublereal d__;
+ static integer j4, j4p2;
+ static doublereal emin, temp;
+
+ static doublereal safmin;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1999
+
+
+ Purpose
+ =======
+
+ DLASQ6 computes one dqd (shift equal to zero) transform in
+ ping-pong form, with protection against underflow and overflow.
+
+ Arguments
+ =========
+
+ I0 (input) INTEGER
+ First index.
+
+ N0 (input) INTEGER
+ Last index.
+
+ Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+ Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
+ an extra argument.
+
+ PP (input) INTEGER
+ PP=0 for ping, PP=1 for pong.
+
+ DMIN (output) DOUBLE PRECISION
+ Minimum value of d.
+
+ DMIN1 (output) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ).
+
+ DMIN2 (output) DOUBLE PRECISION
+ Minimum value of d, excluding D( N0 ) and D( N0-1 ).
+
+ DN (output) DOUBLE PRECISION
+ d(N0), the last value of d.
+
+ DNM1 (output) DOUBLE PRECISION
+ d(N0-1).
+
+ DNM2 (output) DOUBLE PRECISION
+ d(N0-2).
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --z__;
+
+ /* Function Body */
+ if (*n0 - *i0 - 1 <= 0) {
+ return 0;
+ }
+
+ safmin = SAFEMINIMUM;
+ j4 = ((*i0) << (2)) + *pp - 3;
+ emin = z__[j4 + 4];
+ d__ = z__[j4];
+ *dmin__ = d__;
+
+ if (*pp == 0) {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 2] = d__ + z__[j4 - 1];
+ if (z__[j4 - 2] == 0.) {
+ z__[j4] = 0.;
+ d__ = z__[j4 + 1];
+ *dmin__ = d__;
+ emin = 0.;
+ } else if ((safmin * z__[j4 + 1] < z__[j4 - 2] && safmin * z__[j4
+ - 2] < z__[j4 + 1])) {
+ temp = z__[j4 + 1] / z__[j4 - 2];
+ z__[j4] = z__[j4 - 1] * temp;
+ d__ *= temp;
+ } else {
+ z__[j4] = z__[j4 + 1] * (z__[j4 - 1] / z__[j4 - 2]);
+ d__ = z__[j4 + 1] * (d__ / z__[j4 - 2]);
+ }
+ *dmin__ = min(*dmin__,d__);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[j4];
+ emin = min(d__1,d__2);
+/* L10: */
+ }
+ } else {
+ i__1 = (*n0 - 3) << (2);
+ for (j4 = (*i0) << (2); j4 <= i__1; j4 += 4) {
+ z__[j4 - 3] = d__ + z__[j4];
+ if (z__[j4 - 3] == 0.) {
+ z__[j4 - 1] = 0.;
+ d__ = z__[j4 + 2];
+ *dmin__ = d__;
+ emin = 0.;
+ } else if ((safmin * z__[j4 + 2] < z__[j4 - 3] && safmin * z__[j4
+ - 3] < z__[j4 + 2])) {
+ temp = z__[j4 + 2] / z__[j4 - 3];
+ z__[j4 - 1] = z__[j4] * temp;
+ d__ *= temp;
+ } else {
+ z__[j4 - 1] = z__[j4 + 2] * (z__[j4] / z__[j4 - 3]);
+ d__ = z__[j4 + 2] * (d__ / z__[j4 - 3]);
+ }
+ *dmin__ = min(*dmin__,d__);
+/* Computing MIN */
+ d__1 = emin, d__2 = z__[j4 - 1];
+ emin = min(d__1,d__2);
+/* L20: */
+ }
+ }
+
+/* Unroll last two steps. */
+
+ *dnm2 = d__;
+ *dmin2 = *dmin__;
+ j4 = ((*n0 - 2) << (2)) - *pp;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm2 + z__[j4p2];
+ if (z__[j4 - 2] == 0.) {
+ z__[j4] = 0.;
+ *dnm1 = z__[j4p2 + 2];
+ *dmin__ = *dnm1;
+ emin = 0.;
+ } else if ((safmin * z__[j4p2 + 2] < z__[j4 - 2] && safmin * z__[j4 - 2] <
+ z__[j4p2 + 2])) {
+ temp = z__[j4p2 + 2] / z__[j4 - 2];
+ z__[j4] = z__[j4p2] * temp;
+ *dnm1 = *dnm2 * temp;
+ } else {
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dnm1 = z__[j4p2 + 2] * (*dnm2 / z__[j4 - 2]);
+ }
+ *dmin__ = min(*dmin__,*dnm1);
+
+ *dmin1 = *dmin__;
+ j4 += 4;
+ j4p2 = j4 + ((*pp) << (1)) - 1;
+ z__[j4 - 2] = *dnm1 + z__[j4p2];
+ if (z__[j4 - 2] == 0.) {
+ z__[j4] = 0.;
+ *dn = z__[j4p2 + 2];
+ *dmin__ = *dn;
+ emin = 0.;
+ } else if ((safmin * z__[j4p2 + 2] < z__[j4 - 2] && safmin * z__[j4 - 2] <
+ z__[j4p2 + 2])) {
+ temp = z__[j4p2 + 2] / z__[j4 - 2];
+ z__[j4] = z__[j4p2] * temp;
+ *dn = *dnm1 * temp;
+ } else {
+ z__[j4] = z__[j4p2 + 2] * (z__[j4p2] / z__[j4 - 2]);
+ *dn = z__[j4p2 + 2] * (*dnm1 / z__[j4 - 2]);
+ }
+ *dmin__ = min(*dmin__,*dn);
+
+ z__[j4 + 2] = *dn;
+ z__[((*n0) << (2)) - *pp] = emin;
+ return 0;
+
+/* End of DLASQ6 */
+
+} /* dlasq6_ */
+
+/* Subroutine */ int dlasr_(char *side, char *pivot, char *direct, integer *m,
+ integer *n, doublereal *c__, doublereal *s, doublereal *a, integer *
+ lda)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, info;
+ static doublereal temp;
+ extern logical lsame_(char *, char *);
+ static doublereal ctemp, stemp;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLASR performs the transformation
+
+ A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )
+
+ A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
+
+ where A is an m by n real matrix and P is an orthogonal matrix,
+ consisting of a sequence of plane rotations determined by the
+ parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
+ and z = n when SIDE = 'R' or 'r' ):
+
+ When DIRECT = 'F' or 'f' ( Forward sequence ) then
+
+ P = P( z - 1 )*...*P( 2 )*P( 1 ),
+
+ and when DIRECT = 'B' or 'b' ( Backward sequence ) then
+
+ P = P( 1 )*P( 2 )*...*P( z - 1 ),
+
+ where P( k ) is a plane rotation matrix for the following planes:
+
+ when PIVOT = 'V' or 'v' ( Variable pivot ),
+ the plane ( k, k + 1 )
+
+ when PIVOT = 'T' or 't' ( Top pivot ),
+ the plane ( 1, k + 1 )
+
+ when PIVOT = 'B' or 'b' ( Bottom pivot ),
+ the plane ( k, z )
+
+ c( k ) and s( k ) must contain the cosine and sine that define the
+ matrix P( k ). The two by two plane rotation part of the matrix
+ P( k ), R( k ), is assumed to be of the form
+
+ R( k ) = ( c( k ) s( k ) ).
+ ( -s( k ) c( k ) )
+
+ This version vectorises across rows of the array A when SIDE = 'L'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ Specifies whether the plane rotation matrix P is applied to
+ A on the left or the right.
+ = 'L': Left, compute A := P*A
+ = 'R': Right, compute A:= A*P'
+
+ DIRECT (input) CHARACTER*1
+ Specifies whether P is a forward or backward sequence of
+ plane rotations.
+ = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
+ = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
+
+ PIVOT (input) CHARACTER*1
+ Specifies the plane for which P(k) is a plane rotation
+ matrix.
+ = 'V': Variable pivot, the plane (k,k+1)
+ = 'T': Top pivot, the plane (1,k+1)
+ = 'B': Bottom pivot, the plane (k,z)
+
+ M (input) INTEGER
+ The number of rows of the matrix A. If m <= 1, an immediate
+ return is effected.
+
+ N (input) INTEGER
+ The number of columns of the matrix A. If n <= 1, an
+ immediate return is effected.
+
+ C, S (input) DOUBLE PRECISION arrays, dimension
+ (M-1) if SIDE = 'L'
+ (N-1) if SIDE = 'R'
+ c(k) and s(k) contain the cosine and sine that define the
+ matrix P(k). The two by two plane rotation part of the
+ matrix P(k), R(k), is assumed to be of the form
+ R( k ) = ( c( k ) s( k ) ).
+ ( -s( k ) c( k ) )
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ The m by n matrix A. On exit, A is overwritten by P*A if
+ SIDE = 'R' or by A*P' if SIDE = 'L'.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ --c__;
+ --s;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+
+ /* Function Body */
+ info = 0;
+ if (! (lsame_(side, "L") || lsame_(side, "R"))) {
+ info = 1;
+ } else if (! (lsame_(pivot, "V") || lsame_(pivot,
+ "T") || lsame_(pivot, "B"))) {
+ info = 2;
+ } else if (! (lsame_(direct, "F") || lsame_(direct,
+ "B"))) {
+ info = 3;
+ } else if (*m < 0) {
+ info = 4;
+ } else if (*n < 0) {
+ info = 5;
+ } else if (*lda < max(1,*m)) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("DLASR ", &info);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+ if (lsame_(side, "L")) {
+
+/* Form P * A */
+
+ if (lsame_(pivot, "V")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[j + 1 + i__ * a_dim1];
+ a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
+ a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
+ + i__ * a_dim1];
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *m - 1; j >= 1; --j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[j + 1 + i__ * a_dim1];
+ a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
+ a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
+ + i__ * a_dim1];
+/* L30: */
+ }
+ }
+/* L40: */
+ }
+ }
+ } else if (lsame_(pivot, "T")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *m;
+ for (j = 2; j <= i__1; ++j) {
+ ctemp = c__[j - 1];
+ stemp = s[j - 1];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
+ i__ * a_dim1 + 1];
+ a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
+ i__ * a_dim1 + 1];
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *m; j >= 2; --j) {
+ ctemp = c__[j - 1];
+ stemp = s[j - 1];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
+ i__ * a_dim1 + 1];
+ a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
+ i__ * a_dim1 + 1];
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+ }
+ } else if (lsame_(pivot, "B")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
+ + ctemp * temp;
+ a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
+ a_dim1] - stemp * temp;
+/* L90: */
+ }
+ }
+/* L100: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *m - 1; j >= 1; --j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[j + i__ * a_dim1];
+ a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
+ + ctemp * temp;
+ a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
+ a_dim1] - stemp * temp;
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+ }
+ }
+ } else if (lsame_(side, "R")) {
+
+/* Form A * P' */
+
+ if (lsame_(pivot, "V")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *n - 1;
+ for (j = 1; j <= i__1; ++j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[i__ + (j + 1) * a_dim1];
+ a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
+ a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
+ i__ + j * a_dim1];
+/* L130: */
+ }
+ }
+/* L140: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *n - 1; j >= 1; --j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[i__ + (j + 1) * a_dim1];
+ a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
+ a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
+ i__ + j * a_dim1];
+/* L150: */
+ }
+ }
+/* L160: */
+ }
+ }
+ } else if (lsame_(pivot, "T")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ ctemp = c__[j - 1];
+ stemp = s[j - 1];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
+ i__ + a_dim1];
+ a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
+ a_dim1];
+/* L170: */
+ }
+ }
+/* L180: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *n; j >= 2; --j) {
+ ctemp = c__[j - 1];
+ stemp = s[j - 1];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
+ i__ + a_dim1];
+ a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
+ a_dim1];
+/* L190: */
+ }
+ }
+/* L200: */
+ }
+ }
+ } else if (lsame_(pivot, "B")) {
+ if (lsame_(direct, "F")) {
+ i__1 = *n - 1;
+ for (j = 1; j <= i__1; ++j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp = a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
+ + ctemp * temp;
+ a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
+ a_dim1] - stemp * temp;
+/* L210: */
+ }
+ }
+/* L220: */
+ }
+ } else if (lsame_(direct, "B")) {
+ for (j = *n - 1; j >= 1; --j) {
+ ctemp = c__[j];
+ stemp = s[j];
+ if (ctemp != 1. || stemp != 0.) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = a[i__ + j * a_dim1];
+ a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
+ + ctemp * temp;
+ a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
+ a_dim1] - stemp * temp;
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DLASR */
+
+} /* dlasr_ */
+
+/* Subroutine */ int dlasrt_(char *id, integer *n, doublereal *d__, integer *
+ info)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j;
+ static doublereal d1, d2, d3;
+ static integer dir;
+ static doublereal tmp;
+ static integer endd;
+ extern logical lsame_(char *, char *);
+ static integer stack[64] /* was [2][32] */;
+ static doublereal dmnmx;
+ static integer start;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static integer stkpnt;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ Sort the numbers in D in increasing order (if ID = 'I') or
+ in decreasing order (if ID = 'D' ).
+
+ Use Quick Sort, reverting to Insertion sort on arrays of
+ size <= 20. Dimension of STACK limits N to about 2**32.
+
+ Arguments
+ =========
+
+ ID (input) CHARACTER*1
+ = 'I': sort D in increasing order;
+ = 'D': sort D in decreasing order.
+
+ N (input) INTEGER
+ The length of the array D.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the array to be sorted.
+ On exit, D has been sorted into increasing order
+ (D(1) <= ... <= D(N) ) or into decreasing order
+ (D(1) >= ... >= D(N) ), depending on ID.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input paramters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+ dir = -1;
+ if (lsame_(id, "D")) {
+ dir = 0;
+ } else if (lsame_(id, "I")) {
+ dir = 1;
+ }
+ if (dir == -1) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASRT", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n <= 1) {
+ return 0;
+ }
+
+ stkpnt = 1;
+ stack[0] = 1;
+ stack[1] = *n;
+L10:
+ start = stack[((stkpnt) << (1)) - 2];
+ endd = stack[((stkpnt) << (1)) - 1];
+ --stkpnt;
+ if ((endd - start <= 20 && endd - start > 0)) {
+
+/* Do Insertion sort on D( START:ENDD ) */
+
+ if (dir == 0) {
+
+/* Sort into decreasing order */
+
+ i__1 = endd;
+ for (i__ = start + 1; i__ <= i__1; ++i__) {
+ i__2 = start + 1;
+ for (j = i__; j >= i__2; --j) {
+ if (d__[j] > d__[j - 1]) {
+ dmnmx = d__[j];
+ d__[j] = d__[j - 1];
+ d__[j - 1] = dmnmx;
+ } else {
+ goto L30;
+ }
+/* L20: */
+ }
+L30:
+ ;
+ }
+
+ } else {
+
+/* Sort into increasing order */
+
+ i__1 = endd;
+ for (i__ = start + 1; i__ <= i__1; ++i__) {
+ i__2 = start + 1;
+ for (j = i__; j >= i__2; --j) {
+ if (d__[j] < d__[j - 1]) {
+ dmnmx = d__[j];
+ d__[j] = d__[j - 1];
+ d__[j - 1] = dmnmx;
+ } else {
+ goto L50;
+ }
+/* L40: */
+ }
+L50:
+ ;
+ }
+
+ }
+
+ } else if (endd - start > 20) {
+
+/*
+ Partition D( START:ENDD ) and stack parts, largest one first
+
+ Choose partition entry as median of 3
+*/
+
+ d1 = d__[start];
+ d2 = d__[endd];
+ i__ = (start + endd) / 2;
+ d3 = d__[i__];
+ if (d1 < d2) {
+ if (d3 < d1) {
+ dmnmx = d1;
+ } else if (d3 < d2) {
+ dmnmx = d3;
+ } else {
+ dmnmx = d2;
+ }
+ } else {
+ if (d3 < d2) {
+ dmnmx = d2;
+ } else if (d3 < d1) {
+ dmnmx = d3;
+ } else {
+ dmnmx = d1;
+ }
+ }
+
+ if (dir == 0) {
+
+/* Sort into decreasing order */
+
+ i__ = start - 1;
+ j = endd + 1;
+L60:
+L70:
+ --j;
+ if (d__[j] < dmnmx) {
+ goto L70;
+ }
+L80:
+ ++i__;
+ if (d__[i__] > dmnmx) {
+ goto L80;
+ }
+ if (i__ < j) {
+ tmp = d__[i__];
+ d__[i__] = d__[j];
+ d__[j] = tmp;
+ goto L60;
+ }
+ if (j - start > endd - j - 1) {
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = start;
+ stack[((stkpnt) << (1)) - 1] = j;
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = j + 1;
+ stack[((stkpnt) << (1)) - 1] = endd;
+ } else {
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = j + 1;
+ stack[((stkpnt) << (1)) - 1] = endd;
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = start;
+ stack[((stkpnt) << (1)) - 1] = j;
+ }
+ } else {
+
+/* Sort into increasing order */
+
+ i__ = start - 1;
+ j = endd + 1;
+L90:
+L100:
+ --j;
+ if (d__[j] > dmnmx) {
+ goto L100;
+ }
+L110:
+ ++i__;
+ if (d__[i__] < dmnmx) {
+ goto L110;
+ }
+ if (i__ < j) {
+ tmp = d__[i__];
+ d__[i__] = d__[j];
+ d__[j] = tmp;
+ goto L90;
+ }
+ if (j - start > endd - j - 1) {
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = start;
+ stack[((stkpnt) << (1)) - 1] = j;
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = j + 1;
+ stack[((stkpnt) << (1)) - 1] = endd;
+ } else {
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = j + 1;
+ stack[((stkpnt) << (1)) - 1] = endd;
+ ++stkpnt;
+ stack[((stkpnt) << (1)) - 2] = start;
+ stack[((stkpnt) << (1)) - 1] = j;
+ }
+ }
+ }
+ if (stkpnt > 0) {
+ goto L10;
+ }
+ return 0;
+
+/* End of DLASRT */
+
+} /* dlasrt_ */
+
+/* Subroutine */ int dlassq_(integer *n, doublereal *x, integer *incx,
+ doublereal *scale, doublereal *sumsq)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer ix;
+ static doublereal absxi;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASSQ returns the values scl and smsq such that
+
+ ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
+
+ where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
+ assumed to be non-negative and scl returns the value
+
+ scl = max( scale, abs( x( i ) ) ).
+
+ scale and sumsq must be supplied in SCALE and SUMSQ and
+ scl and smsq are overwritten on SCALE and SUMSQ respectively.
+
+ The routine makes only one pass through the vector x.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The number of elements to be used from the vector X.
+
+ X (input) DOUBLE PRECISION array, dimension (N)
+ The vector for which a scaled sum of squares is computed.
+ x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
+
+ INCX (input) INTEGER
+ The increment between successive values of the vector X.
+ INCX > 0.
+
+ SCALE (input/output) DOUBLE PRECISION
+ On entry, the value scale in the equation above.
+ On exit, SCALE is overwritten with scl , the scaling factor
+ for the sum of squares.
+
+ SUMSQ (input/output) DOUBLE PRECISION
+ On entry, the value sumsq in the equation above.
+ On exit, SUMSQ is overwritten with smsq , the basic sum of
+ squares from which scl has been factored out.
+
+ =====================================================================
+*/
+
+
+ /* Parameter adjustments */
+ --x;
+
+ /* Function Body */
+ if (*n > 0) {
+ i__1 = (*n - 1) * *incx + 1;
+ i__2 = *incx;
+ for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
+ if (x[ix] != 0.) {
+ absxi = (d__1 = x[ix], abs(d__1));
+ if (*scale < absxi) {
+/* Computing 2nd power */
+ d__1 = *scale / absxi;
+ *sumsq = *sumsq * (d__1 * d__1) + 1;
+ *scale = absxi;
+ } else {
+/* Computing 2nd power */
+ d__1 = absxi / *scale;
+ *sumsq += d__1 * d__1;
+ }
+ }
+/* L10: */
+ }
+ }
+ return 0;
+
+/* End of DLASSQ */
+
+} /* dlassq_ */
+
+/* Subroutine */ int dlasv2_(doublereal *f, doublereal *g, doublereal *h__,
+ doublereal *ssmin, doublereal *ssmax, doublereal *snr, doublereal *
+ csr, doublereal *snl, doublereal *csl)
+{
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static doublereal a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt,
+ clt, crt, slt, srt;
+ static integer pmax;
+ static doublereal temp;
+ static logical swap;
+ static doublereal tsign;
+
+ static logical gasmal;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLASV2 computes the singular value decomposition of a 2-by-2
+ triangular matrix
+ [ F G ]
+ [ 0 H ].
+ On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
+ smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
+ right singular vectors for abs(SSMAX), giving the decomposition
+
+ [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
+ [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
+
+ Arguments
+ =========
+
+ F (input) DOUBLE PRECISION
+ The (1,1) element of the 2-by-2 matrix.
+
+ G (input) DOUBLE PRECISION
+ The (1,2) element of the 2-by-2 matrix.
+
+ H (input) DOUBLE PRECISION
+ The (2,2) element of the 2-by-2 matrix.
+
+ SSMIN (output) DOUBLE PRECISION
+ abs(SSMIN) is the smaller singular value.
+
+ SSMAX (output) DOUBLE PRECISION
+ abs(SSMAX) is the larger singular value.
+
+ SNL (output) DOUBLE PRECISION
+ CSL (output) DOUBLE PRECISION
+ The vector (CSL, SNL) is a unit left singular vector for the
+ singular value abs(SSMAX).
+
+ SNR (output) DOUBLE PRECISION
+ CSR (output) DOUBLE PRECISION
+ The vector (CSR, SNR) is a unit right singular vector for the
+ singular value abs(SSMAX).
+
+ Further Details
+ ===============
+
+ Any input parameter may be aliased with any output parameter.
+
+ Barring over/underflow and assuming a guard digit in subtraction, all
+ output quantities are correct to within a few units in the last
+ place (ulps).
+
+ In IEEE arithmetic, the code works correctly if one matrix element is
+ infinite.
+
+ Overflow will not occur unless the largest singular value itself
+ overflows or is within a few ulps of overflow. (On machines with
+ partial overflow, like the Cray, overflow may occur if the largest
+ singular value is within a factor of 2 of overflow.)
+
+ Underflow is harmless if underflow is gradual. Otherwise, results
+ may correspond to a matrix modified by perturbations of size near
+ the underflow threshold.
+
+ =====================================================================
+*/
+
+
+ ft = *f;
+ fa = abs(ft);
+ ht = *h__;
+ ha = abs(*h__);
+
+/*
+ PMAX points to the maximum absolute element of matrix
+ PMAX = 1 if F largest in absolute values
+ PMAX = 2 if G largest in absolute values
+ PMAX = 3 if H largest in absolute values
+*/
+
+ pmax = 1;
+ swap = ha > fa;
+ if (swap) {
+ pmax = 3;
+ temp = ft;
+ ft = ht;
+ ht = temp;
+ temp = fa;
+ fa = ha;
+ ha = temp;
+
+/* Now FA .ge. HA */
+
+ }
+ gt = *g;
+ ga = abs(gt);
+ if (ga == 0.) {
+
+/* Diagonal matrix */
+
+ *ssmin = ha;
+ *ssmax = fa;
+ clt = 1.;
+ crt = 1.;
+ slt = 0.;
+ srt = 0.;
+ } else {
+ gasmal = TRUE_;
+ if (ga > fa) {
+ pmax = 2;
+ if (fa / ga < EPSILON) {
+
+/* Case of very large GA */
+
+ gasmal = FALSE_;
+ *ssmax = ga;
+ if (ha > 1.) {
+ *ssmin = fa / (ga / ha);
+ } else {
+ *ssmin = fa / ga * ha;
+ }
+ clt = 1.;
+ slt = ht / gt;
+ srt = 1.;
+ crt = ft / gt;
+ }
+ }
+ if (gasmal) {
+
+/* Normal case */
+
+ d__ = fa - ha;
+ if (d__ == fa) {
+
+/* Copes with infinite F or H */
+
+ l = 1.;
+ } else {
+ l = d__ / fa;
+ }
+
+/* Note that 0 .le. L .le. 1 */
+
+ m = gt / ft;
+
+/* Note that abs(M) .le. 1/macheps */
+
+ t = 2. - l;
+
+/* Note that T .ge. 1 */
+
+ mm = m * m;
+ tt = t * t;
+ s = sqrt(tt + mm);
+
+/* Note that 1 .le. S .le. 1 + 1/macheps */
+
+ if (l == 0.) {
+ r__ = abs(m);
+ } else {
+ r__ = sqrt(l * l + mm);
+ }
+
+/* Note that 0 .le. R .le. 1 + 1/macheps */
+
+ a = (s + r__) * .5;
+
+/* Note that 1 .le. A .le. 1 + abs(M) */
+
+ *ssmin = ha / a;
+ *ssmax = fa * a;
+ if (mm == 0.) {
+
+/* Note that M is very tiny */
+
+ if (l == 0.) {
+ t = d_sign(&c_b2804, &ft) * d_sign(&c_b15, &gt);
+ } else {
+ t = gt / d_sign(&d__, &ft) + m / t;
+ }
+ } else {
+ t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
+ }
+ l = sqrt(t * t + 4.);
+ crt = 2. / l;
+ srt = t / l;
+ clt = (crt + srt * m) / a;
+ slt = ht / ft * srt / a;
+ }
+ }
+ if (swap) {
+ *csl = srt;
+ *snl = crt;
+ *csr = slt;
+ *snr = clt;
+ } else {
+ *csl = clt;
+ *snl = slt;
+ *csr = crt;
+ *snr = srt;
+ }
+
+/* Correct signs of SSMAX and SSMIN */
+
+ if (pmax == 1) {
+ tsign = d_sign(&c_b15, csr) * d_sign(&c_b15, csl) * d_sign(&c_b15, f);
+ }
+ if (pmax == 2) {
+ tsign = d_sign(&c_b15, snr) * d_sign(&c_b15, csl) * d_sign(&c_b15, g);
+ }
+ if (pmax == 3) {
+ tsign = d_sign(&c_b15, snr) * d_sign(&c_b15, snl) * d_sign(&c_b15,
+ h__);
+ }
+ *ssmax = d_sign(ssmax, &tsign);
+ d__1 = tsign * d_sign(&c_b15, f) * d_sign(&c_b15, h__);
+ *ssmin = d_sign(ssmin, &d__1);
+ return 0;
+
+/* End of DLASV2 */
+
+} /* dlasv2_ */
+
+/* Subroutine */ int dlaswp_(integer *n, doublereal *a, integer *lda, integer
+ *k1, integer *k2, integer *ipiv, integer *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
+ static doublereal temp;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DLASWP performs a series of row interchanges on the matrix A.
+ One row interchange is initiated for each of rows K1 through K2 of A.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The number of columns of the matrix A.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the matrix of column dimension N to which the row
+ interchanges will be applied.
+ On exit, the permuted matrix.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+
+ K1 (input) INTEGER
+ The first element of IPIV for which a row interchange will
+ be done.
+
+ K2 (input) INTEGER
+ The last element of IPIV for which a row interchange will
+ be done.
+
+ IPIV (input) INTEGER array, dimension (M*abs(INCX))
+ The vector of pivot indices. Only the elements in positions
+ K1 through K2 of IPIV are accessed.
+ IPIV(K) = L implies rows K and L are to be interchanged.
+
+ INCX (input) INTEGER
+ The increment between successive values of IPIV. If IPIV
+ is negative, the pivots are applied in reverse order.
+
+ Further Details
+ ===============
+
+ Modified by
+ R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+
+ =====================================================================
+
+
+ Interchange row I with row IPIV(I) for each of rows K1 through K2.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --ipiv;
+
+ /* Function Body */
+ if (*incx > 0) {
+ ix0 = *k1;
+ i1 = *k1;
+ i2 = *k2;
+ inc = 1;
+ } else if (*incx < 0) {
+ ix0 = (1 - *k2) * *incx + 1;
+ i1 = *k2;
+ i2 = *k1;
+ inc = -1;
+ } else {
+ return 0;
+ }
+
+ n32 = (*n / 32) << (5);
+ if (n32 != 0) {
+ i__1 = n32;
+ for (j = 1; j <= i__1; j += 32) {
+ ix = ix0;
+ i__2 = i2;
+ i__3 = inc;
+ for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
+ {
+ ip = ipiv[ix];
+ if (ip != i__) {
+ i__4 = j + 31;
+ for (k = j; k <= i__4; ++k) {
+ temp = a[i__ + k * a_dim1];
+ a[i__ + k * a_dim1] = a[ip + k * a_dim1];
+ a[ip + k * a_dim1] = temp;
+/* L10: */
+ }
+ }
+ ix += *incx;
+/* L20: */
+ }
+/* L30: */
+ }
+ }
+ if (n32 != *n) {
+ ++n32;
+ ix = ix0;
+ i__1 = i2;
+ i__3 = inc;
+ for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
+ ip = ipiv[ix];
+ if (ip != i__) {
+ i__2 = *n;
+ for (k = n32; k <= i__2; ++k) {
+ temp = a[i__ + k * a_dim1];
+ a[i__ + k * a_dim1] = a[ip + k * a_dim1];
+ a[ip + k * a_dim1] = temp;
+/* L40: */
+ }
+ }
+ ix += *incx;
+/* L50: */
+ }
+ }
+
+ return 0;
+
+/* End of DLASWP */
+
+} /* dlaswp_ */
+
+/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
+ a, integer *lda, doublereal *e, doublereal *tau, doublereal *w,
+ integer *ldw)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, iw;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static doublereal alpha;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), daxpy_(integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *),
+ dsymv_(char *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *,
+ doublereal *);
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DLATRD reduces NB rows and columns of a real symmetric matrix A to
+ symmetric tridiagonal form by an orthogonal similarity
+ transformation Q' * A * Q, and returns the matrices V and W which are
+ needed to apply the transformation to the unreduced part of A.
+
+ If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
+ matrix, of which the upper triangle is supplied;
+ if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
+ matrix, of which the lower triangle is supplied.
+
+ This is an auxiliary routine called by DSYTRD.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER
+ Specifies whether the upper or lower triangular part of the
+ symmetric matrix A is stored:
+ = 'U': Upper triangular
+ = 'L': Lower triangular
+
+ N (input) INTEGER
+ The order of the matrix A.
+
+ NB (input) INTEGER
+ The number of rows and columns to be reduced.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ n-by-n upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading n-by-n lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+ On exit:
+ if UPLO = 'U', the last NB columns have been reduced to
+ tridiagonal form, with the diagonal elements overwriting
+ the diagonal elements of A; the elements above the diagonal
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of elementary reflectors;
+ if UPLO = 'L', the first NB columns have been reduced to
+ tridiagonal form, with the diagonal elements overwriting
+ the diagonal elements of A; the elements below the diagonal
+ with the array TAU, represent the orthogonal matrix Q as a
+ product of elementary reflectors.
+ See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= (1,N).
+
+ E (output) DOUBLE PRECISION array, dimension (N-1)
+ If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
+ elements of the last NB columns of the reduced matrix;
+ if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
+ the first NB columns of the reduced matrix.
+
+ TAU (output) DOUBLE PRECISION array, dimension (N-1)
+ The scalar factors of the elementary reflectors, stored in
+ TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
+ See Further Details.
+
+ W (output) DOUBLE PRECISION array, dimension (LDW,NB)
+ The n-by-nb matrix W required to update the unreduced part
+ of A.
+
+ LDW (input) INTEGER
+ The leading dimension of the array W. LDW >= max(1,N).
+
+ Further Details
+ ===============
+
+ If UPLO = 'U', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(n) H(n-1) . . . H(n-nb+1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
+ and tau in TAU(i-1).
+
+ If UPLO = 'L', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(1) H(2) . . . H(nb).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
+ and tau in TAU(i).
+
+ The elements of the vectors v together form the n-by-nb matrix V
+ which is needed, with W, to apply the transformation to the unreduced
+ part of the matrix, using a symmetric rank-2k update of the form:
+ A := A - V*W' - W*V'.
+
+ The contents of A on exit are illustrated by the following examples
+ with n = 5 and nb = 2:
+
+ if UPLO = 'U': if UPLO = 'L':
+
+ ( a a a v4 v5 ) ( d )
+ ( a a v4 v5 ) ( 1 d )
+ ( a 1 v5 ) ( v1 1 a )
+ ( d 1 ) ( v1 v2 a a )
+ ( d ) ( v1 v2 a a a )
+
+ where d denotes a diagonal element of the reduced matrix, a denotes
+ an element of the original matrix that is unchanged, and vi denotes
+ an element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Quick return if possible
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --e;
+ --tau;
+ w_dim1 = *ldw;
+ w_offset = 1 + w_dim1 * 1;
+ w -= w_offset;
+
+ /* Function Body */
+ if (*n <= 0) {
+ return 0;
+ }
+
+ if (lsame_(uplo, "U")) {
+
+/* Reduce last NB columns of upper triangle */
+
+ i__1 = *n - *nb + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ iw = i__ - *n + *nb;
+ if (i__ < *n) {
+
+/* Update A(1:i,i) */
+
+ i__2 = *n - i__;
+ dgemv_("No transpose", &i__, &i__2, &c_b151, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
+ c_b15, &a[i__ * a_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ dgemv_("No transpose", &i__, &i__2, &c_b151, &w[(iw + 1) *
+ w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
+ c_b15, &a[i__ * a_dim1 + 1], &c__1);
+ }
+ if (i__ > 1) {
+
+/*
+ Generate elementary reflector H(i) to annihilate
+ A(1:i-2,i)
+*/
+
+ i__2 = i__ - 1;
+ dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 +
+ 1], &c__1, &tau[i__ - 1]);
+ e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
+ a[i__ - 1 + i__ * a_dim1] = 1.;
+
+/* Compute W(1:i-1,i) */
+
+ i__2 = i__ - 1;
+ dsymv_("Upper", &i__2, &c_b15, &a[a_offset], lda, &a[i__ *
+ a_dim1 + 1], &c__1, &c_b29, &w[iw * w_dim1 + 1], &
+ c__1);
+ if (i__ < *n) {
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &w[(iw + 1) *
+ w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
+ c_b29, &w[i__ + 1 + iw * w_dim1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[(i__ + 1)
+ * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
+ c__1, &c_b15, &w[iw * w_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[(i__ + 1) *
+ a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
+ c_b29, &w[i__ + 1 + iw * w_dim1], &c__1);
+ i__2 = i__ - 1;
+ i__3 = *n - i__;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[(iw + 1)
+ * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
+ c__1, &c_b15, &w[iw * w_dim1 + 1], &c__1);
+ }
+ i__2 = i__ - 1;
+ dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1],
+ &c__1, &a[i__ * a_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
+ w_dim1 + 1], &c__1);
+ }
+
+/* L10: */
+ }
+ } else {
+
+/* Reduce first NB columns of lower triangle */
+
+ i__1 = *nb;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Update A(i:n,i) */
+
+ i__2 = *n - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + a_dim1],
+ lda, &w[i__ + w_dim1], ldw, &c_b15, &a[i__ + i__ * a_dim1]
+ , &c__1);
+ i__2 = *n - i__ + 1;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[i__ + w_dim1],
+ ldw, &a[i__ + a_dim1], lda, &c_b15, &a[i__ + i__ * a_dim1]
+ , &c__1);
+ if (i__ < *n) {
+
+/*
+ Generate elementary reflector H(i) to annihilate
+ A(i+2:n,i)
+*/
+
+ i__2 = *n - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) +
+ i__ * a_dim1], &c__1, &tau[i__]);
+ e[i__] = a[i__ + 1 + i__ * a_dim1];
+ a[i__ + 1 + i__ * a_dim1] = 1.;
+
+/* Compute W(i+1:n,i) */
+
+ i__2 = *n - i__;
+ dsymv_("Lower", &i__2, &c_b15, &a[i__ + 1 + (i__ + 1) *
+ a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
+ c_b29, &w[i__ + 1 + i__ * w_dim1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &w[i__ + 1 + w_dim1]
+ , ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &w[
+ i__ * w_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[i__ + 1 +
+ a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b15, &w[
+ i__ + 1 + i__ * w_dim1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("Transpose", &i__2, &i__3, &c_b15, &a[i__ + 1 + a_dim1]
+ , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &w[
+ i__ * w_dim1 + 1], &c__1);
+ i__2 = *n - i__;
+ i__3 = i__ - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &w[i__ + 1 +
+ w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b15, &w[
+ i__ + 1 + i__ * w_dim1], &c__1);
+ i__2 = *n - i__;
+ dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
+ i__2 = *n - i__;
+ alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ *
+ w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
+ i__2 = *n - i__;
+ daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
+ i__ + 1 + i__ * w_dim1], &c__1);
+ }
+
+/* L20: */
+ }
+ }
+
+ return 0;
+
+/* End of DLATRD */
+
+} /* dlatrd_ */
+
+/* Subroutine */ int dorg2r_(integer *m, integer *n, integer *k, doublereal *
+ a, integer *lda, doublereal *tau, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__, j, l;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dlarf_(char *, integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DORG2R generates an m by n real matrix Q with orthonormal columns,
+ which is defined as the first n columns of a product of k elementary
+ reflectors of order m
+
+ Q = H(1) H(2) . . . H(k)
+
+ as returned by DGEQRF.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix Q. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix Q. M >= N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines the
+ matrix Q. N >= K >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the i-th column must contain the vector which
+ defines the elementary reflector H(i), for i = 1,2,...,k, as
+ returned by DGEQRF in the first k columns of its array
+ argument A.
+ On exit, the m-by-n matrix Q.
+
+ LDA (input) INTEGER
+ The first dimension of the array A. LDA >= max(1,M).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQRF.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (N)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument has an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0 || *n > *m) {
+ *info = -2;
+ } else if (*k < 0 || *k > *n) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORG2R", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n <= 0) {
+ return 0;
+ }
+
+/* Initialise columns k+1:n to columns of the unit matrix */
+
+ i__1 = *n;
+ for (j = *k + 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (l = 1; l <= i__2; ++l) {
+ a[l + j * a_dim1] = 0.;
+/* L10: */
+ }
+ a[j + j * a_dim1] = 1.;
+/* L20: */
+ }
+
+ for (i__ = *k; i__ >= 1; --i__) {
+
+/* Apply H(i) to A(i:m,i:n) from the left */
+
+ if (i__ < *n) {
+ a[i__ + i__ * a_dim1] = 1.;
+ i__1 = *m - i__ + 1;
+ i__2 = *n - i__;
+ dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
+ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
+ }
+ if (i__ < *m) {
+ i__1 = *m - i__;
+ d__1 = -tau[i__];
+ dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
+ }
+ a[i__ + i__ * a_dim1] = 1. - tau[i__];
+
+/* Set A(1:i-1,i) to zero */
+
+ i__1 = i__ - 1;
+ for (l = 1; l <= i__1; ++l) {
+ a[l + i__ * a_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+ return 0;
+
+/* End of DORG2R */
+
+} /* dorg2r_ */
+
+/* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k,
+ doublereal *a, integer *lda, doublereal *tau, doublereal *work,
+ integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, nb, mn;
+ extern logical lsame_(char *, char *);
+ static integer iinfo;
+ static logical wantq;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dorglq_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, integer *);
+ static integer lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORGBR generates one of the real orthogonal matrices Q or P**T
+ determined by DGEBRD when reducing a real matrix A to bidiagonal
+ form: A = Q * B * P**T. Q and P**T are defined as products of
+ elementary reflectors H(i) or G(i) respectively.
+
+ If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
+ is of order M:
+ if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
+ columns of Q, where m >= n >= k;
+ if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
+ M-by-M matrix.
+
+ If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
+ is of order N:
+ if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
+ rows of P**T, where n >= m >= k;
+ if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
+ an N-by-N matrix.
+
+ Arguments
+ =========
+
+ VECT (input) CHARACTER*1
+ Specifies whether the matrix Q or the matrix P**T is
+ required, as defined in the transformation applied by DGEBRD:
+ = 'Q': generate Q;
+ = 'P': generate P**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix Q or P**T to be returned.
+ M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix Q or P**T to be returned.
+ N >= 0.
+ If VECT = 'Q', M >= N >= min(M,K);
+ if VECT = 'P', N >= M >= min(N,K).
+
+ K (input) INTEGER
+ If VECT = 'Q', the number of columns in the original M-by-K
+ matrix reduced by DGEBRD.
+ If VECT = 'P', the number of rows in the original K-by-N
+ matrix reduced by DGEBRD.
+ K >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the vectors which define the elementary reflectors,
+ as returned by DGEBRD.
+ On exit, the M-by-N matrix Q or P**T.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,M).
+
+ TAU (input) DOUBLE PRECISION array, dimension
+ (min(M,K)) if VECT = 'Q'
+ (min(N,K)) if VECT = 'P'
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i) or G(i), which determines Q or P**T, as
+ returned by DGEBRD in its array argument TAUQ or TAUP.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,min(M,N)).
+ For optimum performance LWORK >= min(M,N)*NB, where NB
+ is the optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ wantq = lsame_(vect, "Q");
+ mn = min(*m,*n);
+ lquery = *lwork == -1;
+ if ((! wantq && ! lsame_(vect, "P"))) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*n < 0 || (wantq && (*n > *m || *n < min(*m,*k))) || (! wantq
+ && (*m > *n || *m < min(*n,*k)))) {
+ *info = -3;
+ } else if (*k < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*m)) {
+ *info = -6;
+ } else if ((*lwork < max(1,mn) && ! lquery)) {
+ *info = -9;
+ }
+
+ if (*info == 0) {
+ if (wantq) {
+ nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ } else {
+ nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ }
+ lwkopt = max(1,mn) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORGBR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ if (wantq) {
+
+/*
+ Form Q, determined by a call to DGEBRD to reduce an m-by-k
+ matrix
+*/
+
+ if (*m >= *k) {
+
+/* If m >= k, assume m >= n >= k */
+
+ dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
+ iinfo);
+
+ } else {
+
+/*
+ If m < k, assume m = n
+
+ Shift the vectors which define the elementary reflectors one
+ column to the right, and set the first row and column of Q
+ to those of the unit matrix
+*/
+
+ for (j = *m; j >= 2; --j) {
+ a[j * a_dim1 + 1] = 0.;
+ i__1 = *m;
+ for (i__ = j + 1; i__ <= i__1; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
+/* L10: */
+ }
+/* L20: */
+ }
+ a[a_dim1 + 1] = 1.;
+ i__1 = *m;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ a[i__ + a_dim1] = 0.;
+/* L30: */
+ }
+ if (*m > 1) {
+
+/* Form Q(2:m,2:m) */
+
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ i__3 = *m - 1;
+ dorgqr_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
+ tau[1], &work[1], lwork, &iinfo);
+ }
+ }
+ } else {
+
+/*
+ Form P', determined by a call to DGEBRD to reduce a k-by-n
+ matrix
+*/
+
+ if (*k < *n) {
+
+/* If k < n, assume k <= m <= n */
+
+ dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
+ iinfo);
+
+ } else {
+
+/*
+ If k >= n, assume m = n
+
+ Shift the vectors which define the elementary reflectors one
+ row downward, and set the first row and column of P' to
+ those of the unit matrix
+*/
+
+ a[a_dim1 + 1] = 1.;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ a[i__ + a_dim1] = 0.;
+/* L40: */
+ }
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ for (i__ = j - 1; i__ >= 2; --i__) {
+ a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];
+/* L50: */
+ }
+ a[j * a_dim1 + 1] = 0.;
+/* L60: */
+ }
+ if (*n > 1) {
+
+/* Form P'(2:n,2:n) */
+
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ i__3 = *n - 1;
+ dorglq_(&i__1, &i__2, &i__3, &a[((a_dim1) << (1)) + 2], lda, &
+ tau[1], &work[1], lwork, &iinfo);
+ }
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORGBR */
+
+} /* dorgbr_ */
+
+/* Subroutine */ int dorghr_(integer *n, integer *ilo, integer *ihi,
+ doublereal *a, integer *lda, doublereal *tau, doublereal *work,
+ integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, j, nb, nh, iinfo;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ integer *);
+ static integer lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORGHR generates a real orthogonal matrix Q which is defined as the
+ product of IHI-ILO elementary reflectors of order N, as returned by
+ DGEHRD:
+
+ Q = H(ilo) H(ilo+1) . . . H(ihi-1).
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the matrix Q. N >= 0.
+
+ ILO (input) INTEGER
+ IHI (input) INTEGER
+ ILO and IHI must have the same values as in the previous call
+ of DGEHRD. Q is equal to the unit matrix except in the
+ submatrix Q(ilo+1:ihi,ilo+1:ihi).
+ 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the vectors which define the elementary reflectors,
+ as returned by DGEHRD.
+ On exit, the N-by-N orthogonal matrix Q.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ TAU (input) DOUBLE PRECISION array, dimension (N-1)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEHRD.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= IHI-ILO.
+ For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
+ the optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nh = *ihi - *ilo;
+ lquery = *lwork == -1;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*ilo < 1 || *ilo > max(1,*n)) {
+ *info = -2;
+ } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if ((*lwork < max(1,nh) && ! lquery)) {
+ *info = -8;
+ }
+
+ if (*info == 0) {
+ nb = ilaenv_(&c__1, "DORGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ lwkopt = max(1,nh) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORGHR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+/*
+ Shift the vectors which define the elementary reflectors one
+ column to the right, and set the first ilo and the last n-ihi
+ rows and columns to those of the unit matrix
+*/
+
+ i__1 = *ilo + 1;
+ for (j = *ihi; j >= i__1; --j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L10: */
+ }
+ i__2 = *ihi;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
+/* L20: */
+ }
+ i__2 = *n;
+ for (i__ = *ihi + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+ i__1 = *ilo;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L50: */
+ }
+ a[j + j * a_dim1] = 1.;
+/* L60: */
+ }
+ i__1 = *n;
+ for (j = *ihi + 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L70: */
+ }
+ a[j + j * a_dim1] = 1.;
+/* L80: */
+ }
+
+ if (nh > 0) {
+
+/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
+
+ dorgqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*
+ ilo], &work[1], lwork, &iinfo);
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORGHR */
+
+} /* dorghr_ */
+
+/* Subroutine */ int dorgl2_(integer *m, integer *n, integer *k, doublereal *
+ a, integer *lda, doublereal *tau, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Local variables */
+ static integer i__, j, l;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *), dlarf_(char *, integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORGL2 generates an m by n real matrix Q with orthonormal rows,
+ which is defined as the first m rows of a product of k elementary
+ reflectors of order n
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGELQF.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix Q. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix Q. N >= M.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines the
+ matrix Q. M >= K >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the i-th row must contain the vector which defines
+ the elementary reflector H(i), for i = 1,2,...,k, as returned
+ by DGELQF in the first k rows of its array argument A.
+ On exit, the m-by-n matrix Q.
+
+ LDA (input) INTEGER
+ The first dimension of the array A. LDA >= max(1,M).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGELQF.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (M)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument has an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < *m) {
+ *info = -2;
+ } else if (*k < 0 || *k > *m) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORGL2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m <= 0) {
+ return 0;
+ }
+
+ if (*k < *m) {
+
+/* Initialise rows k+1:m to rows of the unit matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (l = *k + 1; l <= i__2; ++l) {
+ a[l + j * a_dim1] = 0.;
+/* L10: */
+ }
+ if ((j > *k && j <= *m)) {
+ a[j + j * a_dim1] = 1.;
+ }
+/* L20: */
+ }
+ }
+
+ for (i__ = *k; i__ >= 1; --i__) {
+
+/* Apply H(i) to A(i:m,i:n) from the right */
+
+ if (i__ < *n) {
+ if (i__ < *m) {
+ a[i__ + i__ * a_dim1] = 1.;
+ i__1 = *m - i__;
+ i__2 = *n - i__ + 1;
+ dlarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
+ tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
+ }
+ i__1 = *n - i__;
+ d__1 = -tau[i__];
+ dscal_(&i__1, &d__1, &a[i__ + (i__ + 1) * a_dim1], lda);
+ }
+ a[i__ + i__ * a_dim1] = 1. - tau[i__];
+
+/* Set A(i,1:i-1) to zero */
+
+ i__1 = i__ - 1;
+ for (l = 1; l <= i__1; ++l) {
+ a[i__ + l * a_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+ return 0;
+
+/* End of DORGL2 */
+
+} /* dorgl2_ */
+
+/* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal *
+ a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
+ extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dlarfb_(char *, char *, char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
+ which is defined as the first M rows of a product of K elementary
+ reflectors of order N
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGELQF.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix Q. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix Q. N >= M.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines the
+ matrix Q. M >= K >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the i-th row must contain the vector which defines
+ the elementary reflector H(i), for i = 1,2,...,k, as returned
+ by DGELQF in the first k rows of its array argument A.
+ On exit, the M-by-N matrix Q.
+
+ LDA (input) INTEGER
+ The first dimension of the array A. LDA >= max(1,M).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGELQF.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,M).
+ For optimum performance LWORK >= M*NB, where NB is
+ the optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument has an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
+ lwkopt = max(1,*m) * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < *m) {
+ *info = -2;
+ } else if (*k < 0 || *k > *m) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if ((*lwork < max(1,*m) && ! lquery)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORGLQ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m <= 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ nx = 0;
+ iws = *m;
+ if ((nb > 1 && nb < *k)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code.
+
+ Computing MAX
+*/
+ i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < *k) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *m;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: reduce NB and
+ determine the minimum value of NB.
+*/
+
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1,
+ (ftnlen)6, (ftnlen)1);
+ nbmin = max(i__1,i__2);
+ }
+ }
+ }
+
+ if (((nb >= nbmin && nb < *k) && nx < *k)) {
+
+/*
+ Use blocked code after the last block.
+ The first kk rows are handled by the block method.
+*/
+
+ ki = (*k - nx - 1) / nb * nb;
+/* Computing MIN */
+ i__1 = *k, i__2 = ki + nb;
+ kk = min(i__1,i__2);
+
+/* Set A(kk+1:m,1:kk) to zero. */
+
+ i__1 = kk;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = kk + 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ kk = 0;
+ }
+
+/* Use unblocked code for the last or only block. */
+
+ if (kk < *m) {
+ i__1 = *m - kk;
+ i__2 = *n - kk;
+ i__3 = *k - kk;
+ dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
+ tau[kk + 1], &work[1], &iinfo);
+ }
+
+ if (kk > 0) {
+
+/* Use blocked code */
+
+ i__1 = -nb;
+ for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
+/* Computing MIN */
+ i__2 = nb, i__3 = *k - i__ + 1;
+ ib = min(i__2,i__3);
+ if (i__ + ib <= *m) {
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__2 = *n - i__ + 1;
+ dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ *
+ a_dim1], lda, &tau[i__], &work[1], &ldwork);
+
+/* Apply H' to A(i+ib:m,i:n) from the right */
+
+ i__2 = *m - i__ - ib + 1;
+ i__3 = *n - i__ + 1;
+ dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, &
+ i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
+ ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
+ 1], &ldwork);
+ }
+
+/* Apply H' to columns i:n of current block */
+
+ i__2 = *n - i__ + 1;
+ dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
+ work[1], &iinfo);
+
+/* Set columns 1:i-1 of current block to zero */
+
+ i__2 = i__ - 1;
+ for (j = 1; j <= i__2; ++j) {
+ i__3 = i__ + ib - 1;
+ for (l = i__; l <= i__3; ++l) {
+ a[l + j * a_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ }
+
+ work[1] = (doublereal) iws;
+ return 0;
+
+/* End of DORGLQ */
+
+} /* dorglq_ */
+
+/* Subroutine */ int dorgqr_(integer *m, integer *n, integer *k, doublereal *
+ a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
+ extern /* Subroutine */ int dorg2r_(integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dlarfb_(char *, char *, char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORGQR generates an M-by-N real matrix Q with orthonormal columns,
+ which is defined as the first N columns of a product of K elementary
+ reflectors of order M
+
+ Q = H(1) H(2) . . . H(k)
+
+ as returned by DGEQRF.
+
+ Arguments
+ =========
+
+ M (input) INTEGER
+ The number of rows of the matrix Q. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix Q. M >= N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines the
+ matrix Q. N >= K >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the i-th column must contain the vector which
+ defines the elementary reflector H(i), for i = 1,2,...,k, as
+ returned by DGEQRF in the first k columns of its array
+ argument A.
+ On exit, the M-by-N matrix Q.
+
+ LDA (input) INTEGER
+ The first dimension of the array A. LDA >= max(1,M).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQRF.
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= max(1,N).
+ For optimum performance LWORK >= N*NB, where NB is the
+ optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument has an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (ftnlen)1);
+ lwkopt = max(1,*n) * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0 || *n > *m) {
+ *info = -2;
+ } else if (*k < 0 || *k > *n) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if ((*lwork < max(1,*n) && ! lquery)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORGQR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n <= 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ nx = 0;
+ iws = *n;
+ if ((nb > 1 && nb < *k)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code.
+
+ Computing MAX
+*/
+ i__1 = 0, i__2 = ilaenv_(&c__3, "DORGQR", " ", m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < *k) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *n;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: reduce NB and
+ determine the minimum value of NB.
+*/
+
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORGQR", " ", m, n, k, &c_n1,
+ (ftnlen)6, (ftnlen)1);
+ nbmin = max(i__1,i__2);
+ }
+ }
+ }
+
+ if (((nb >= nbmin && nb < *k) && nx < *k)) {
+
+/*
+ Use blocked code after the last block.
+ The first kk columns are handled by the block method.
+*/
+
+ ki = (*k - nx - 1) / nb * nb;
+/* Computing MIN */
+ i__1 = *k, i__2 = ki + nb;
+ kk = min(i__1,i__2);
+
+/* Set A(1:kk,kk+1:n) to zero. */
+
+ i__1 = *n;
+ for (j = kk + 1; j <= i__1; ++j) {
+ i__2 = kk;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[i__ + j * a_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ kk = 0;
+ }
+
+/* Use unblocked code for the last or only block. */
+
+ if (kk < *n) {
+ i__1 = *m - kk;
+ i__2 = *n - kk;
+ i__3 = *k - kk;
+ dorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
+ tau[kk + 1], &work[1], &iinfo);
+ }
+
+ if (kk > 0) {
+
+/* Use blocked code */
+
+ i__1 = -nb;
+ for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
+/* Computing MIN */
+ i__2 = nb, i__3 = *k - i__ + 1;
+ ib = min(i__2,i__3);
+ if (i__ + ib <= *n) {
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__2 = *m - i__ + 1;
+ dlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ *
+ a_dim1], lda, &tau[i__], &work[1], &ldwork);
+
+/* Apply H to A(i:m,i+ib:n) from the left */
+
+ i__2 = *m - i__ + 1;
+ i__3 = *n - i__ - ib + 1;
+ dlarfb_("Left", "No transpose", "Forward", "Columnwise", &
+ i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
+ 1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
+ work[ib + 1], &ldwork);
+ }
+
+/* Apply H to rows i:m of current block */
+
+ i__2 = *m - i__ + 1;
+ dorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
+ work[1], &iinfo);
+
+/* Set rows 1:i-1 of current block to zero */
+
+ i__2 = i__ + ib - 1;
+ for (j = i__; j <= i__2; ++j) {
+ i__3 = i__ - 1;
+ for (l = 1; l <= i__3; ++l) {
+ a[l + j * a_dim1] = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+/* L50: */
+ }
+ }
+
+ work[1] = (doublereal) iws;
+ return 0;
+
+/* End of DORGQR */
+
+} /* dorgqr_ */
+
+/* Subroutine */ int dorm2l_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, i1, i2, i3, mi, ni, nq;
+ static doublereal aii;
+ static logical left;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical notran;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DORM2L overwrites the general real m by n matrix C with
+
+ Q * C if SIDE = 'L' and TRANS = 'N', or
+
+ Q'* C if SIDE = 'L' and TRANS = 'T', or
+
+ C * Q if SIDE = 'R' and TRANS = 'N', or
+
+ C * Q' if SIDE = 'R' and TRANS = 'T',
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q' from the Left
+ = 'R': apply Q or Q' from the Right
+
+ TRANS (input) CHARACTER*1
+ = 'N': apply Q (No transpose)
+ = 'T': apply Q' (Transpose)
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,K)
+ The i-th column must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGEQLF in the last k columns of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ If SIDE = 'L', LDA >= max(1,M);
+ if SIDE = 'R', LDA >= max(1,N).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQLF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (N) if SIDE = 'L',
+ (M) if SIDE = 'R'
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+
+/* NQ is the order of Q */
+
+ if (left) {
+ nq = *m;
+ } else {
+ nq = *n;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,nq)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORM2L", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ return 0;
+ }
+
+ if ((left && notran) || (! left && ! notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = 1;
+ } else {
+ i1 = *k;
+ i2 = 1;
+ i3 = -1;
+ }
+
+ if (left) {
+ ni = *n;
+ } else {
+ mi = *m;
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ if (left) {
+
+/* H(i) is applied to C(1:m-k+i,1:n) */
+
+ mi = *m - *k + i__;
+ } else {
+
+/* H(i) is applied to C(1:m,1:n-k+i) */
+
+ ni = *n - *k + i__;
+ }
+
+/* Apply H(i) */
+
+ aii = a[nq - *k + i__ + i__ * a_dim1];
+ a[nq - *k + i__ + i__ * a_dim1] = 1.;
+ dlarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[
+ c_offset], ldc, &work[1]);
+ a[nq - *k + i__ + i__ * a_dim1] = aii;
+/* L10: */
+ }
+ return 0;
+
+/* End of DORM2L */
+
+} /* dorm2l_ */
+
+/* Subroutine */ int dorm2r_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
+ static doublereal aii;
+ static logical left;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical notran;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DORM2R overwrites the general real m by n matrix C with
+
+ Q * C if SIDE = 'L' and TRANS = 'N', or
+
+ Q'* C if SIDE = 'L' and TRANS = 'T', or
+
+ C * Q if SIDE = 'R' and TRANS = 'N', or
+
+ C * Q' if SIDE = 'R' and TRANS = 'T',
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(1) H(2) . . . H(k)
+
+ as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q' from the Left
+ = 'R': apply Q or Q' from the Right
+
+ TRANS (input) CHARACTER*1
+ = 'N': apply Q (No transpose)
+ = 'T': apply Q' (Transpose)
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,K)
+ The i-th column must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGEQRF in the first k columns of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ If SIDE = 'L', LDA >= max(1,M);
+ if SIDE = 'R', LDA >= max(1,N).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQRF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (N) if SIDE = 'L',
+ (M) if SIDE = 'R'
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+
+/* NQ is the order of Q */
+
+ if (left) {
+ nq = *m;
+ } else {
+ nq = *n;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,nq)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORM2R", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ return 0;
+ }
+
+ if ((left && ! notran) || (! left && notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = 1;
+ } else {
+ i1 = *k;
+ i2 = 1;
+ i3 = -1;
+ }
+
+ if (left) {
+ ni = *n;
+ jc = 1;
+ } else {
+ mi = *m;
+ ic = 1;
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ if (left) {
+
+/* H(i) is applied to C(i:m,1:n) */
+
+ mi = *m - i__ + 1;
+ ic = i__;
+ } else {
+
+/* H(i) is applied to C(1:m,i:n) */
+
+ ni = *n - i__ + 1;
+ jc = i__;
+ }
+
+/* Apply H(i) */
+
+ aii = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+ dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
+ ic + jc * c_dim1], ldc, &work[1]);
+ a[i__ + i__ * a_dim1] = aii;
+/* L10: */
+ }
+ return 0;
+
+/* End of DORM2R */
+
+} /* dorm2r_ */
+
+/* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m,
+ integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau,
+ doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
+ integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i1, i2, nb, mi, ni, nq, nw;
+ static logical left;
+ extern logical lsame_(char *, char *);
+ static integer iinfo;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ static logical notran;
+ extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ static logical applyq;
+ static char transt[1];
+ static integer lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
+ with
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': Q * C C * Q
+ TRANS = 'T': Q**T * C C * Q**T
+
+ If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
+ with
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': P * C C * P
+ TRANS = 'T': P**T * C C * P**T
+
+ Here Q and P**T are the orthogonal matrices determined by DGEBRD when
+ reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
+ P**T are defined as products of elementary reflectors H(i) and G(i)
+ respectively.
+
+ Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
+ order of the orthogonal matrix Q or P**T that is applied.
+
+ If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
+ if nq >= k, Q = H(1) H(2) . . . H(k);
+ if nq < k, Q = H(1) H(2) . . . H(nq-1).
+
+ If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
+ if k < nq, P = G(1) G(2) . . . G(k);
+ if k >= nq, P = G(1) G(2) . . . G(nq-1).
+
+ Arguments
+ =========
+
+ VECT (input) CHARACTER*1
+ = 'Q': apply Q or Q**T;
+ = 'P': apply P or P**T.
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q, Q**T, P or P**T from the Left;
+ = 'R': apply Q, Q**T, P or P**T from the Right.
+
+ TRANS (input) CHARACTER*1
+ = 'N': No transpose, apply Q or P;
+ = 'T': Transpose, apply Q**T or P**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ If VECT = 'Q', the number of columns in the original
+ matrix reduced by DGEBRD.
+ If VECT = 'P', the number of rows in the original
+ matrix reduced by DGEBRD.
+ K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension
+ (LDA,min(nq,K)) if VECT = 'Q'
+ (LDA,nq) if VECT = 'P'
+ The vectors which define the elementary reflectors H(i) and
+ G(i), whose products determine the matrices Q and P, as
+ returned by DGEBRD.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ If VECT = 'Q', LDA >= max(1,nq);
+ if VECT = 'P', LDA >= max(1,min(nq,K)).
+
+ TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i) or G(i) which determines Q or P, as returned
+ by DGEBRD in the array argument TAUQ or TAUP.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the M-by-N matrix C.
+ On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
+ or P*C or P**T*C or C*P or C*P**T.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If SIDE = 'L', LWORK >= max(1,N);
+ if SIDE = 'R', LWORK >= max(1,M).
+ For optimum performance LWORK >= N*NB if SIDE = 'L', and
+ LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+ blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ applyq = lsame_(vect, "Q");
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if ((! applyq && ! lsame_(vect, "P"))) {
+ *info = -1;
+ } else if ((! left && ! lsame_(side, "R"))) {
+ *info = -2;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -3;
+ } else if (*m < 0) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*k < 0) {
+ *info = -6;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = 1, i__2 = min(nq,*k);
+ if ((applyq && *lda < max(1,nq)) || (! applyq && *lda < max(i__1,i__2)
+ )) {
+ *info = -8;
+ } else if (*ldc < max(1,*m)) {
+ *info = -11;
+ } else if ((*lwork < max(1,nw) && ! lquery)) {
+ *info = -13;
+ }
+ }
+
+ if (*info == 0) {
+ if (applyq) {
+ if (left) {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ } else {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ }
+ } else {
+ if (left) {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ nb = ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ } else {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ nb = ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ }
+ }
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORMBR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ work[1] = 1.;
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+ if (applyq) {
+
+/* Apply Q */
+
+ if (nq >= *k) {
+
+/* Q was determined by a call to DGEBRD with nq >= k */
+
+ dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], lwork, &iinfo);
+ } else if (nq > 1) {
+
+/* Q was determined by a call to DGEBRD with nq < k */
+
+ if (left) {
+ mi = *m - 1;
+ ni = *n;
+ i1 = 2;
+ i2 = 1;
+ } else {
+ mi = *m;
+ ni = *n - 1;
+ i1 = 1;
+ i2 = 2;
+ }
+ i__1 = nq - 1;
+ dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
+ , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
+ }
+ } else {
+
+/* Apply P */
+
+ if (notran) {
+ *(unsigned char *)transt = 'T';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+ if (nq > *k) {
+
+/* P was determined by a call to DGEBRD with nq > k */
+
+ dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], lwork, &iinfo);
+ } else if (nq > 1) {
+
+/* P was determined by a call to DGEBRD with nq <= k */
+
+ if (left) {
+ mi = *m - 1;
+ ni = *n;
+ i1 = 2;
+ i2 = 1;
+ } else {
+ mi = *m;
+ ni = *n - 1;
+ i1 = 1;
+ i2 = 2;
+ }
+ i__1 = nq - 1;
+ dormlq_(side, transt, &mi, &ni, &i__1, &a[((a_dim1) << (1)) + 1],
+ lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1],
+ lwork, &iinfo);
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMBR */
+
+} /* dormbr_ */
+
+/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
+
+ /* Local variables */
+ static integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
+ static doublereal aii;
+ static logical left;
+ extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static logical notran;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DORML2 overwrites the general real m by n matrix C with
+
+ Q * C if SIDE = 'L' and TRANS = 'N', or
+
+ Q'* C if SIDE = 'L' and TRANS = 'T', or
+
+ C * Q if SIDE = 'R' and TRANS = 'N', or
+
+ C * Q' if SIDE = 'R' and TRANS = 'T',
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q' from the Left
+ = 'R': apply Q or Q' from the Right
+
+ TRANS (input) CHARACTER*1
+ = 'N': apply Q (No transpose)
+ = 'T': apply Q' (Transpose)
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension
+ (LDA,M) if SIDE = 'L',
+ (LDA,N) if SIDE = 'R'
+ The i-th row must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGELQF in the first k rows of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,K).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGELQF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the m by n matrix C.
+ On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension
+ (N) if SIDE = 'L',
+ (M) if SIDE = 'R'
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+
+/* NQ is the order of Q */
+
+ if (left) {
+ nq = *m;
+ } else {
+ nq = *n;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,*k)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORML2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ return 0;
+ }
+
+ if ((left && notran) || (! left && ! notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = 1;
+ } else {
+ i1 = *k;
+ i2 = 1;
+ i3 = -1;
+ }
+
+ if (left) {
+ ni = *n;
+ jc = 1;
+ } else {
+ mi = *m;
+ ic = 1;
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ if (left) {
+
+/* H(i) is applied to C(i:m,1:n) */
+
+ mi = *m - i__ + 1;
+ ic = i__;
+ } else {
+
+/* H(i) is applied to C(1:m,i:n) */
+
+ ni = *n - i__ + 1;
+ jc = i__;
+ }
+
+/* Apply H(i) */
+
+ aii = a[i__ + i__ * a_dim1];
+ a[i__ + i__ * a_dim1] = 1.;
+ dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[
+ ic + jc * c_dim1], ldc, &work[1]);
+ a[i__ + i__ * a_dim1] = aii;
+/* L10: */
+ }
+ return 0;
+
+/* End of DORML2 */
+
+} /* dorml2_ */
+
+/* Subroutine */ int dormlq_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
+ i__5;
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal t[4160] /* was [65][64] */;
+ static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
+ static logical left;
+ extern logical lsame_(char *, char *);
+ static integer nbmin, iinfo;
+ extern /* Subroutine */ int dorml2_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *), dlarfb_(char
+ *, char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static logical notran;
+ static integer ldwork;
+ static char transt[1];
+ static integer lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORMLQ overwrites the general real M-by-N matrix C with
+
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': Q * C C * Q
+ TRANS = 'T': Q**T * C C * Q**T
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q**T from the Left;
+ = 'R': apply Q or Q**T from the Right.
+
+ TRANS (input) CHARACTER*1
+ = 'N': No transpose, apply Q;
+ = 'T': Transpose, apply Q**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension
+ (LDA,M) if SIDE = 'L',
+ (LDA,N) if SIDE = 'R'
+ The i-th row must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGELQF in the first k rows of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,K).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGELQF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the M-by-N matrix C.
+ On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If SIDE = 'L', LWORK >= max(1,N);
+ if SIDE = 'R', LWORK >= max(1,M).
+ For optimum performance LWORK >= N*NB if SIDE = 'L', and
+ LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+ blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,*k)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if ((*lwork < max(1,nw) && ! lquery)) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+
+/*
+ Determine the block size. NB may be at most NBMAX, where NBMAX
+ is used to define the local array T.
+
+ Computing MIN
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DORMLQ", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nb = min(i__1,i__2);
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORMLQ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = nw;
+ if ((nb > 1 && nb < *k)) {
+ iws = nw * nb;
+ if (*lwork < iws) {
+ nb = *lwork / ldwork;
+/*
+ Computing MAX
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORMLQ", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = nw;
+ }
+
+ if (nb < nbmin || nb >= *k) {
+
+/* Use unblocked code */
+
+ dorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], &iinfo);
+ } else {
+
+/* Use blocked code */
+
+ if ((left && notran) || (! left && ! notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = nb;
+ } else {
+ i1 = (*k - 1) / nb * nb + 1;
+ i2 = 1;
+ i3 = -nb;
+ }
+
+ if (left) {
+ ni = *n;
+ jc = 1;
+ } else {
+ mi = *m;
+ ic = 1;
+ }
+
+ if (notran) {
+ *(unsigned char *)transt = 'T';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__4 = nb, i__5 = *k - i__ + 1;
+ ib = min(i__4,i__5);
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__4 = nq - i__ + 1;
+ dlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1],
+ lda, &tau[i__], t, &c__65);
+ if (left) {
+
+/* H or H' is applied to C(i:m,1:n) */
+
+ mi = *m - i__ + 1;
+ ic = i__;
+ } else {
+
+/* H or H' is applied to C(1:m,i:n) */
+
+ ni = *n - i__ + 1;
+ jc = i__;
+ }
+
+/* Apply H or H' */
+
+ dlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__
+ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1],
+ ldc, &work[1], &ldwork);
+/* L10: */
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMLQ */
+
+} /* dormlq_ */
+
+/* Subroutine */ int dormql_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
+ i__5;
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal t[4160] /* was [65][64] */;
+ static integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
+ static logical left;
+ extern logical lsame_(char *, char *);
+ static integer nbmin, iinfo;
+ extern /* Subroutine */ int dorm2l_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *), dlarfb_(char
+ *, char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static logical notran;
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORMQL overwrites the general real M-by-N matrix C with
+
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': Q * C C * Q
+ TRANS = 'T': Q**T * C C * Q**T
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(k) . . . H(2) H(1)
+
+ as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q**T from the Left;
+ = 'R': apply Q or Q**T from the Right.
+
+ TRANS (input) CHARACTER*1
+ = 'N': No transpose, apply Q;
+ = 'T': Transpose, apply Q**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,K)
+ The i-th column must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGEQLF in the last k columns of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ If SIDE = 'L', LDA >= max(1,M);
+ if SIDE = 'R', LDA >= max(1,N).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQLF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the M-by-N matrix C.
+ On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If SIDE = 'L', LWORK >= max(1,N);
+ if SIDE = 'R', LWORK >= max(1,M).
+ For optimum performance LWORK >= N*NB if SIDE = 'L', and
+ LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+ blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,nq)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if ((*lwork < max(1,nw) && ! lquery)) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+
+/*
+ Determine the block size. NB may be at most NBMAX, where NBMAX
+ is used to define the local array T.
+
+ Computing MIN
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQL", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nb = min(i__1,i__2);
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORMQL", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = nw;
+ if ((nb > 1 && nb < *k)) {
+ iws = nw * nb;
+ if (*lwork < iws) {
+ nb = *lwork / ldwork;
+/*
+ Computing MAX
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQL", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = nw;
+ }
+
+ if (nb < nbmin || nb >= *k) {
+
+/* Use unblocked code */
+
+ dorm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], &iinfo);
+ } else {
+
+/* Use blocked code */
+
+ if ((left && notran) || (! left && ! notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = nb;
+ } else {
+ i1 = (*k - 1) / nb * nb + 1;
+ i2 = 1;
+ i3 = -nb;
+ }
+
+ if (left) {
+ ni = *n;
+ } else {
+ mi = *m;
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__4 = nb, i__5 = *k - i__ + 1;
+ ib = min(i__4,i__5);
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i+ib-1) . . . H(i+1) H(i)
+*/
+
+ i__4 = nq - *k + i__ + ib - 1;
+ dlarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1]
+ , lda, &tau[i__], t, &c__65);
+ if (left) {
+
+/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */
+
+ mi = *m - *k + i__ + ib - 1;
+ } else {
+
+/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */
+
+ ni = *n - *k + i__ + ib - 1;
+ }
+
+/* Apply H or H' */
+
+ dlarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[
+ i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, &
+ work[1], &ldwork);
+/* L10: */
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMQL */
+
+} /* dormql_ */
+
+/* Subroutine */ int dormqr_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
+ i__5;
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i__;
+ static doublereal t[4160] /* was [65][64] */;
+ static integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
+ static logical left;
+ extern logical lsame_(char *, char *);
+ static integer nbmin, iinfo;
+ extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *), dlarfb_(char
+ *, char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static logical notran;
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORMQR overwrites the general real M-by-N matrix C with
+
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': Q * C C * Q
+ TRANS = 'T': Q**T * C C * Q**T
+
+ where Q is a real orthogonal matrix defined as the product of k
+ elementary reflectors
+
+ Q = H(1) H(2) . . . H(k)
+
+ as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
+ if SIDE = 'R'.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q**T from the Left;
+ = 'R': apply Q or Q**T from the Right.
+
+ TRANS (input) CHARACTER*1
+ = 'N': No transpose, apply Q;
+ = 'T': Transpose, apply Q**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ K (input) INTEGER
+ The number of elementary reflectors whose product defines
+ the matrix Q.
+ If SIDE = 'L', M >= K >= 0;
+ if SIDE = 'R', N >= K >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension (LDA,K)
+ The i-th column must contain the vector which defines the
+ elementary reflector H(i), for i = 1,2,...,k, as returned by
+ DGEQRF in the first k columns of its array argument A.
+ A is modified by the routine but restored on exit.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ If SIDE = 'L', LDA >= max(1,M);
+ if SIDE = 'R', LDA >= max(1,N).
+
+ TAU (input) DOUBLE PRECISION array, dimension (K)
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DGEQRF.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the M-by-N matrix C.
+ On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If SIDE = 'L', LWORK >= max(1,N);
+ if SIDE = 'R', LWORK >= max(1,M).
+ For optimum performance LWORK >= N*NB if SIDE = 'L', and
+ LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+ blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! notran && ! lsame_(trans, "T"))) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,nq)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if ((*lwork < max(1,nw) && ! lquery)) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+
+/*
+ Determine the block size. NB may be at most NBMAX, where NBMAX
+ is used to define the local array T.
+
+ Computing MIN
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nb = min(i__1,i__2);
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORMQR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = nw;
+ if ((nb > 1 && nb < *k)) {
+ iws = nw * nb;
+ if (*lwork < iws) {
+ nb = *lwork / ldwork;
+/*
+ Computing MAX
+ Writing concatenation
+*/
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = nw;
+ }
+
+ if (nb < nbmin || nb >= *k) {
+
+/* Use unblocked code */
+
+ dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], &iinfo);
+ } else {
+
+/* Use blocked code */
+
+ if ((left && ! notran) || (! left && notran)) {
+ i1 = 1;
+ i2 = *k;
+ i3 = nb;
+ } else {
+ i1 = (*k - 1) / nb * nb + 1;
+ i2 = 1;
+ i3 = -nb;
+ }
+
+ if (left) {
+ ni = *n;
+ jc = 1;
+ } else {
+ mi = *m;
+ ic = 1;
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__4 = nb, i__5 = *k - i__ + 1;
+ ib = min(i__4,i__5);
+
+/*
+ Form the triangular factor of the block reflector
+ H = H(i) H(i+1) . . . H(i+ib-1)
+*/
+
+ i__4 = nq - i__ + 1;
+ dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
+ a_dim1], lda, &tau[i__], t, &c__65)
+ ;
+ if (left) {
+
+/* H or H' is applied to C(i:m,1:n) */
+
+ mi = *m - i__ + 1;
+ ic = i__;
+ } else {
+
+/* H or H' is applied to C(1:m,i:n) */
+
+ ni = *n - i__ + 1;
+ jc = i__;
+ }
+
+/* Apply H or H' */
+
+ dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
+ i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
+ c_dim1], ldc, &work[1], &ldwork);
+/* L10: */
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMQR */
+
+} /* dormqr_ */
+
+/* Subroutine */ int dormtr_(char *side, char *uplo, char *trans, integer *m,
+ integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ static integer i1, i2, nb, mi, ni, nq, nw;
+ static logical left;
+ extern logical lsame_(char *, char *);
+ static integer iinfo;
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int dormql_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *),
+ dormqr_(char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, integer *);
+ static integer lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DORMTR overwrites the general real M-by-N matrix C with
+
+ SIDE = 'L' SIDE = 'R'
+ TRANS = 'N': Q * C C * Q
+ TRANS = 'T': Q**T * C C * Q**T
+
+ where Q is a real orthogonal matrix of order nq, with nq = m if
+ SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
+ nq-1 elementary reflectors, as returned by DSYTRD:
+
+ if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
+
+ if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'L': apply Q or Q**T from the Left;
+ = 'R': apply Q or Q**T from the Right.
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A contains elementary reflectors
+ from DSYTRD;
+ = 'L': Lower triangle of A contains elementary reflectors
+ from DSYTRD.
+
+ TRANS (input) CHARACTER*1
+ = 'N': No transpose, apply Q;
+ = 'T': Transpose, apply Q**T.
+
+ M (input) INTEGER
+ The number of rows of the matrix C. M >= 0.
+
+ N (input) INTEGER
+ The number of columns of the matrix C. N >= 0.
+
+ A (input) DOUBLE PRECISION array, dimension
+ (LDA,M) if SIDE = 'L'
+ (LDA,N) if SIDE = 'R'
+ The vectors which define the elementary reflectors, as
+ returned by DSYTRD.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A.
+ LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
+
+ TAU (input) DOUBLE PRECISION array, dimension
+ (M-1) if SIDE = 'L'
+ (N-1) if SIDE = 'R'
+ TAU(i) must contain the scalar factor of the elementary
+ reflector H(i), as returned by DSYTRD.
+
+ C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+ On entry, the M-by-N matrix C.
+ On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+
+ LDC (input) INTEGER
+ The leading dimension of the array C. LDC >= max(1,M).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If SIDE = 'L', LWORK >= max(1,N);
+ if SIDE = 'R', LWORK >= max(1,M).
+ For optimum performance LWORK >= N*NB if SIDE = 'L', and
+ LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+ blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ =====================================================================
+
+
+ Test the input arguments
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1 * 1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if ((! left && ! lsame_(side, "R"))) {
+ *info = -1;
+ } else if ((! upper && ! lsame_(uplo, "L"))) {
+ *info = -2;
+ } else if ((! lsame_(trans, "N") && ! lsame_(trans,
+ "T"))) {
+ *info = -3;
+ } else if (*m < 0) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,nq)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if ((*lwork < max(1,nw) && ! lquery)) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+ if (upper) {
+ if (left) {
+/* Writing concatenation */
+ i__1[0] = 1, a__1[0] = side;
+ i__1[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
+ i__2 = *m - 1;
+ i__3 = *m - 1;
+ nb = ilaenv_(&c__1, "DORMQL", ch__1, &i__2, n, &i__3, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ } else {
+/* Writing concatenation */
+ i__1[0] = 1, a__1[0] = side;
+ i__1[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
+ i__2 = *n - 1;
+ i__3 = *n - 1;
+ nb = ilaenv_(&c__1, "DORMQL", ch__1, m, &i__2, &i__3, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ }
+ } else {
+ if (left) {
+/* Writing concatenation */
+ i__1[0] = 1, a__1[0] = side;
+ i__1[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
+ i__2 = *m - 1;
+ i__3 = *m - 1;
+ nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__2, n, &i__3, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ } else {
+/* Writing concatenation */
+ i__1[0] = 1, a__1[0] = side;
+ i__1[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
+ i__2 = *n - 1;
+ i__3 = *n - 1;
+ nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__2, &i__3, &c_n1, (
+ ftnlen)6, (ftnlen)2);
+ }
+ }
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__2 = -(*info);
+ xerbla_("DORMTR", &i__2);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || nq == 1) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ if (left) {
+ mi = *m - 1;
+ ni = *n;
+ } else {
+ mi = *m;
+ ni = *n - 1;
+ }
+
+ if (upper) {
+
+/* Q was determined by a call to DSYTRD with UPLO = 'U' */
+
+ i__2 = nq - 1;
+ dormql_(side, trans, &mi, &ni, &i__2, &a[((a_dim1) << (1)) + 1], lda,
+ &tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
+ } else {
+
+/* Q was determined by a call to DSYTRD with UPLO = 'L' */
+
+ if (left) {
+ i1 = 2;
+ i2 = 1;
+ } else {
+ i1 = 1;
+ i2 = 2;
+ }
+ i__2 = nq - 1;
+ dormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
+ c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMTR */
+
+} /* dormtr_ */
+
+/* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer *
+ lda, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer j;
+ static doublereal ajj;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+ static logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ February 29, 1992
+
+
+ Purpose
+ =======
+
+ DPOTF2 computes the Cholesky factorization of a real symmetric
+ positive definite matrix A.
+
+ The factorization has the form
+ A = U' * U , if UPLO = 'U', or
+ A = L * L', if UPLO = 'L',
+ where U is an upper triangular matrix and L is lower triangular.
+
+ This is the unblocked version of the algorithm, calling Level 2 BLAS.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ Specifies whether the upper or lower triangular part of the
+ symmetric matrix A is stored.
+ = 'U': Upper triangular
+ = 'L': Lower triangular
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ n by n upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading n by n lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+
+ On exit, if INFO = 0, the factor U or L from the Cholesky
+ factorization A = U'*U or A = L*L'.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -k, the k-th argument had an illegal value
+ > 0: if INFO = k, the leading minor of order k is not
+ positive definite, and the factorization could not be
+ completed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if ((! upper && ! lsame_(uplo, "L"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DPOTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute U(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j - 1;
+ ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1,
+ &a[j * a_dim1 + 1], &c__1);
+ if (ajj <= 0.) {
+ a[j + j * a_dim1] = ajj;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ a[j + j * a_dim1] = ajj;
+
+/* Compute elements J+1:N of row J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ i__3 = *n - j;
+ dgemv_("Transpose", &i__2, &i__3, &c_b151, &a[(j + 1) *
+ a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b15, &
+ a[j + (j + 1) * a_dim1], lda);
+ i__2 = *n - j;
+ d__1 = 1. / ajj;
+ dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute L(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j - 1;
+ ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j
+ + a_dim1], lda);
+ if (ajj <= 0.) {
+ a[j + j * a_dim1] = ajj;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ a[j + j * a_dim1] = ajj;
+
+/* Compute elements J+1:N of column J. */
+
+ if (j < *n) {
+ i__2 = *n - j;
+ i__3 = j - 1;
+ dgemv_("No transpose", &i__2, &i__3, &c_b151, &a[j + 1 +
+ a_dim1], lda, &a[j + a_dim1], lda, &c_b15, &a[j + 1 +
+ j * a_dim1], &c__1);
+ i__2 = *n - j;
+ d__1 = 1. / ajj;
+ dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+/* L20: */
+ }
+ }
+ goto L40;
+
+L30:
+ *info = j;
+
+L40:
+ return 0;
+
+/* End of DPOTF2 */
+
+} /* dpotf2_ */
+
+/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
+ lda, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ static integer j, jb, nb;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
+ integer *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *);
+ static logical upper;
+ extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *), dpotf2_(char *, integer *,
+ doublereal *, integer *, integer *), xerbla_(char *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ March 31, 1993
+
+
+ Purpose
+ =======
+
+ DPOTRF computes the Cholesky factorization of a real symmetric
+ positive definite matrix A.
+
+ The factorization has the form
+ A = U**T * U, if UPLO = 'U', or
+ A = L * L**T, if UPLO = 'L',
+ where U is an upper triangular matrix and L is lower triangular.
+
+ This is the block version of the algorithm, calling Level 3 BLAS.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ N-by-N upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading N-by-N lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+
+ On exit, if INFO = 0, the factor U or L from the Cholesky
+ factorization A = U**T*U or A = L*L**T.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, the leading minor of order i is not
+ positive definite, and the factorization could not be
+ completed.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if ((! upper && ! lsame_(uplo, "L"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DPOTRF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Determine the block size for this environment. */
+
+ nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
+ ftnlen)1);
+ if (nb <= 1 || nb >= *n) {
+
+/* Use unblocked code. */
+
+ dpotf2_(uplo, n, &a[a_offset], lda, info);
+ } else {
+
+/* Use blocked code. */
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ i__2 = nb;
+ for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
+
+/*
+ Update and factorize the current diagonal block and test
+ for non-positive-definiteness.
+
+ Computing MIN
+*/
+ i__3 = nb, i__4 = *n - j + 1;
+ jb = min(i__3,i__4);
+ i__3 = j - 1;
+ dsyrk_("Upper", "Transpose", &jb, &i__3, &c_b151, &a[j *
+ a_dim1 + 1], lda, &c_b15, &a[j + j * a_dim1], lda);
+ dpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
+ if (*info != 0) {
+ goto L30;
+ }
+ if (j + jb <= *n) {
+
+/* Compute the current block row. */
+
+ i__3 = *n - j - jb + 1;
+ i__4 = j - 1;
+ dgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
+ c_b151, &a[j * a_dim1 + 1], lda, &a[(j + jb) *
+ a_dim1 + 1], lda, &c_b15, &a[j + (j + jb) *
+ a_dim1], lda);
+ i__3 = *n - j - jb + 1;
+ dtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
+ i__3, &c_b15, &a[j + j * a_dim1], lda, &a[j + (j
+ + jb) * a_dim1], lda);
+ }
+/* L10: */
+ }
+
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__2 = *n;
+ i__1 = nb;
+ for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
+
+/*
+ Update and factorize the current diagonal block and test
+ for non-positive-definiteness.
+
+ Computing MIN
+*/
+ i__3 = nb, i__4 = *n - j + 1;
+ jb = min(i__3,i__4);
+ i__3 = j - 1;
+ dsyrk_("Lower", "No transpose", &jb, &i__3, &c_b151, &a[j +
+ a_dim1], lda, &c_b15, &a[j + j * a_dim1], lda);
+ dpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
+ if (*info != 0) {
+ goto L30;
+ }
+ if (j + jb <= *n) {
+
+/* Compute the current block column. */
+
+ i__3 = *n - j - jb + 1;
+ i__4 = j - 1;
+ dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
+ c_b151, &a[j + jb + a_dim1], lda, &a[j + a_dim1],
+ lda, &c_b15, &a[j + jb + j * a_dim1], lda);
+ i__3 = *n - j - jb + 1;
+ dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
+ jb, &c_b15, &a[j + j * a_dim1], lda, &a[j + jb +
+ j * a_dim1], lda);
+ }
+/* L20: */
+ }
+ }
+ }
+ goto L40;
+
+L30:
+ *info = *info + j - 1;
+
+L40:
+ return 0;
+
+/* End of DPOTRF */
+
+} /* dpotrf_ */
+
+/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__,
+ doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
+ integer *lwork, integer *iwork, integer *liwork, integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double log(doublereal);
+ integer pow_ii(integer *, integer *);
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, j, k, m;
+ static doublereal p;
+ static integer ii, end, lgn;
+ static doublereal eps, tiny;
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static integer lwmin;
+ extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ static integer start;
+
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlacpy_(char *, integer *, integer
+ *, doublereal *, integer *, doublereal *, integer *),
+ dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
+ integer *), dlasrt_(char *, integer *, doublereal *, integer *);
+ static integer liwmin, icompz;
+ extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *);
+ static doublereal orgnrm;
+ static logical lquery;
+ static integer smlsiz, dtrtrw, storez;
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
+ symmetric tridiagonal matrix using the divide and conquer method.
+ The eigenvectors of a full or band real symmetric matrix can also be
+ found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
+ matrix to tridiagonal form.
+
+ This code makes very mild assumptions about floating point
+ arithmetic. It will work on machines with a guard digit in
+ add/subtract, or on those binary machines without guard digits
+ which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
+ It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none. See DLAED3 for details.
+
+ Arguments
+ =========
+
+ COMPZ (input) CHARACTER*1
+ = 'N': Compute eigenvalues only.
+ = 'I': Compute eigenvectors of tridiagonal matrix also.
+ = 'V': Compute eigenvectors of original dense symmetric
+ matrix also. On entry, Z contains the orthogonal
+ matrix used to reduce the original matrix to
+ tridiagonal form.
+
+ N (input) INTEGER
+ The dimension of the symmetric tridiagonal matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the diagonal elements of the tridiagonal matrix.
+ On exit, if INFO = 0, the eigenvalues in ascending order.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N-1)
+ On entry, the subdiagonal elements of the tridiagonal matrix.
+ On exit, E has been destroyed.
+
+ Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+ On entry, if COMPZ = 'V', then Z contains the orthogonal
+ matrix used in the reduction to tridiagonal form.
+ On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
+ orthonormal eigenvectors of the original symmetric matrix,
+ and if COMPZ = 'I', Z contains the orthonormal eigenvectors
+ of the symmetric tridiagonal matrix.
+ If COMPZ = 'N', then Z is not referenced.
+
+ LDZ (input) INTEGER
+ The leading dimension of the array Z. LDZ >= 1.
+ If eigenvectors are desired, then LDZ >= max(1,N).
+
+ WORK (workspace/output) DOUBLE PRECISION array,
+ dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
+ If COMPZ = 'V' and N > 1 then LWORK must be at least
+ ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
+ where lg( N ) = smallest integer k such
+ that 2**k >= N.
+ If COMPZ = 'I' and N > 1 then LWORK must be at least
+ ( 1 + 4*N + N**2 ).
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ IWORK (workspace/output) INTEGER array, dimension (LIWORK)
+ On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+
+ LIWORK (input) INTEGER
+ The dimension of the array IWORK.
+ If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
+ If COMPZ = 'V' and N > 1 then LIWORK must be at least
+ ( 6 + 6*N + 5*N*lg N ).
+ If COMPZ = 'I' and N > 1 then LIWORK must be at least
+ ( 3 + 5*N ).
+
+ If LIWORK = -1, then a workspace query is assumed; the
+ routine only calculates the optimal size of the IWORK array,
+ returns this value as the first entry of the IWORK array, and
+ no error message related to LIWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit.
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+ > 0: The algorithm failed to compute an eigenvalue while
+ working on the submatrix lying in rows and columns
+ INFO/(N+1) through mod(INFO,N+1).
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+ Modified by Francoise Tisseur, University of Tennessee.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1 || *liwork == -1;
+
+ if (lsame_(compz, "N")) {
+ icompz = 0;
+ } else if (lsame_(compz, "V")) {
+ icompz = 1;
+ } else if (lsame_(compz, "I")) {
+ icompz = 2;
+ } else {
+ icompz = -1;
+ }
+ if (*n <= 1 || icompz <= 0) {
+ liwmin = 1;
+ lwmin = 1;
+ } else {
+ lgn = (integer) (log((doublereal) (*n)) / log(2.));
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ if (icompz == 1) {
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = *n * 3 + 1 + ((*n) << (1)) * lgn + i__1 * i__1 * 3;
+ liwmin = *n * 6 + 6 + *n * 5 * lgn;
+ } else if (icompz == 2) {
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = ((*n) << (2)) + 1 + i__1 * i__1;
+ liwmin = *n * 5 + 3;
+ }
+ }
+ if (icompz < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
+ *info = -6;
+ } else if ((*lwork < lwmin && ! lquery)) {
+ *info = -8;
+ } else if ((*liwork < liwmin && ! lquery)) {
+ *info = -10;
+ }
+
+ if (*info == 0) {
+ work[1] = (doublereal) lwmin;
+ iwork[1] = liwmin;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSTEDC", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+ if (*n == 1) {
+ if (icompz != 0) {
+ z__[z_dim1 + 1] = 1.;
+ }
+ return 0;
+ }
+
+ smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
+ ftnlen)6, (ftnlen)1);
+
+/*
+ If the following conditional clause is removed, then the routine
+ will use the Divide and Conquer routine to compute only the
+ eigenvalues, which requires (3N + 3N**2) real workspace and
+ (2 + 5N + 2N lg(N)) integer workspace.
+ Since on many architectures DSTERF is much faster than any other
+ algorithm for finding eigenvalues only, it is used here
+ as the default.
+
+ If COMPZ = 'N', use DSTERF to compute the eigenvalues.
+*/
+
+ if (icompz == 0) {
+ dsterf_(n, &d__[1], &e[1], info);
+ return 0;
+ }
+
+/*
+ If N is smaller than the minimum divide size (SMLSIZ+1), then
+ solve the problem with another solver.
+*/
+
+ if (*n <= smlsiz) {
+ if (icompz == 0) {
+ dsterf_(n, &d__[1], &e[1], info);
+ return 0;
+ } else if (icompz == 2) {
+ dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
+ info);
+ return 0;
+ } else {
+ dsteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
+ info);
+ return 0;
+ }
+ }
+
+/*
+ If COMPZ = 'V', the Z matrix must be stored elsewhere for later
+ use.
+*/
+
+ if (icompz == 1) {
+ storez = *n * *n + 1;
+ } else {
+ storez = 1;
+ }
+
+ if (icompz == 2) {
+ dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
+ }
+
+/* Scale. */
+
+ orgnrm = dlanst_("M", n, &d__[1], &e[1]);
+ if (orgnrm == 0.) {
+ return 0;
+ }
+
+ eps = EPSILON;
+
+ start = 1;
+
+/* while ( START <= N ) */
+
+L10:
+ if (start <= *n) {
+
+/*
+ Let END be the position of the next subdiagonal entry such that
+ E( END ) <= TINY or END = N if no such subdiagonal exists. The
+ matrix identified by the elements between START and END
+ constitutes an independent sub-problem.
+*/
+
+ end = start;
+L20:
+ if (end < *n) {
+ tiny = eps * sqrt((d__1 = d__[end], abs(d__1))) * sqrt((d__2 =
+ d__[end + 1], abs(d__2)));
+ if ((d__1 = e[end], abs(d__1)) > tiny) {
+ ++end;
+ goto L20;
+ }
+ }
+
+/* (Sub) Problem determined. Compute its size and solve it. */
+
+ m = end - start + 1;
+ if (m == 1) {
+ start = end + 1;
+ goto L10;
+ }
+ if (m > smlsiz) {
+ *info = smlsiz;
+
+/* Scale. */
+
+ orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &m, &c__1, &d__[start]
+ , &m, info);
+ i__1 = m - 1;
+ i__2 = m - 1;
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &i__1, &c__1, &e[
+ start], &i__2, info);
+
+ if (icompz == 1) {
+ dtrtrw = 1;
+ } else {
+ dtrtrw = start;
+ }
+ dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[dtrtrw +
+ start * z_dim1], ldz, &work[1], n, &work[storez], &iwork[
+ 1], info);
+ if (*info != 0) {
+ *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m
+ + 1) + start - 1;
+ return 0;
+ }
+
+/* Scale back. */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, &m, &c__1, &d__[start]
+ , &m, info);
+
+ } else {
+ if (icompz == 1) {
+
+/*
+ Since QR won't update a Z matrix which is larger than the
+ length of D, we must solve the sub-problem in a workspace and
+ then multiply back into Z.
+*/
+
+ dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &work[
+ m * m + 1], info);
+ dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
+ storez], n);
+ dgemm_("N", "N", n, &m, &m, &c_b15, &work[storez], ldz, &work[
+ 1], &m, &c_b29, &z__[start * z_dim1 + 1], ldz);
+ } else if (icompz == 2) {
+ dsteqr_("I", &m, &d__[start], &e[start], &z__[start + start *
+ z_dim1], ldz, &work[1], info);
+ } else {
+ dsterf_(&m, &d__[start], &e[start], info);
+ }
+ if (*info != 0) {
+ *info = start * (*n + 1) + end;
+ return 0;
+ }
+ }
+
+ start = end + 1;
+ goto L10;
+ }
+
+/*
+ endwhile
+
+ If the problem split any number of times, then the eigenvalues
+ will not be properly ordered. Here we permute the eigenvalues
+ (and the associated eigenvectors) into ascending order.
+*/
+
+ if (m != *n) {
+ if (icompz == 0) {
+
+/* Use Quick Sort */
+
+ dlasrt_("I", n, &d__[1], info);
+
+ } else {
+
+/* Use Selection Sort to minimize swaps of eigenvectors */
+
+ i__1 = *n;
+ for (ii = 2; ii <= i__1; ++ii) {
+ i__ = ii - 1;
+ k = i__;
+ p = d__[i__];
+ i__2 = *n;
+ for (j = ii; j <= i__2; ++j) {
+ if (d__[j] < p) {
+ k = j;
+ p = d__[j];
+ }
+/* L30: */
+ }
+ if (k != i__) {
+ d__[k] = d__[i__];
+ d__[i__] = p;
+ dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1
+ + 1], &c__1);
+ }
+/* L40: */
+ }
+ }
+ }
+
+ work[1] = (doublereal) lwmin;
+ iwork[1] = liwmin;
+
+ return 0;
+
+/* End of DSTEDC */
+
+} /* dstedc_ */
+
+/* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__,
+ doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static doublereal b, c__, f, g;
+ static integer i__, j, k, l, m;
+ static doublereal p, r__, s;
+ static integer l1, ii, mm, lm1, mm1, nm1;
+ static doublereal rt1, rt2, eps;
+ static integer lsv;
+ static doublereal tst, eps2;
+ static integer lend, jtot;
+ extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
+ *, doublereal *, doublereal *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *);
+ static doublereal anorm;
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *), dlaev2_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *);
+ static integer lendm1, lendp1;
+
+ static integer iscale;
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlaset_(char *, integer *, integer
+ *, doublereal *, doublereal *, doublereal *, integer *);
+ static doublereal safmin;
+ extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *);
+ static doublereal safmax;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
+ integer *);
+ static integer lendsv;
+ static doublereal ssfmin;
+ static integer nmaxit, icompz;
+ static doublereal ssfmax;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ September 30, 1994
+
+
+ Purpose
+ =======
+
+ DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
+ symmetric tridiagonal matrix using the implicit QL or QR method.
+ The eigenvectors of a full or band symmetric matrix can also be found
+ if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
+ tridiagonal form.
+
+ Arguments
+ =========
+
+ COMPZ (input) CHARACTER*1
+ = 'N': Compute eigenvalues only.
+ = 'V': Compute eigenvalues and eigenvectors of the original
+ symmetric matrix. On entry, Z must contain the
+ orthogonal matrix used to reduce the original matrix
+ to tridiagonal form.
+ = 'I': Compute eigenvalues and eigenvectors of the
+ tridiagonal matrix. Z is initialized to the identity
+ matrix.
+
+ N (input) INTEGER
+ The order of the matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the diagonal elements of the tridiagonal matrix.
+ On exit, if INFO = 0, the eigenvalues in ascending order.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N-1)
+ On entry, the (n-1) subdiagonal elements of the tridiagonal
+ matrix.
+ On exit, E has been destroyed.
+
+ Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
+ On entry, if COMPZ = 'V', then Z contains the orthogonal
+ matrix used in the reduction to tridiagonal form.
+ On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
+ orthonormal eigenvectors of the original symmetric matrix,
+ and if COMPZ = 'I', Z contains the orthonormal eigenvectors
+ of the symmetric tridiagonal matrix.
+ If COMPZ = 'N', then Z is not referenced.
+
+ LDZ (input) INTEGER
+ The leading dimension of the array Z. LDZ >= 1, and if
+ eigenvectors are desired, then LDZ >= max(1,N).
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
+ If COMPZ = 'N', then WORK is not referenced.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: the algorithm has failed to find all the eigenvalues in
+ a total of 30*N iterations; if INFO = i, then i
+ elements of E have not converged to zero; on exit, D
+ and E contain the elements of a symmetric tridiagonal
+ matrix which is orthogonally similar to the original
+ matrix.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1 * 1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (lsame_(compz, "N")) {
+ icompz = 0;
+ } else if (lsame_(compz, "V")) {
+ icompz = 1;
+ } else if (lsame_(compz, "I")) {
+ icompz = 2;
+ } else {
+ icompz = -1;
+ }
+ if (icompz < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ldz < 1 || (icompz > 0 && *ldz < max(1,*n))) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSTEQR", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (icompz == 2) {
+ z__[z_dim1 + 1] = 1.;
+ }
+ return 0;
+ }
+
+/* Determine the unit roundoff and over/underflow thresholds. */
+
+ eps = EPSILON;
+/* Computing 2nd power */
+ d__1 = eps;
+ eps2 = d__1 * d__1;
+ safmin = SAFEMINIMUM;
+ safmax = 1. / safmin;
+ ssfmax = sqrt(safmax) / 3.;
+ ssfmin = sqrt(safmin) / eps2;
+
+/*
+ Compute the eigenvalues and eigenvectors of the tridiagonal
+ matrix.
+*/
+
+ if (icompz == 2) {
+ dlaset_("Full", n, n, &c_b29, &c_b15, &z__[z_offset], ldz);
+ }
+
+ nmaxit = *n * 30;
+ jtot = 0;
+
+/*
+ Determine where the matrix splits and choose QL or QR iteration
+ for each block, according to whether top or bottom diagonal
+ element is smaller.
+*/
+
+ l1 = 1;
+ nm1 = *n - 1;
+
+L10:
+ if (l1 > *n) {
+ goto L160;
+ }
+ if (l1 > 1) {
+ e[l1 - 1] = 0.;
+ }
+ if (l1 <= nm1) {
+ i__1 = nm1;
+ for (m = l1; m <= i__1; ++m) {
+ tst = (d__1 = e[m], abs(d__1));
+ if (tst == 0.) {
+ goto L30;
+ }
+ if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
+ + 1], abs(d__2))) * eps) {
+ e[m] = 0.;
+ goto L30;
+ }
+/* L20: */
+ }
+ }
+ m = *n;
+
+L30:
+ l = l1;
+ lsv = l;
+ lend = m;
+ lendsv = lend;
+ l1 = m + 1;
+ if (lend == l) {
+ goto L10;
+ }
+
+/* Scale submatrix in rows and columns L to LEND */
+
+ i__1 = lend - l + 1;
+ anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
+ iscale = 0;
+ if (anorm == 0.) {
+ goto L10;
+ }
+ if (anorm > ssfmax) {
+ iscale = 1;
+ i__1 = lend - l + 1;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
+ info);
+ i__1 = lend - l;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
+ info);
+ } else if (anorm < ssfmin) {
+ iscale = 2;
+ i__1 = lend - l + 1;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
+ info);
+ i__1 = lend - l;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
+ info);
+ }
+
+/* Choose between QL and QR iteration */
+
+ if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
+ lend = lsv;
+ l = lendsv;
+ }
+
+ if (lend > l) {
+
+/*
+ QL Iteration
+
+ Look for small subdiagonal element.
+*/
+
+L40:
+ if (l != lend) {
+ lendm1 = lend - 1;
+ i__1 = lendm1;
+ for (m = l; m <= i__1; ++m) {
+/* Computing 2nd power */
+ d__2 = (d__1 = e[m], abs(d__1));
+ tst = d__2 * d__2;
+ if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
+ + 1], abs(d__2)) + safmin) {
+ goto L60;
+ }
+/* L50: */
+ }
+ }
+
+ m = lend;
+
+L60:
+ if (m < lend) {
+ e[m] = 0.;
+ }
+ p = d__[l];
+ if (m == l) {
+ goto L80;
+ }
+
+/*
+ If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
+ to compute its eigensystem.
+*/
+
+ if (m == l + 1) {
+ if (icompz > 0) {
+ dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
+ work[l] = c__;
+ work[*n - 1 + l] = s;
+ dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
+ z__[l * z_dim1 + 1], ldz);
+ } else {
+ dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
+ }
+ d__[l] = rt1;
+ d__[l + 1] = rt2;
+ e[l] = 0.;
+ l += 2;
+ if (l <= lend) {
+ goto L40;
+ }
+ goto L140;
+ }
+
+ if (jtot == nmaxit) {
+ goto L140;
+ }
+ ++jtot;
+
+/* Form shift. */
+
+ g = (d__[l + 1] - p) / (e[l] * 2.);
+ r__ = dlapy2_(&g, &c_b15);
+ g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
+
+ s = 1.;
+ c__ = 1.;
+ p = 0.;
+
+/* Inner loop */
+
+ mm1 = m - 1;
+ i__1 = l;
+ for (i__ = mm1; i__ >= i__1; --i__) {
+ f = s * e[i__];
+ b = c__ * e[i__];
+ dlartg_(&g, &f, &c__, &s, &r__);
+ if (i__ != m - 1) {
+ e[i__ + 1] = r__;
+ }
+ g = d__[i__ + 1] - p;
+ r__ = (d__[i__] - g) * s + c__ * 2. * b;
+ p = s * r__;
+ d__[i__ + 1] = g + p;
+ g = c__ * r__ - b;
+
+/* If eigenvectors are desired, then save rotations. */
+
+ if (icompz > 0) {
+ work[i__] = c__;
+ work[*n - 1 + i__] = -s;
+ }
+
+/* L70: */
+ }
+
+/* If eigenvectors are desired, then apply saved rotations. */
+
+ if (icompz > 0) {
+ mm = m - l + 1;
+ dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
+ * z_dim1 + 1], ldz);
+ }
+
+ d__[l] -= p;
+ e[l] = g;
+ goto L40;
+
+/* Eigenvalue found. */
+
+L80:
+ d__[l] = p;
+
+ ++l;
+ if (l <= lend) {
+ goto L40;
+ }
+ goto L140;
+
+ } else {
+
+/*
+ QR Iteration
+
+ Look for small superdiagonal element.
+*/
+
+L90:
+ if (l != lend) {
+ lendp1 = lend + 1;
+ i__1 = lendp1;
+ for (m = l; m >= i__1; --m) {
+/* Computing 2nd power */
+ d__2 = (d__1 = e[m - 1], abs(d__1));
+ tst = d__2 * d__2;
+ if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
+ - 1], abs(d__2)) + safmin) {
+ goto L110;
+ }
+/* L100: */
+ }
+ }
+
+ m = lend;
+
+L110:
+ if (m > lend) {
+ e[m - 1] = 0.;
+ }
+ p = d__[l];
+ if (m == l) {
+ goto L130;
+ }
+
+/*
+ If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
+ to compute its eigensystem.
+*/
+
+ if (m == l - 1) {
+ if (icompz > 0) {
+ dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
+ ;
+ work[m] = c__;
+ work[*n - 1 + m] = s;
+ dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
+ z__[(l - 1) * z_dim1 + 1], ldz);
+ } else {
+ dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
+ }
+ d__[l - 1] = rt1;
+ d__[l] = rt2;
+ e[l - 1] = 0.;
+ l += -2;
+ if (l >= lend) {
+ goto L90;
+ }
+ goto L140;
+ }
+
+ if (jtot == nmaxit) {
+ goto L140;
+ }
+ ++jtot;
+
+/* Form shift. */
+
+ g = (d__[l - 1] - p) / (e[l - 1] * 2.);
+ r__ = dlapy2_(&g, &c_b15);
+ g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
+
+ s = 1.;
+ c__ = 1.;
+ p = 0.;
+
+/* Inner loop */
+
+ lm1 = l - 1;
+ i__1 = lm1;
+ for (i__ = m; i__ <= i__1; ++i__) {
+ f = s * e[i__];
+ b = c__ * e[i__];
+ dlartg_(&g, &f, &c__, &s, &r__);
+ if (i__ != m) {
+ e[i__ - 1] = r__;
+ }
+ g = d__[i__] - p;
+ r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
+ p = s * r__;
+ d__[i__] = g + p;
+ g = c__ * r__ - b;
+
+/* If eigenvectors are desired, then save rotations. */
+
+ if (icompz > 0) {
+ work[i__] = c__;
+ work[*n - 1 + i__] = s;
+ }
+
+/* L120: */
+ }
+
+/* If eigenvectors are desired, then apply saved rotations. */
+
+ if (icompz > 0) {
+ mm = l - m + 1;
+ dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
+ * z_dim1 + 1], ldz);
+ }
+
+ d__[l] -= p;
+ e[lm1] = g;
+ goto L90;
+
+/* Eigenvalue found. */
+
+L130:
+ d__[l] = p;
+
+ --l;
+ if (l >= lend) {
+ goto L90;
+ }
+ goto L140;
+
+ }
+
+/* Undo scaling if necessary */
+
+L140:
+ if (iscale == 1) {
+ i__1 = lendsv - lsv + 1;
+ dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
+ n, info);
+ i__1 = lendsv - lsv;
+ dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
+ info);
+ } else if (iscale == 2) {
+ i__1 = lendsv - lsv + 1;
+ dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
+ n, info);
+ i__1 = lendsv - lsv;
+ dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
+ info);
+ }
+
+/*
+ Check for no convergence to an eigenvalue after a total
+ of N*MAXIT iterations.
+*/
+
+ if (jtot < nmaxit) {
+ goto L10;
+ }
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (e[i__] != 0.) {
+ ++(*info);
+ }
+/* L150: */
+ }
+ goto L190;
+
+/* Order eigenvalues and eigenvectors. */
+
+L160:
+ if (icompz == 0) {
+
+/* Use Quick Sort */
+
+ dlasrt_("I", n, &d__[1], info);
+
+ } else {
+
+/* Use Selection Sort to minimize swaps of eigenvectors */
+
+ i__1 = *n;
+ for (ii = 2; ii <= i__1; ++ii) {
+ i__ = ii - 1;
+ k = i__;
+ p = d__[i__];
+ i__2 = *n;
+ for (j = ii; j <= i__2; ++j) {
+ if (d__[j] < p) {
+ k = j;
+ p = d__[j];
+ }
+/* L170: */
+ }
+ if (k != i__) {
+ d__[k] = d__[i__];
+ d__[i__] = p;
+ dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
+ &c__1);
+ }
+/* L180: */
+ }
+ }
+
+L190:
+ return 0;
+
+/* End of DSTEQR */
+
+} /* dsteqr_ */
+
+/* Subroutine */ int dsterf_(integer *n, doublereal *d__, doublereal *e,
+ integer *info)
+{
+ /* System generated locals */
+ integer i__1;
+ doublereal d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ static doublereal c__;
+ static integer i__, l, m;
+ static doublereal p, r__, s;
+ static integer l1;
+ static doublereal bb, rt1, rt2, eps, rte;
+ static integer lsv;
+ static doublereal eps2, oldc;
+ static integer lend, jtot;
+ extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
+ *, doublereal *, doublereal *);
+ static doublereal gamma, alpha, sigma, anorm;
+
+ static integer iscale;
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *);
+ static doublereal oldgam, safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal safmax;
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
+ integer *);
+ static integer lendsv;
+ static doublereal ssfmin;
+ static integer nmaxit;
+ static doublereal ssfmax;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
+ using the Pal-Walker-Kahan variant of the QL or QR algorithm.
+
+ Arguments
+ =========
+
+ N (input) INTEGER
+ The order of the matrix. N >= 0.
+
+ D (input/output) DOUBLE PRECISION array, dimension (N)
+ On entry, the n diagonal elements of the tridiagonal matrix.
+ On exit, if INFO = 0, the eigenvalues in ascending order.
+
+ E (input/output) DOUBLE PRECISION array, dimension (N-1)
+ On entry, the (n-1) subdiagonal elements of the tridiagonal
+ matrix.
+ On exit, E has been destroyed.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: the algorithm failed to find all of the eigenvalues in
+ a total of 30*N iterations; if INFO = i, then i
+ elements of E have not converged to zero.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ --e;
+ --d__;
+
+ /* Function Body */
+ *info = 0;
+
+/* Quick return if possible */
+
+ if (*n < 0) {
+ *info = -1;
+ i__1 = -(*info);
+ xerbla_("DSTERF", &i__1);
+ return 0;
+ }
+ if (*n <= 1) {
+ return 0;
+ }
+
+/* Determine the unit roundoff for this environment. */
+
+ eps = EPSILON;
+/* Computing 2nd power */
+ d__1 = eps;
+ eps2 = d__1 * d__1;
+ safmin = SAFEMINIMUM;
+ safmax = 1. / safmin;
+ ssfmax = sqrt(safmax) / 3.;
+ ssfmin = sqrt(safmin) / eps2;
+
+/* Compute the eigenvalues of the tridiagonal matrix. */
+
+ nmaxit = *n * 30;
+ sigma = 0.;
+ jtot = 0;
+
+/*
+ Determine where the matrix splits and choose QL or QR iteration
+ for each block, according to whether top or bottom diagonal
+ element is smaller.
+*/
+
+ l1 = 1;
+
+L10:
+ if (l1 > *n) {
+ goto L170;
+ }
+ if (l1 > 1) {
+ e[l1 - 1] = 0.;
+ }
+ i__1 = *n - 1;
+ for (m = l1; m <= i__1; ++m) {
+ if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) *
+ sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
+ e[m] = 0.;
+ goto L30;
+ }
+/* L20: */
+ }
+ m = *n;
+
+L30:
+ l = l1;
+ lsv = l;
+ lend = m;
+ lendsv = lend;
+ l1 = m + 1;
+ if (lend == l) {
+ goto L10;
+ }
+
+/* Scale submatrix in rows and columns L to LEND */
+
+ i__1 = lend - l + 1;
+ anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
+ iscale = 0;
+ if (anorm > ssfmax) {
+ iscale = 1;
+ i__1 = lend - l + 1;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
+ info);
+ i__1 = lend - l;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
+ info);
+ } else if (anorm < ssfmin) {
+ iscale = 2;
+ i__1 = lend - l + 1;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
+ info);
+ i__1 = lend - l;
+ dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
+ info);
+ }
+
+ i__1 = lend - 1;
+ for (i__ = l; i__ <= i__1; ++i__) {
+/* Computing 2nd power */
+ d__1 = e[i__];
+ e[i__] = d__1 * d__1;
+/* L40: */
+ }
+
+/* Choose between QL and QR iteration */
+
+ if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
+ lend = lsv;
+ l = lendsv;
+ }
+
+ if (lend >= l) {
+
+/*
+ QL Iteration
+
+ Look for small subdiagonal element.
+*/
+
+L50:
+ if (l != lend) {
+ i__1 = lend - 1;
+ for (m = l; m <= i__1; ++m) {
+ if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
+ + 1], abs(d__1))) {
+ goto L70;
+ }
+/* L60: */
+ }
+ }
+ m = lend;
+
+L70:
+ if (m < lend) {
+ e[m] = 0.;
+ }
+ p = d__[l];
+ if (m == l) {
+ goto L90;
+ }
+
+/*
+ If remaining matrix is 2 by 2, use DLAE2 to compute its
+ eigenvalues.
+*/
+
+ if (m == l + 1) {
+ rte = sqrt(e[l]);
+ dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
+ d__[l] = rt1;
+ d__[l + 1] = rt2;
+ e[l] = 0.;
+ l += 2;
+ if (l <= lend) {
+ goto L50;
+ }
+ goto L150;
+ }
+
+ if (jtot == nmaxit) {
+ goto L150;
+ }
+ ++jtot;
+
+/* Form shift. */
+
+ rte = sqrt(e[l]);
+ sigma = (d__[l + 1] - p) / (rte * 2.);
+ r__ = dlapy2_(&sigma, &c_b15);
+ sigma = p - rte / (sigma + d_sign(&r__, &sigma));
+
+ c__ = 1.;
+ s = 0.;
+ gamma = d__[m] - sigma;
+ p = gamma * gamma;
+
+/* Inner loop */
+
+ i__1 = l;
+ for (i__ = m - 1; i__ >= i__1; --i__) {
+ bb = e[i__];
+ r__ = p + bb;
+ if (i__ != m - 1) {
+ e[i__ + 1] = s * r__;
+ }
+ oldc = c__;
+ c__ = p / r__;
+ s = bb / r__;
+ oldgam = gamma;
+ alpha = d__[i__];
+ gamma = c__ * (alpha - sigma) - s * oldgam;
+ d__[i__ + 1] = oldgam + (alpha - gamma);
+ if (c__ != 0.) {
+ p = gamma * gamma / c__;
+ } else {
+ p = oldc * bb;
+ }
+/* L80: */
+ }
+
+ e[l] = s * p;
+ d__[l] = sigma + gamma;
+ goto L50;
+
+/* Eigenvalue found. */
+
+L90:
+ d__[l] = p;
+
+ ++l;
+ if (l <= lend) {
+ goto L50;
+ }
+ goto L150;
+
+ } else {
+
+/*
+ QR Iteration
+
+ Look for small superdiagonal element.
+*/
+
+L100:
+ i__1 = lend + 1;
+ for (m = l; m >= i__1; --m) {
+ if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m
+ - 1], abs(d__1))) {
+ goto L120;
+ }
+/* L110: */
+ }
+ m = lend;
+
+L120:
+ if (m > lend) {
+ e[m - 1] = 0.;
+ }
+ p = d__[l];
+ if (m == l) {
+ goto L140;
+ }
+
+/*
+ If remaining matrix is 2 by 2, use DLAE2 to compute its
+ eigenvalues.
+*/
+
+ if (m == l - 1) {
+ rte = sqrt(e[l - 1]);
+ dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
+ d__[l] = rt1;
+ d__[l - 1] = rt2;
+ e[l - 1] = 0.;
+ l += -2;
+ if (l >= lend) {
+ goto L100;
+ }
+ goto L150;
+ }
+
+ if (jtot == nmaxit) {
+ goto L150;
+ }
+ ++jtot;
+
+/* Form shift. */
+
+ rte = sqrt(e[l - 1]);
+ sigma = (d__[l - 1] - p) / (rte * 2.);
+ r__ = dlapy2_(&sigma, &c_b15);
+ sigma = p - rte / (sigma + d_sign(&r__, &sigma));
+
+ c__ = 1.;
+ s = 0.;
+ gamma = d__[m] - sigma;
+ p = gamma * gamma;
+
+/* Inner loop */
+
+ i__1 = l - 1;
+ for (i__ = m; i__ <= i__1; ++i__) {
+ bb = e[i__];
+ r__ = p + bb;
+ if (i__ != m) {
+ e[i__ - 1] = s * r__;
+ }
+ oldc = c__;
+ c__ = p / r__;
+ s = bb / r__;
+ oldgam = gamma;
+ alpha = d__[i__ + 1];
+ gamma = c__ * (alpha - sigma) - s * oldgam;
+ d__[i__] = oldgam + (alpha - gamma);
+ if (c__ != 0.) {
+ p = gamma * gamma / c__;
+ } else {
+ p = oldc * bb;
+ }
+/* L130: */
+ }
+
+ e[l - 1] = s * p;
+ d__[l] = sigma + gamma;
+ goto L100;
+
+/* Eigenvalue found. */
+
+L140:
+ d__[l] = p;
+
+ --l;
+ if (l >= lend) {
+ goto L100;
+ }
+ goto L150;
+
+ }
+
+/* Undo scaling if necessary */
+
+L150:
+ if (iscale == 1) {
+ i__1 = lendsv - lsv + 1;
+ dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
+ n, info);
+ }
+ if (iscale == 2) {
+ i__1 = lendsv - lsv + 1;
+ dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
+ n, info);
+ }
+
+/*
+ Check for no convergence to an eigenvalue after a total
+ of N*MAXIT iterations.
+*/
+
+ if (jtot < nmaxit) {
+ goto L10;
+ }
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (e[i__] != 0.) {
+ ++(*info);
+ }
+/* L160: */
+ }
+ goto L180;
+
+/* Sort eigenvalues in increasing order. */
+
+L170:
+ dlasrt_("I", n, &d__[1], info);
+
+L180:
+ return 0;
+
+/* End of DSTERF */
+
+} /* dsterf_ */
+
+/* Subroutine */ int dsyevd_(char *jobz, char *uplo, integer *n, doublereal *
+ a, integer *lda, doublereal *w, doublereal *work, integer *lwork,
+ integer *iwork, integer *liwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static doublereal eps;
+ static integer inde;
+ static doublereal anrm, rmin, rmax;
+ static integer lopt;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ static doublereal sigma;
+ extern logical lsame_(char *, char *);
+ static integer iinfo, lwmin, liopt;
+ static logical lower, wantz;
+ static integer indwk2, llwrk2;
+
+ static integer iscale;
+ extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dstedc_(char *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, integer *), dlacpy_(
+ char *, integer *, integer *, doublereal *, integer *, doublereal
+ *, integer *);
+ static doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal bignum;
+ static integer indtau;
+ extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern doublereal dlansy_(char *, char *, integer *, doublereal *,
+ integer *, doublereal *);
+ static integer indwrk, liwmin;
+ extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *), dsytrd_(char *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *);
+ static integer llwork;
+ static doublereal smlnum;
+ static logical lquery;
+
+
+/*
+ -- LAPACK driver routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
+ real symmetric matrix A. If eigenvectors are desired, it uses a
+ divide and conquer algorithm.
+
+ The divide and conquer algorithm makes very mild assumptions about
+ floating point arithmetic. It will work on machines with a guard
+ digit in add/subtract, or on those binary machines without guard
+ digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+ Cray-2. It could conceivably fail on hexadecimal or decimal machines
+ without guard digits, but we know of none.
+
+ Because of large use of BLAS of level 3, DSYEVD needs N**2 more
+ workspace than DSYEVX.
+
+ Arguments
+ =========
+
+ JOBZ (input) CHARACTER*1
+ = 'N': Compute eigenvalues only;
+ = 'V': Compute eigenvalues and eigenvectors.
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the
+ leading N-by-N upper triangular part of A contains the
+ upper triangular part of the matrix A. If UPLO = 'L',
+ the leading N-by-N lower triangular part of A contains
+ the lower triangular part of the matrix A.
+ On exit, if JOBZ = 'V', then if INFO = 0, A contains the
+ orthonormal eigenvectors of the matrix A.
+ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
+ or the upper triangle (if UPLO='U') of A, including the
+ diagonal, is destroyed.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ W (output) DOUBLE PRECISION array, dimension (N)
+ If INFO = 0, the eigenvalues in ascending order.
+
+ WORK (workspace/output) DOUBLE PRECISION array,
+ dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK.
+ If N <= 1, LWORK must be at least 1.
+ If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
+ If JOBZ = 'V' and N > 1, LWORK must be at least
+ 1 + 6*N + 2*N**2.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ IWORK (workspace/output) INTEGER array, dimension (LIWORK)
+ On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+
+ LIWORK (input) INTEGER
+ The dimension of the array IWORK.
+ If N <= 1, LIWORK must be at least 1.
+ If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
+ If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
+
+ If LIWORK = -1, then a workspace query is assumed; the
+ routine only calculates the optimal size of the IWORK array,
+ returns this value as the first entry of the IWORK array, and
+ no error message related to LIWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+ > 0: if INFO = i, the algorithm failed to converge; i
+ off-diagonal elements of an intermediate tridiagonal
+ form did not converge to zero.
+
+ Further Details
+ ===============
+
+ Based on contributions by
+ Jeff Rutter, Computer Science Division, University of California
+ at Berkeley, USA
+ Modified by Francoise Tisseur, University of Tennessee.
+
+ =====================================================================
+
+
+ Test the input parameters.
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --w;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ lower = lsame_(uplo, "L");
+ lquery = *lwork == -1 || *liwork == -1;
+
+ *info = 0;
+ if (*n <= 1) {
+ liwmin = 1;
+ lwmin = 1;
+ lopt = lwmin;
+ liopt = liwmin;
+ } else {
+ if (wantz) {
+ liwmin = *n * 5 + 3;
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = *n * 6 + 1 + ((i__1 * i__1) << (1));
+ } else {
+ liwmin = 1;
+ lwmin = ((*n) << (1)) + 1;
+ }
+ lopt = lwmin;
+ liopt = liwmin;
+ }
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if ((*lwork < lwmin && ! lquery)) {
+ *info = -8;
+ } else if ((*liwork < liwmin && ! lquery)) {
+ *info = -10;
+ }
+
+ if (*info == 0) {
+ work[1] = (doublereal) lopt;
+ iwork[1] = liopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSYEVD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ w[1] = a[a_dim1 + 1];
+ if (wantz) {
+ a[a_dim1 + 1] = 1.;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = SAFEMINIMUM;
+ eps = PRECISION;
+ smlnum = safmin / eps;
+ bignum = 1. / smlnum;
+ rmin = sqrt(smlnum);
+ rmax = sqrt(bignum);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
+ iscale = 0;
+ if ((anrm > 0. && anrm < rmin)) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ dlascl_(uplo, &c__0, &c__0, &c_b15, &sigma, n, n, &a[a_offset], lda,
+ info);
+ }
+
+/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
+
+ inde = 1;
+ indtau = inde + *n;
+ indwrk = indtau + *n;
+ llwork = *lwork - indwrk + 1;
+ indwk2 = indwrk + *n * *n;
+ llwrk2 = *lwork - indwk2 + 1;
+
+ dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
+ work[indwrk], &llwork, &iinfo);
+ lopt = (integer) (((*n) << (1)) + work[indwrk]);
+
+/*
+ For eigenvalues only, call DSTERF. For eigenvectors, first call
+ DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
+ tridiagonal matrix, then call DORMTR to multiply it by the
+ Householder transformations stored in A.
+*/
+
+ if (! wantz) {
+ dsterf_(n, &w[1], &work[inde], info);
+ } else {
+ dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], &
+ llwrk2, &iwork[1], liwork, info);
+ dormtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
+ indwrk], n, &work[indwk2], &llwrk2, &iinfo);
+ dlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
+/*
+ Computing MAX
+ Computing 2nd power
+*/
+ i__3 = *n;
+ i__1 = lopt, i__2 = *n * 6 + 1 + ((i__3 * i__3) << (1));
+ lopt = max(i__1,i__2);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+ if (iscale == 1) {
+ d__1 = 1. / sigma;
+ dscal_(n, &d__1, &w[1], &c__1);
+ }
+
+ work[1] = (doublereal) lopt;
+ iwork[1] = liopt;
+
+ return 0;
+
+/* End of DSYEVD */
+
+} /* dsyevd_ */
+
+/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
+ lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static doublereal taui;
+ extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static doublereal alpha;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *);
+ static logical upper;
+ extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dlarfg_(integer *, doublereal *,
+ doublereal *, integer *, doublereal *), xerbla_(char *, integer *
+ );
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ October 31, 1992
+
+
+ Purpose
+ =======
+
+ DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
+ form T by an orthogonal similarity transformation: Q' * A * Q = T.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ Specifies whether the upper or lower triangular part of the
+ symmetric matrix A is stored:
+ = 'U': Upper triangular
+ = 'L': Lower triangular
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ n-by-n upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading n-by-n lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+ On exit, if UPLO = 'U', the diagonal and first superdiagonal
+ of A are overwritten by the corresponding elements of the
+ tridiagonal matrix T, and the elements above the first
+ superdiagonal, with the array TAU, represent the orthogonal
+ matrix Q as a product of elementary reflectors; if UPLO
+ = 'L', the diagonal and first subdiagonal of A are over-
+ written by the corresponding elements of the tridiagonal
+ matrix T, and the elements below the first subdiagonal, with
+ the array TAU, represent the orthogonal matrix Q as a product
+ of elementary reflectors. See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ D (output) DOUBLE PRECISION array, dimension (N)
+ The diagonal elements of the tridiagonal matrix T:
+ D(i) = A(i,i).
+
+ E (output) DOUBLE PRECISION array, dimension (N-1)
+ The off-diagonal elements of the tridiagonal matrix T:
+ E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
+
+ TAU (output) DOUBLE PRECISION array, dimension (N-1)
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ If UPLO = 'U', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(n-1) . . . H(2) H(1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
+ A(1:i-1,i+1), and tau in TAU(i).
+
+ If UPLO = 'L', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(1) H(2) . . . H(n-1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
+ and tau in TAU(i).
+
+ The contents of A on exit are illustrated by the following examples
+ with n = 5:
+
+ if UPLO = 'U': if UPLO = 'L':
+
+ ( d e v2 v3 v4 ) ( d )
+ ( d e v3 v4 ) ( e d )
+ ( d e v4 ) ( v1 e d )
+ ( d e ) ( v1 v2 e d )
+ ( d ) ( v1 v2 v3 e d )
+
+ where d and e denote diagonal and off-diagonal elements of T, and vi
+ denotes an element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --d__;
+ --e;
+ --tau;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if ((! upper && ! lsame_(uplo, "L"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSYTD2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n <= 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Reduce the upper triangle of A */
+
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+
+/*
+ Generate elementary reflector H(i) = I - tau * v * v'
+ to annihilate A(1:i-1,i+1)
+*/
+
+ dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1
+ + 1], &c__1, &taui);
+ e[i__] = a[i__ + (i__ + 1) * a_dim1];
+
+ if (taui != 0.) {
+
+/* Apply H(i) from both sides to A(1:i,1:i) */
+
+ a[i__ + (i__ + 1) * a_dim1] = 1.;
+
+/* Compute x := tau * A * v storing x in TAU(1:i) */
+
+ dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
+ a_dim1 + 1], &c__1, &c_b29, &tau[1], &c__1)
+ ;
+
+/* Compute w := x - 1/2 * tau * (x'*v) * v */
+
+ alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1)
+ * a_dim1 + 1], &c__1);
+ daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
+ 1], &c__1);
+
+/*
+ Apply the transformation as a rank-2 update:
+ A := A - v * w' - w * v'
+*/
+
+ dsyr2_(uplo, &i__, &c_b151, &a[(i__ + 1) * a_dim1 + 1], &c__1,
+ &tau[1], &c__1, &a[a_offset], lda);
+
+ a[i__ + (i__ + 1) * a_dim1] = e[i__];
+ }
+ d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
+ tau[i__] = taui;
+/* L10: */
+ }
+ d__[1] = a[a_dim1 + 1];
+ } else {
+
+/* Reduce the lower triangle of A */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/*
+ Generate elementary reflector H(i) = I - tau * v * v'
+ to annihilate A(i+2:n,i)
+*/
+
+ i__2 = *n - i__;
+/* Computing MIN */
+ i__3 = i__ + 2;
+ dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ *
+ a_dim1], &c__1, &taui);
+ e[i__] = a[i__ + 1 + i__ * a_dim1];
+
+ if (taui != 0.) {
+
+/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
+
+ a[i__ + 1 + i__ * a_dim1] = 1.;
+
+/* Compute x := tau * A * v storing y in TAU(i:n-1) */
+
+ i__2 = *n - i__;
+ dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
+ lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b29, &tau[
+ i__], &c__1);
+
+/* Compute w := x - 1/2 * tau * (x'*v) * v */
+
+ i__2 = *n - i__;
+ alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ +
+ 1 + i__ * a_dim1], &c__1);
+ i__2 = *n - i__;
+ daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
+ i__], &c__1);
+
+/*
+ Apply the transformation as a rank-2 update:
+ A := A - v * w' - w * v'
+*/
+
+ i__2 = *n - i__;
+ dsyr2_(uplo, &i__2, &c_b151, &a[i__ + 1 + i__ * a_dim1], &
+ c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) *
+ a_dim1], lda);
+
+ a[i__ + 1 + i__ * a_dim1] = e[i__];
+ }
+ d__[i__] = a[i__ + i__ * a_dim1];
+ tau[i__] = taui;
+/* L20: */
+ }
+ d__[*n] = a[*n + *n * a_dim1];
+ }
+
+ return 0;
+
+/* End of DSYTD2 */
+
+} /* dsytd2_ */
+
+/* Subroutine */ int dsytrd_(char *uplo, integer *n, doublereal *a, integer *
+ lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
+ work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ static integer i__, j, nb, kk, nx, iws;
+ extern logical lsame_(char *, char *);
+ static integer nbmin, iinfo;
+ static logical upper;
+ extern /* Subroutine */ int dsytd2_(char *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dsyr2k_(char *, char *, integer *, integer *, doublereal
+ *, doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *), dlatrd_(char *,
+ integer *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *), xerbla_(char *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *, ftnlen, ftnlen);
+ static integer ldwork, lwkopt;
+ static logical lquery;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DSYTRD reduces a real symmetric matrix A to real symmetric
+ tridiagonal form T by an orthogonal similarity transformation:
+ Q**T * A * Q = T.
+
+ Arguments
+ =========
+
+ UPLO (input) CHARACTER*1
+ = 'U': Upper triangle of A is stored;
+ = 'L': Lower triangle of A is stored.
+
+ N (input) INTEGER
+ The order of the matrix A. N >= 0.
+
+ A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+ On entry, the symmetric matrix A. If UPLO = 'U', the leading
+ N-by-N upper triangular part of A contains the upper
+ triangular part of the matrix A, and the strictly lower
+ triangular part of A is not referenced. If UPLO = 'L', the
+ leading N-by-N lower triangular part of A contains the lower
+ triangular part of the matrix A, and the strictly upper
+ triangular part of A is not referenced.
+ On exit, if UPLO = 'U', the diagonal and first superdiagonal
+ of A are overwritten by the corresponding elements of the
+ tridiagonal matrix T, and the elements above the first
+ superdiagonal, with the array TAU, represent the orthogonal
+ matrix Q as a product of elementary reflectors; if UPLO
+ = 'L', the diagonal and first subdiagonal of A are over-
+ written by the corresponding elements of the tridiagonal
+ matrix T, and the elements below the first subdiagonal, with
+ the array TAU, represent the orthogonal matrix Q as a product
+ of elementary reflectors. See Further Details.
+
+ LDA (input) INTEGER
+ The leading dimension of the array A. LDA >= max(1,N).
+
+ D (output) DOUBLE PRECISION array, dimension (N)
+ The diagonal elements of the tridiagonal matrix T:
+ D(i) = A(i,i).
+
+ E (output) DOUBLE PRECISION array, dimension (N-1)
+ The off-diagonal elements of the tridiagonal matrix T:
+ E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
+
+ TAU (output) DOUBLE PRECISION array, dimension (N-1)
+ The scalar factors of the elementary reflectors (see Further
+ Details).
+
+ WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+ On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+
+ LWORK (input) INTEGER
+ The dimension of the array WORK. LWORK >= 1.
+ For optimum performance LWORK >= N*NB, where NB is the
+ optimal blocksize.
+
+ If LWORK = -1, then a workspace query is assumed; the routine
+ only calculates the optimal size of the WORK array, returns
+ this value as the first entry of the WORK array, and no error
+ message related to LWORK is issued by XERBLA.
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ If UPLO = 'U', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(n-1) . . . H(2) H(1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
+ A(1:i-1,i+1), and tau in TAU(i).
+
+ If UPLO = 'L', the matrix Q is represented as a product of elementary
+ reflectors
+
+ Q = H(1) H(2) . . . H(n-1).
+
+ Each H(i) has the form
+
+ H(i) = I - tau * v * v'
+
+ where tau is a real scalar, and v is a real vector with
+ v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
+ and tau in TAU(i).
+
+ The contents of A on exit are illustrated by the following examples
+ with n = 5:
+
+ if UPLO = 'U': if UPLO = 'L':
+
+ ( d e v2 v3 v4 ) ( d )
+ ( d e v3 v4 ) ( e d )
+ ( d e v4 ) ( v1 e d )
+ ( d e ) ( v1 v2 e d )
+ ( d ) ( v1 v2 v3 e d )
+
+ where d and e denote diagonal and off-diagonal elements of T, and vi
+ denotes an element of the vector defining H(i).
+
+ =====================================================================
+
+
+ Test the input parameters
+*/
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1 * 1;
+ a -= a_offset;
+ --d__;
+ --e;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1;
+ if ((! upper && ! lsame_(uplo, "L"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ } else if ((*lwork < 1 && ! lquery)) {
+ *info = -9;
+ }
+
+ if (*info == 0) {
+
+/* Determine the block size. */
+
+ nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
+ (ftnlen)1);
+ lwkopt = *n * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSYTRD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nx = *n;
+ iws = 1;
+ if ((nb > 1 && nb < *n)) {
+
+/*
+ Determine when to cross over from blocked to unblocked code
+ (last block is always handled by unblocked code).
+
+ Computing MAX
+*/
+ i__1 = nb, i__2 = ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
+ c_n1, (ftnlen)6, (ftnlen)1);
+ nx = max(i__1,i__2);
+ if (nx < *n) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *n;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/*
+ Not enough workspace to use optimal NB: determine the
+ minimum value of NB, and reduce NB or force use of
+ unblocked code by setting NX = N.
+
+ Computing MAX
+*/
+ i__1 = *lwork / ldwork;
+ nb = max(i__1,1);
+ nbmin = ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
+ (ftnlen)6, (ftnlen)1);
+ if (nb < nbmin) {
+ nx = *n;
+ }
+ }
+ } else {
+ nx = *n;
+ }
+ } else {
+ nb = 1;
+ }
+
+ if (upper) {
+
+/*
+ Reduce the upper triangle of A.
+ Columns 1:kk are handled by the unblocked method.
+*/
+
+ kk = *n - (*n - nx + nb - 1) / nb * nb;
+ i__1 = kk + 1;
+ i__2 = -nb;
+ for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
+ i__2) {
+
+/*
+ Reduce columns i:i+nb-1 to tridiagonal form and form the
+ matrix W which is needed to update the unreduced part of
+ the matrix
+*/
+
+ i__3 = i__ + nb - 1;
+ dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
+ work[1], &ldwork);
+
+/*
+ Update the unreduced submatrix A(1:i-1,1:i-1), using an
+ update of the form: A := A - V*W' - W*V'
+*/
+
+ i__3 = i__ - 1;
+ dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b151, &a[i__ *
+ a_dim1 + 1], lda, &work[1], &ldwork, &c_b15, &a[a_offset],
+ lda);
+
+/*
+ Copy superdiagonal elements back into A, and diagonal
+ elements into D
+*/
+
+ i__3 = i__ + nb - 1;
+ for (j = i__; j <= i__3; ++j) {
+ a[j - 1 + j * a_dim1] = e[j - 1];
+ d__[j] = a[j + j * a_dim1];
+/* L10: */
+ }
+/* L20: */
+ }
+
+/* Use unblocked code to reduce the last or only block */
+
+ dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
+ } else {
+
+/* Reduce the lower triangle of A */
+
+ i__2 = *n - nx;
+ i__1 = nb;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
+
+/*
+ Reduce columns i:i+nb-1 to tridiagonal form and form the
+ matrix W which is needed to update the unreduced part of
+ the matrix
+*/
+
+ i__3 = *n - i__ + 1;
+ dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
+ tau[i__], &work[1], &ldwork);
+
+/*
+ Update the unreduced submatrix A(i+ib:n,i+ib:n), using
+ an update of the form: A := A - V*W' - W*V'
+*/
+
+ i__3 = *n - i__ - nb + 1;
+ dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b151, &a[i__ + nb +
+ i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b15, &a[
+ i__ + nb + (i__ + nb) * a_dim1], lda);
+
+/*
+ Copy subdiagonal elements back into A, and diagonal
+ elements into D
+*/
+
+ i__3 = i__ + nb - 1;
+ for (j = i__; j <= i__3; ++j) {
+ a[j + 1 + j * a_dim1] = e[j];
+ d__[j] = a[j + j * a_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+
+/* Use unblocked code to reduce the last or only block */
+
+ i__1 = *n - i__ + 1;
+ dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__],
+ &tau[i__], &iinfo);
+ }
+
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DSYTRD */
+
+} /* dsytrd_ */
+
+/* Subroutine */ int dtrevc_(char *side, char *howmny, logical *select,
+ integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
+ ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m,
+ doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
+ i__2, i__3;
+ doublereal d__1, d__2, d__3, d__4;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ static integer i__, j, k;
+ static doublereal x[4] /* was [2][2] */;
+ static integer j1, j2, n2, ii, ki, ip, is;
+ static doublereal wi, wr, rec, ulp, beta, emax;
+ static logical pair;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ static logical allv;
+ static integer ierr;
+ static doublereal unfl, ovfl, smin;
+ static logical over;
+ static doublereal vmax;
+ static integer jnxt;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ static doublereal scale;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *);
+ static doublereal remax;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ static logical leftv, bothv;
+ extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *);
+ static doublereal vcrit;
+ static logical somev;
+ static doublereal xnorm;
+ extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, doublereal *
+ , doublereal *, integer *, doublereal *, doublereal *, integer *),
+ dlabad_(doublereal *, doublereal *);
+
+ extern integer idamax_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ static doublereal bignum;
+ static logical rightv;
+ static doublereal smlnum;
+
+
+/*
+ -- LAPACK routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ DTREVC computes some or all of the right and/or left eigenvectors of
+ a real upper quasi-triangular matrix T.
+
+ The right eigenvector x and the left eigenvector y of T corresponding
+ to an eigenvalue w are defined by:
+
+ T*x = w*x, y'*T = w*y'
+
+ where y' denotes the conjugate transpose of the vector y.
+
+ If all eigenvectors are requested, the routine may either return the
+ matrices X and/or Y of right or left eigenvectors of T, or the
+ products Q*X and/or Q*Y, where Q is an input orthogonal
+ matrix. If T was obtained from the real-Schur factorization of an
+ original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
+ right or left eigenvectors of A.
+
+ T must be in Schur canonical form (as returned by DHSEQR), that is,
+ block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
+ 2-by-2 diagonal block has its diagonal elements equal and its
+ off-diagonal elements of opposite sign. Corresponding to each 2-by-2
+ diagonal block is a complex conjugate pair of eigenvalues and
+ eigenvectors; only one eigenvector of the pair is computed, namely
+ the one corresponding to the eigenvalue with positive imaginary part.
+
+ Arguments
+ =========
+
+ SIDE (input) CHARACTER*1
+ = 'R': compute right eigenvectors only;
+ = 'L': compute left eigenvectors only;
+ = 'B': compute both right and left eigenvectors.
+
+ HOWMNY (input) CHARACTER*1
+ = 'A': compute all right and/or left eigenvectors;
+ = 'B': compute all right and/or left eigenvectors,
+ and backtransform them using the input matrices
+ supplied in VR and/or VL;
+ = 'S': compute selected right and/or left eigenvectors,
+ specified by the logical array SELECT.
+
+ SELECT (input/output) LOGICAL array, dimension (N)
+ If HOWMNY = 'S', SELECT specifies the eigenvectors to be
+ computed.
+ If HOWMNY = 'A' or 'B', SELECT is not referenced.
+ To select the real eigenvector corresponding to a real
+ eigenvalue w(j), SELECT(j) must be set to .TRUE.. To select
+ the complex eigenvector corresponding to a complex conjugate
+ pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be
+ set to .TRUE.; then on exit SELECT(j) is .TRUE. and
+ SELECT(j+1) is .FALSE..
+
+ N (input) INTEGER
+ The order of the matrix T. N >= 0.
+
+ T (input) DOUBLE PRECISION array, dimension (LDT,N)
+ The upper quasi-triangular matrix T in Schur canonical form.
+
+ LDT (input) INTEGER
+ The leading dimension of the array T. LDT >= max(1,N).
+
+ VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
+ On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
+ contain an N-by-N matrix Q (usually the orthogonal matrix Q
+ of Schur vectors returned by DHSEQR).
+ On exit, if SIDE = 'L' or 'B', VL contains:
+ if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
+ VL has the same quasi-lower triangular form
+ as T'. If T(i,i) is a real eigenvalue, then
+ the i-th column VL(i) of VL is its
+ corresponding eigenvector. If T(i:i+1,i:i+1)
+ is a 2-by-2 block whose eigenvalues are
+ complex-conjugate eigenvalues of T, then
+ VL(i)+sqrt(-1)*VL(i+1) is the complex
+ eigenvector corresponding to the eigenvalue
+ with positive real part.
+ if HOWMNY = 'B', the matrix Q*Y;
+ if HOWMNY = 'S', the left eigenvectors of T specified by
+ SELECT, stored consecutively in the columns
+ of VL, in the same order as their
+ eigenvalues.
+ A complex eigenvector corresponding to a complex eigenvalue
+ is stored in two consecutive columns, the first holding the
+ real part, and the second the imaginary part.
+ If SIDE = 'R', VL is not referenced.
+
+ LDVL (input) INTEGER
+ The leading dimension of the array VL. LDVL >= max(1,N) if
+ SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
+
+ VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
+ On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
+ contain an N-by-N matrix Q (usually the orthogonal matrix Q
+ of Schur vectors returned by DHSEQR).
+ On exit, if SIDE = 'R' or 'B', VR contains:
+ if HOWMNY = 'A', the matrix X of right eigenvectors of T;
+ VR has the same quasi-upper triangular form
+ as T. If T(i,i) is a real eigenvalue, then
+ the i-th column VR(i) of VR is its
+ corresponding eigenvector. If T(i:i+1,i:i+1)
+ is a 2-by-2 block whose eigenvalues are
+ complex-conjugate eigenvalues of T, then
+ VR(i)+sqrt(-1)*VR(i+1) is the complex
+ eigenvector corresponding to the eigenvalue
+ with positive real part.
+ if HOWMNY = 'B', the matrix Q*X;
+ if HOWMNY = 'S', the right eigenvectors of T specified by
+ SELECT, stored consecutively in the columns
+ of VR, in the same order as their
+ eigenvalues.
+ A complex eigenvector corresponding to a complex eigenvalue
+ is stored in two consecutive columns, the first holding the
+ real part and the second the imaginary part.
+ If SIDE = 'L', VR is not referenced.
+
+ LDVR (input) INTEGER
+ The leading dimension of the array VR. LDVR >= max(1,N) if
+ SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
+
+ MM (input) INTEGER
+ The number of columns in the arrays VL and/or VR. MM >= M.
+
+ M (output) INTEGER
+ The number of columns in the arrays VL and/or VR actually
+ used to store the eigenvectors.
+ If HOWMNY = 'A' or 'B', M is set to N.
+ Each selected real eigenvector occupies one column and each
+ selected complex eigenvector occupies two columns.
+
+ WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
+
+ INFO (output) INTEGER
+ = 0: successful exit
+ < 0: if INFO = -i, the i-th argument had an illegal value
+
+ Further Details
+ ===============
+
+ The algorithm used in this program is basically backward (forward)
+ substitution, with scaling to make the the code robust against
+ possible overflow.
+
+ Each eigenvector is normalized so that the element of largest
+ magnitude has magnitude 1; here the magnitude of a complex number
+ (x,y) is taken to be |x| + |y|.
+
+ =====================================================================
+
+
+ Decode and test the input parameters
+*/
+
+ /* Parameter adjustments */
+ --select;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1 * 1;
+ t -= t_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1 * 1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1 * 1;
+ vr -= vr_offset;
+ --work;
+
+ /* Function Body */
+ bothv = lsame_(side, "B");
+ rightv = lsame_(side, "R") || bothv;
+ leftv = lsame_(side, "L") || bothv;
+
+ allv = lsame_(howmny, "A");
+ over = lsame_(howmny, "B");
+ somev = lsame_(howmny, "S");
+
+ *info = 0;
+ if ((! rightv && ! leftv)) {
+ *info = -1;
+ } else if (((! allv && ! over) && ! somev)) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldt < max(1,*n)) {
+ *info = -6;
+ } else if (*ldvl < 1 || (leftv && *ldvl < *n)) {
+ *info = -8;
+ } else if (*ldvr < 1 || (rightv && *ldvr < *n)) {
+ *info = -10;
+ } else {
+
+/*
+ Set M to the number of columns required to store the selected
+ eigenvectors, standardize the array SELECT if necessary, and
+ test MM.
+*/
+
+ if (somev) {
+ *m = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (pair) {
+ pair = FALSE_;
+ select[j] = FALSE_;
+ } else {
+ if (j < *n) {
+ if (t[j + 1 + j * t_dim1] == 0.) {
+ if (select[j]) {
+ ++(*m);
+ }
+ } else {
+ pair = TRUE_;
+ if (select[j] || select[j + 1]) {
+ select[j] = TRUE_;
+ *m += 2;
+ }
+ }
+ } else {
+ if (select[*n]) {
+ ++(*m);
+ }
+ }
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ if (*mm < *m) {
+ *info = -11;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DTREVC", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Set the constants to control overflow. */
+
+ unfl = SAFEMINIMUM;
+ ovfl = 1. / unfl;
+ dlabad_(&unfl, &ovfl);
+ ulp = PRECISION;
+ smlnum = unfl * (*n / ulp);
+ bignum = (1. - ulp) / smlnum;
+
+/*
+ Compute 1-norm of each column of strictly upper triangular
+ part of T to control overflow in triangular solver.
+*/
+
+ work[1] = 0.;
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ work[j] = 0.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[j] += (d__1 = t[i__ + j * t_dim1], abs(d__1));
+/* L20: */
+ }
+/* L30: */
+ }
+
+/*
+ Index IP is used to specify the real or complex eigenvalue:
+ IP = 0, real eigenvalue,
+ 1, first of conjugate complex pair: (wr,wi)
+ -1, second of conjugate complex pair: (wr,wi)
+*/
+
+ n2 = (*n) << (1);
+
+ if (rightv) {
+
+/* Compute right eigenvectors. */
+
+ ip = 0;
+ is = *m;
+ for (ki = *n; ki >= 1; --ki) {
+
+ if (ip == 1) {
+ goto L130;
+ }
+ if (ki == 1) {
+ goto L40;
+ }
+ if (t[ki + (ki - 1) * t_dim1] == 0.) {
+ goto L40;
+ }
+ ip = -1;
+
+L40:
+ if (somev) {
+ if (ip == 0) {
+ if (! select[ki]) {
+ goto L130;
+ }
+ } else {
+ if (! select[ki - 1]) {
+ goto L130;
+ }
+ }
+ }
+
+/* Compute the KI-th eigenvalue (WR,WI). */
+
+ wr = t[ki + ki * t_dim1];
+ wi = 0.;
+ if (ip != 0) {
+ wi = sqrt((d__1 = t[ki + (ki - 1) * t_dim1], abs(d__1))) *
+ sqrt((d__2 = t[ki - 1 + ki * t_dim1], abs(d__2)));
+ }
+/* Computing MAX */
+ d__1 = ulp * (abs(wr) + abs(wi));
+ smin = max(d__1,smlnum);
+
+ if (ip == 0) {
+
+/* Real right eigenvector */
+
+ work[ki + *n] = 1.;
+
+/* Form right-hand side */
+
+ i__1 = ki - 1;
+ for (k = 1; k <= i__1; ++k) {
+ work[k + *n] = -t[k + ki * t_dim1];
+/* L50: */
+ }
+
+/*
+ Solve the upper quasi-triangular system:
+ (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
+*/
+
+ jnxt = ki - 1;
+ for (j = ki - 1; j >= 1; --j) {
+ if (j > jnxt) {
+ goto L60;
+ }
+ j1 = j;
+ j2 = j;
+ jnxt = j - 1;
+ if (j > 1) {
+ if (t[j + (j - 1) * t_dim1] != 0.) {
+ j1 = j - 1;
+ jnxt = j - 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* 1-by-1 diagonal block */
+
+ dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
+ &ierr);
+
+/*
+ Scale X(1,1) to avoid overflow when updating
+ the right-hand side.
+*/
+
+ if (xnorm > 1.) {
+ if (work[j] > bignum / xnorm) {
+ x[0] /= xnorm;
+ scale /= xnorm;
+ }
+ }
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ dscal_(&ki, &scale, &work[*n + 1], &c__1);
+ }
+ work[j + *n] = x[0];
+
+/* Update right-hand side */
+
+ i__1 = j - 1;
+ d__1 = -x[0];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ *n + 1], &c__1);
+
+ } else {
+
+/* 2-by-2 diagonal block */
+
+ dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b15, &t[j -
+ 1 + (j - 1) * t_dim1], ldt, &c_b15, &c_b15, &
+ work[j - 1 + *n], n, &wr, &c_b29, x, &c__2, &
+ scale, &xnorm, &ierr);
+
+/*
+ Scale X(1,1) and X(2,1) to avoid overflow when
+ updating the right-hand side.
+*/
+
+ if (xnorm > 1.) {
+/* Computing MAX */
+ d__1 = work[j - 1], d__2 = work[j];
+ beta = max(d__1,d__2);
+ if (beta > bignum / xnorm) {
+ x[0] /= xnorm;
+ x[1] /= xnorm;
+ scale /= xnorm;
+ }
+ }
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ dscal_(&ki, &scale, &work[*n + 1], &c__1);
+ }
+ work[j - 1 + *n] = x[0];
+ work[j + *n] = x[1];
+
+/* Update right-hand side */
+
+ i__1 = j - 2;
+ d__1 = -x[0];
+ daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
+ &work[*n + 1], &c__1);
+ i__1 = j - 2;
+ d__1 = -x[1];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ *n + 1], &c__1);
+ }
+L60:
+ ;
+ }
+
+/* Copy the vector x or Q*x to VR and normalize. */
+
+ if (! over) {
+ dcopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], &
+ c__1);
+
+ ii = idamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
+ remax = 1. / (d__1 = vr[ii + is * vr_dim1], abs(d__1));
+ dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
+
+ i__1 = *n;
+ for (k = ki + 1; k <= i__1; ++k) {
+ vr[k + is * vr_dim1] = 0.;
+/* L70: */
+ }
+ } else {
+ if (ki > 1) {
+ i__1 = ki - 1;
+ dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
+ work[*n + 1], &c__1, &work[ki + *n], &vr[ki *
+ vr_dim1 + 1], &c__1);
+ }
+
+ ii = idamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
+ remax = 1. / (d__1 = vr[ii + ki * vr_dim1], abs(d__1));
+ dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
+ }
+
+ } else {
+
+/*
+ Complex right eigenvector.
+
+ Initial solve
+ [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
+ [ (T(KI,KI-1) T(KI,KI) ) ]
+*/
+
+ if ((d__1 = t[ki - 1 + ki * t_dim1], abs(d__1)) >= (d__2 = t[
+ ki + (ki - 1) * t_dim1], abs(d__2))) {
+ work[ki - 1 + *n] = 1.;
+ work[ki + n2] = wi / t[ki - 1 + ki * t_dim1];
+ } else {
+ work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1];
+ work[ki + n2] = 1.;
+ }
+ work[ki + *n] = 0.;
+ work[ki - 1 + n2] = 0.;
+
+/* Form right-hand side */
+
+ i__1 = ki - 2;
+ for (k = 1; k <= i__1; ++k) {
+ work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) *
+ t_dim1];
+ work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1];
+/* L80: */
+ }
+
+/*
+ Solve upper quasi-triangular system:
+ (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
+*/
+
+ jnxt = ki - 2;
+ for (j = ki - 2; j >= 1; --j) {
+ if (j > jnxt) {
+ goto L90;
+ }
+ j1 = j;
+ j2 = j;
+ jnxt = j - 1;
+ if (j > 1) {
+ if (t[j + (j - 1) * t_dim1] != 0.) {
+ j1 = j - 1;
+ jnxt = j - 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* 1-by-1 diagonal block */
+
+ dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &wi, x, &c__2, &scale, &xnorm, &
+ ierr);
+
+/*
+ Scale X(1,1) and X(1,2) to avoid overflow when
+ updating the right-hand side.
+*/
+
+ if (xnorm > 1.) {
+ if (work[j] > bignum / xnorm) {
+ x[0] /= xnorm;
+ x[2] /= xnorm;
+ scale /= xnorm;
+ }
+ }
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ dscal_(&ki, &scale, &work[*n + 1], &c__1);
+ dscal_(&ki, &scale, &work[n2 + 1], &c__1);
+ }
+ work[j + *n] = x[0];
+ work[j + n2] = x[2];
+
+/* Update the right-hand side */
+
+ i__1 = j - 1;
+ d__1 = -x[0];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ *n + 1], &c__1);
+ i__1 = j - 1;
+ d__1 = -x[2];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ n2 + 1], &c__1);
+
+ } else {
+
+/* 2-by-2 diagonal block */
+
+ dlaln2_(&c_false, &c__2, &c__2, &smin, &c_b15, &t[j -
+ 1 + (j - 1) * t_dim1], ldt, &c_b15, &c_b15, &
+ work[j - 1 + *n], n, &wr, &wi, x, &c__2, &
+ scale, &xnorm, &ierr);
+
+/*
+ Scale X to avoid overflow when updating
+ the right-hand side.
+*/
+
+ if (xnorm > 1.) {
+/* Computing MAX */
+ d__1 = work[j - 1], d__2 = work[j];
+ beta = max(d__1,d__2);
+ if (beta > bignum / xnorm) {
+ rec = 1. / xnorm;
+ x[0] *= rec;
+ x[2] *= rec;
+ x[1] *= rec;
+ x[3] *= rec;
+ scale *= rec;
+ }
+ }
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ dscal_(&ki, &scale, &work[*n + 1], &c__1);
+ dscal_(&ki, &scale, &work[n2 + 1], &c__1);
+ }
+ work[j - 1 + *n] = x[0];
+ work[j + *n] = x[1];
+ work[j - 1 + n2] = x[2];
+ work[j + n2] = x[3];
+
+/* Update the right-hand side */
+
+ i__1 = j - 2;
+ d__1 = -x[0];
+ daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
+ &work[*n + 1], &c__1);
+ i__1 = j - 2;
+ d__1 = -x[1];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ *n + 1], &c__1);
+ i__1 = j - 2;
+ d__1 = -x[2];
+ daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
+ &work[n2 + 1], &c__1);
+ i__1 = j - 2;
+ d__1 = -x[3];
+ daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
+ n2 + 1], &c__1);
+ }
+L90:
+ ;
+ }
+
+/* Copy the vector x or Q*x to VR and normalize. */
+
+ if (! over) {
+ dcopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1
+ + 1], &c__1);
+ dcopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], &
+ c__1);
+
+ emax = 0.;
+ i__1 = ki;
+ for (k = 1; k <= i__1; ++k) {
+/* Computing MAX */
+ d__3 = emax, d__4 = (d__1 = vr[k + (is - 1) * vr_dim1]
+ , abs(d__1)) + (d__2 = vr[k + is * vr_dim1],
+ abs(d__2));
+ emax = max(d__3,d__4);
+/* L100: */
+ }
+
+ remax = 1. / emax;
+ dscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
+ dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
+
+ i__1 = *n;
+ for (k = ki + 1; k <= i__1; ++k) {
+ vr[k + (is - 1) * vr_dim1] = 0.;
+ vr[k + is * vr_dim1] = 0.;
+/* L110: */
+ }
+
+ } else {
+
+ if (ki > 2) {
+ i__1 = ki - 2;
+ dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
+ work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[(
+ ki - 1) * vr_dim1 + 1], &c__1);
+ i__1 = ki - 2;
+ dgemv_("N", n, &i__1, &c_b15, &vr[vr_offset], ldvr, &
+ work[n2 + 1], &c__1, &work[ki + n2], &vr[ki *
+ vr_dim1 + 1], &c__1);
+ } else {
+ dscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1
+ + 1], &c__1);
+ dscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], &
+ c__1);
+ }
+
+ emax = 0.;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+/* Computing MAX */
+ d__3 = emax, d__4 = (d__1 = vr[k + (ki - 1) * vr_dim1]
+ , abs(d__1)) + (d__2 = vr[k + ki * vr_dim1],
+ abs(d__2));
+ emax = max(d__3,d__4);
+/* L120: */
+ }
+ remax = 1. / emax;
+ dscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
+ dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
+ }
+ }
+
+ --is;
+ if (ip != 0) {
+ --is;
+ }
+L130:
+ if (ip == 1) {
+ ip = 0;
+ }
+ if (ip == -1) {
+ ip = 1;
+ }
+/* L140: */
+ }
+ }
+
+ if (leftv) {
+
+/* Compute left eigenvectors. */
+
+ ip = 0;
+ is = 1;
+ i__1 = *n;
+ for (ki = 1; ki <= i__1; ++ki) {
+
+ if (ip == -1) {
+ goto L250;
+ }
+ if (ki == *n) {
+ goto L150;
+ }
+ if (t[ki + 1 + ki * t_dim1] == 0.) {
+ goto L150;
+ }
+ ip = 1;
+
+L150:
+ if (somev) {
+ if (! select[ki]) {
+ goto L250;
+ }
+ }
+
+/* Compute the KI-th eigenvalue (WR,WI). */
+
+ wr = t[ki + ki * t_dim1];
+ wi = 0.;
+ if (ip != 0) {
+ wi = sqrt((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1))) *
+ sqrt((d__2 = t[ki + 1 + ki * t_dim1], abs(d__2)));
+ }
+/* Computing MAX */
+ d__1 = ulp * (abs(wr) + abs(wi));
+ smin = max(d__1,smlnum);
+
+ if (ip == 0) {
+
+/* Real left eigenvector. */
+
+ work[ki + *n] = 1.;
+
+/* Form right-hand side */
+
+ i__2 = *n;
+ for (k = ki + 1; k <= i__2; ++k) {
+ work[k + *n] = -t[ki + k * t_dim1];
+/* L160: */
+ }
+
+/*
+ Solve the quasi-triangular system:
+ (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK
+*/
+
+ vmax = 1.;
+ vcrit = bignum;
+
+ jnxt = ki + 1;
+ i__2 = *n;
+ for (j = ki + 1; j <= i__2; ++j) {
+ if (j < jnxt) {
+ goto L170;
+ }
+ j1 = j;
+ j2 = j;
+ jnxt = j + 1;
+ if (j < *n) {
+ if (t[j + 1 + j * t_dim1] != 0.) {
+ j2 = j + 1;
+ jnxt = j + 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/*
+ 1-by-1 diagonal block
+
+ Scale if necessary to avoid overflow when forming
+ the right-hand side.
+*/
+
+ if (work[j] > vcrit) {
+ rec = 1. / vmax;
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + *n], &c__1);
+ vmax = 1.;
+ vcrit = bignum;
+ }
+
+ i__3 = j - ki - 1;
+ work[j + *n] -= ddot_(&i__3, &t[ki + 1 + j * t_dim1],
+ &c__1, &work[ki + 1 + *n], &c__1);
+
+/* Solve (T(J,J)-WR)'*X = WORK */
+
+ dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
+ &ierr);
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + *n], &c__1);
+ }
+ work[j + *n] = x[0];
+/* Computing MAX */
+ d__2 = (d__1 = work[j + *n], abs(d__1));
+ vmax = max(d__2,vmax);
+ vcrit = bignum / vmax;
+
+ } else {
+
+/*
+ 2-by-2 diagonal block
+
+ Scale if necessary to avoid overflow when forming
+ the right-hand side.
+
+ Computing MAX
+*/
+ d__1 = work[j], d__2 = work[j + 1];
+ beta = max(d__1,d__2);
+ if (beta > vcrit) {
+ rec = 1. / vmax;
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + *n], &c__1);
+ vmax = 1.;
+ vcrit = bignum;
+ }
+
+ i__3 = j - ki - 1;
+ work[j + *n] -= ddot_(&i__3, &t[ki + 1 + j * t_dim1],
+ &c__1, &work[ki + 1 + *n], &c__1);
+
+ i__3 = j - ki - 1;
+ work[j + 1 + *n] -= ddot_(&i__3, &t[ki + 1 + (j + 1) *
+ t_dim1], &c__1, &work[ki + 1 + *n], &c__1);
+
+/*
+ Solve
+ [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 )
+ [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 )
+*/
+
+ dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &c_b29, x, &c__2, &scale, &xnorm,
+ &ierr);
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + *n], &c__1);
+ }
+ work[j + *n] = x[0];
+ work[j + 1 + *n] = x[1];
+
+/* Computing MAX */
+ d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
+ = work[j + 1 + *n], abs(d__2)), d__3 = max(
+ d__3,d__4);
+ vmax = max(d__3,vmax);
+ vcrit = bignum / vmax;
+
+ }
+L170:
+ ;
+ }
+
+/* Copy the vector x or Q*x to VL and normalize. */
+
+ if (! over) {
+ i__2 = *n - ki + 1;
+ dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
+ vl_dim1], &c__1);
+
+ i__2 = *n - ki + 1;
+ ii = idamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki -
+ 1;
+ remax = 1. / (d__1 = vl[ii + is * vl_dim1], abs(d__1));
+ i__2 = *n - ki + 1;
+ dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
+
+ i__2 = ki - 1;
+ for (k = 1; k <= i__2; ++k) {
+ vl[k + is * vl_dim1] = 0.;
+/* L180: */
+ }
+
+ } else {
+
+ if (ki < *n) {
+ i__2 = *n - ki;
+ dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 1) * vl_dim1
+ + 1], ldvl, &work[ki + 1 + *n], &c__1, &work[
+ ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
+ }
+
+ ii = idamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
+ remax = 1. / (d__1 = vl[ii + ki * vl_dim1], abs(d__1));
+ dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
+
+ }
+
+ } else {
+
+/*
+ Complex left eigenvector.
+
+ Initial solve:
+ ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0.
+ ((T(KI+1,KI) T(KI+1,KI+1)) )
+*/
+
+ if ((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1)) >= (d__2 =
+ t[ki + 1 + ki * t_dim1], abs(d__2))) {
+ work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1];
+ work[ki + 1 + n2] = 1.;
+ } else {
+ work[ki + *n] = 1.;
+ work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1];
+ }
+ work[ki + 1 + *n] = 0.;
+ work[ki + n2] = 0.;
+
+/* Form right-hand side */
+
+ i__2 = *n;
+ for (k = ki + 2; k <= i__2; ++k) {
+ work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1];
+ work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1]
+ ;
+/* L190: */
+ }
+
+/*
+ Solve complex quasi-triangular system:
+ ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
+*/
+
+ vmax = 1.;
+ vcrit = bignum;
+
+ jnxt = ki + 2;
+ i__2 = *n;
+ for (j = ki + 2; j <= i__2; ++j) {
+ if (j < jnxt) {
+ goto L200;
+ }
+ j1 = j;
+ j2 = j;
+ jnxt = j + 1;
+ if (j < *n) {
+ if (t[j + 1 + j * t_dim1] != 0.) {
+ j2 = j + 1;
+ jnxt = j + 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/*
+ 1-by-1 diagonal block
+
+ Scale if necessary to avoid overflow when
+ forming the right-hand side elements.
+*/
+
+ if (work[j] > vcrit) {
+ rec = 1. / vmax;
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + *n], &c__1);
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + n2], &c__1);
+ vmax = 1.;
+ vcrit = bignum;
+ }
+
+ i__3 = j - ki - 2;
+ work[j + *n] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
+ &c__1, &work[ki + 2 + *n], &c__1);
+ i__3 = j - ki - 2;
+ work[j + n2] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
+ &c__1, &work[ki + 2 + n2], &c__1);
+
+/* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */
+
+ d__1 = -wi;
+ dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
+ ierr);
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + *n], &c__1);
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + n2], &c__1);
+ }
+ work[j + *n] = x[0];
+ work[j + n2] = x[2];
+/* Computing MAX */
+ d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
+ = work[j + n2], abs(d__2)), d__3 = max(d__3,
+ d__4);
+ vmax = max(d__3,vmax);
+ vcrit = bignum / vmax;
+
+ } else {
+
+/*
+ 2-by-2 diagonal block
+
+ Scale if necessary to avoid overflow when forming
+ the right-hand side elements.
+
+ Computing MAX
+*/
+ d__1 = work[j], d__2 = work[j + 1];
+ beta = max(d__1,d__2);
+ if (beta > vcrit) {
+ rec = 1. / vmax;
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + *n], &c__1);
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &rec, &work[ki + n2], &c__1);
+ vmax = 1.;
+ vcrit = bignum;
+ }
+
+ i__3 = j - ki - 2;
+ work[j + *n] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
+ &c__1, &work[ki + 2 + *n], &c__1);
+
+ i__3 = j - ki - 2;
+ work[j + n2] -= ddot_(&i__3, &t[ki + 2 + j * t_dim1],
+ &c__1, &work[ki + 2 + n2], &c__1);
+
+ i__3 = j - ki - 2;
+ work[j + 1 + *n] -= ddot_(&i__3, &t[ki + 2 + (j + 1) *
+ t_dim1], &c__1, &work[ki + 2 + *n], &c__1);
+
+ i__3 = j - ki - 2;
+ work[j + 1 + n2] -= ddot_(&i__3, &t[ki + 2 + (j + 1) *
+ t_dim1], &c__1, &work[ki + 2 + n2], &c__1);
+
+/*
+ Solve 2-by-2 complex linear equation
+ ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B
+ ([T(j+1,j) T(j+1,j+1)] )
+*/
+
+ d__1 = -wi;
+ dlaln2_(&c_true, &c__2, &c__2, &smin, &c_b15, &t[j +
+ j * t_dim1], ldt, &c_b15, &c_b15, &work[j + *
+ n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
+ ierr);
+
+/* Scale if necessary */
+
+ if (scale != 1.) {
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + *n], &c__1);
+ i__3 = *n - ki + 1;
+ dscal_(&i__3, &scale, &work[ki + n2], &c__1);
+ }
+ work[j + *n] = x[0];
+ work[j + n2] = x[2];
+ work[j + 1 + *n] = x[1];
+ work[j + 1 + n2] = x[3];
+/* Computing MAX */
+ d__1 = abs(x[0]), d__2 = abs(x[2]), d__1 = max(d__1,
+ d__2), d__2 = abs(x[1]), d__1 = max(d__1,d__2)
+ , d__2 = abs(x[3]), d__1 = max(d__1,d__2);
+ vmax = max(d__1,vmax);
+ vcrit = bignum / vmax;
+
+ }
+L200:
+ ;
+ }
+
+/*
+ Copy the vector x or Q*x to VL and normalize.
+
+ L210:
+*/
+ if (! over) {
+ i__2 = *n - ki + 1;
+ dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
+ vl_dim1], &c__1);
+ i__2 = *n - ki + 1;
+ dcopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) *
+ vl_dim1], &c__1);
+
+ emax = 0.;
+ i__2 = *n;
+ for (k = ki; k <= i__2; ++k) {
+/* Computing MAX */
+ d__3 = emax, d__4 = (d__1 = vl[k + is * vl_dim1], abs(
+ d__1)) + (d__2 = vl[k + (is + 1) * vl_dim1],
+ abs(d__2));
+ emax = max(d__3,d__4);
+/* L220: */
+ }
+ remax = 1. / emax;
+ i__2 = *n - ki + 1;
+ dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
+ i__2 = *n - ki + 1;
+ dscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
+ ;
+
+ i__2 = ki - 1;
+ for (k = 1; k <= i__2; ++k) {
+ vl[k + is * vl_dim1] = 0.;
+ vl[k + (is + 1) * vl_dim1] = 0.;
+/* L230: */
+ }
+ } else {
+ if (ki < *n - 1) {
+ i__2 = *n - ki - 1;
+ dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 2) * vl_dim1
+ + 1], ldvl, &work[ki + 2 + *n], &c__1, &work[
+ ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
+ i__2 = *n - ki - 1;
+ dgemv_("N", n, &i__2, &c_b15, &vl[(ki + 2) * vl_dim1
+ + 1], ldvl, &work[ki + 2 + n2], &c__1, &work[
+ ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &
+ c__1);
+ } else {
+ dscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], &
+ c__1);
+ dscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1
+ + 1], &c__1);
+ }
+
+ emax = 0.;
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+/* Computing MAX */
+ d__3 = emax, d__4 = (d__1 = vl[k + ki * vl_dim1], abs(
+ d__1)) + (d__2 = vl[k + (ki + 1) * vl_dim1],
+ abs(d__2));
+ emax = max(d__3,d__4);
+/* L240: */
+ }
+ remax = 1. / emax;
+ dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
+ dscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
+
+ }
+
+ }
+
+ ++is;
+ if (ip != 0) {
+ ++is;
+ }
+L250:
+ if (ip == -1) {
+ ip = 0;
+ }
+ if (ip == 1) {
+ ip = -1;
+ }
+
+/* L260: */
+ }
+
+ }
+
+ return 0;
+
+/* End of DTREVC */
+
+} /* dtrevc_ */
+
+integer ieeeck_(integer *ispec, real *zero, real *one)
+{
+ /* System generated locals */
+ integer ret_val;
+
+ /* Local variables */
+ static real nan1, nan2, nan3, nan4, nan5, nan6, neginf, posinf, negzro,
+ newzro;
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1998
+
+
+ Purpose
+ =======
+
+ IEEECK is called from the ILAENV to verify that Infinity and
+ possibly NaN arithmetic is safe (i.e. will not trap).
+
+ Arguments
+ =========
+
+ ISPEC (input) INTEGER
+ Specifies whether to test just for inifinity arithmetic
+ or whether to test for infinity and NaN arithmetic.
+ = 0: Verify infinity arithmetic only.
+ = 1: Verify infinity and NaN arithmetic.
+
+ ZERO (input) REAL
+ Must contain the value 0.0
+ This is passed to prevent the compiler from optimizing
+ away this code.
+
+ ONE (input) REAL
+ Must contain the value 1.0
+ This is passed to prevent the compiler from optimizing
+ away this code.
+
+ RETURN VALUE: INTEGER
+ = 0: Arithmetic failed to produce the correct answers
+ = 1: Arithmetic produced the correct answers
+*/
+
+ ret_val = 1;
+
+ posinf = *one / *zero;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf = -(*one) / *zero;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ negzro = *one / (neginf + *one);
+ if (negzro != *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf = *one / negzro;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ newzro = negzro + *zero;
+ if (newzro != *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ posinf = *one / newzro;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ neginf *= posinf;
+ if (neginf >= *zero) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ posinf *= posinf;
+ if (posinf <= *one) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+
+/* Return if we were only asked to check infinity arithmetic */
+
+ if (*ispec == 0) {
+ return ret_val;
+ }
+
+ nan1 = posinf + neginf;
+
+ nan2 = posinf / neginf;
+
+ nan3 = posinf / posinf;
+
+ nan4 = posinf * *zero;
+
+ nan5 = neginf * negzro;
+
+ nan6 = nan5 * 0.f;
+
+ if (nan1 == nan1) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan2 == nan2) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan3 == nan3) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan4 == nan4) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan5 == nan5) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ if (nan6 == nan6) {
+ ret_val = 0;
+ return ret_val;
+ }
+
+ return ret_val;
+} /* ieeeck_ */
+
+integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1,
+ integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen
+ opts_len)
+{
+ /* System generated locals */
+ integer ret_val;
+
+ /* Builtin functions */
+ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
+ integer s_cmp(char *, char *, ftnlen, ftnlen);
+
+ /* Local variables */
+ static integer i__;
+ static char c1[1], c2[2], c3[3], c4[2];
+ static integer ic, nb, iz, nx;
+ static logical cname, sname;
+ static integer nbmin;
+ extern integer ieeeck_(integer *, real *, real *);
+ static char subnam[6];
+
+
+/*
+ -- LAPACK auxiliary routine (version 3.0) --
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+ Courant Institute, Argonne National Lab, and Rice University
+ June 30, 1999
+
+
+ Purpose
+ =======
+
+ ILAENV is called from the LAPACK routines to choose problem-dependent
+ parameters for the local environment. See ISPEC for a description of
+ the parameters.
+
+ This version provides a set of parameters which should give good,
+ but not optimal, performance on many of the currently available
+ computers. Users are encouraged to modify this subroutine to set
+ the tuning parameters for their particular machine using the option
+ and problem size information in the arguments.
+
+ This routine will not function correctly if it is converted to all
+ lower case. Converting it to all upper case is allowed.
+
+ Arguments
+ =========
+
+ ISPEC (input) INTEGER
+ Specifies the parameter to be returned as the value of
+ ILAENV.
+ = 1: the optimal blocksize; if this value is 1, an unblocked
+ algorithm will give the best performance.
+ = 2: the minimum block size for which the block routine
+ should be used; if the usable block size is less than
+ this value, an unblocked routine should be used.
+ = 3: the crossover point (in a block routine, for N less
+ than this value, an unblocked routine should be used)
+ = 4: the number of shifts, used in the nonsymmetric
+ eigenvalue routines
+ = 5: the minimum column dimension for blocking to be used;
+ rectangular blocks must have dimension at least k by m,
+ where k is given by ILAENV(2,...) and m by ILAENV(5,...)
+ = 6: the crossover point for the SVD (when reducing an m by n
+ matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
+ this value, a QR factorization is used first to reduce
+ the matrix to a triangular form.)
+ = 7: the number of processors
+ = 8: the crossover point for the multishift QR and QZ methods
+ for nonsymmetric eigenvalue problems.
+ = 9: maximum size of the subproblems at the bottom of the
+ computation tree in the divide-and-conquer algorithm
+ (used by xGELSD and xGESDD)
+ =10: ieee NaN arithmetic can be trusted not to trap
+ =11: infinity arithmetic can be trusted not to trap
+
+ NAME (input) CHARACTER*(*)
+ The name of the calling subroutine, in either upper case or
+ lower case.
+
+ OPTS (input) CHARACTER*(*)
+ The character options to the subroutine NAME, concatenated
+ into a single character string. For example, UPLO = 'U',
+ TRANS = 'T', and DIAG = 'N' for a triangular routine would
+ be specified as OPTS = 'UTN'.
+
+ N1 (input) INTEGER
+ N2 (input) INTEGER
+ N3 (input) INTEGER
+ N4 (input) INTEGER
+ Problem dimensions for the subroutine NAME; these may not all
+ be required.
+
+ (ILAENV) (output) INTEGER
+ >= 0: the value of the parameter specified by ISPEC
+ < 0: if ILAENV = -k, the k-th argument had an illegal value.
+
+ Further Details
+ ===============
+
+ The following conventions have been used when calling ILAENV from the
+ LAPACK routines:
+ 1) OPTS is a concatenation of all of the character options to
+ subroutine NAME, in the same order that they appear in the
+ argument list for NAME, even if they are not used in determining
+ the value of the parameter specified by ISPEC.
+ 2) The problem dimensions N1, N2, N3, N4 are specified in the order
+ that they appear in the argument list for NAME. N1 is used
+ first, N2 second, and so on, and unused problem dimensions are
+ passed a value of -1.
+ 3) The parameter value returned by ILAENV is checked for validity in
+ the calling subroutine. For example, ILAENV is used to retrieve
+ the optimal blocksize for STRTRI as follows:
+
+ NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
+ IF( NB.LE.1 ) NB = MAX( 1, N )
+
+ =====================================================================
+*/
+
+
+ switch (*ispec) {
+ case 1: goto L100;
+ case 2: goto L100;
+ case 3: goto L100;
+ case 4: goto L400;
+ case 5: goto L500;
+ case 6: goto L600;
+ case 7: goto L700;
+ case 8: goto L800;
+ case 9: goto L900;
+ case 10: goto L1000;
+ case 11: goto L1100;
+ }
+
+/* Invalid value for ISPEC */
+
+ ret_val = -1;
+ return ret_val;
+
+L100:
+
+/* Convert NAME to upper case if the first character is lower case. */
+
+ ret_val = 1;
+ s_copy(subnam, name__, (ftnlen)6, name_len);
+ ic = *(unsigned char *)subnam;
+ iz = 'Z';
+ if (iz == 90 || iz == 122) {
+
+/* ASCII character set */
+
+ if ((ic >= 97 && ic <= 122)) {
+ *(unsigned char *)subnam = (char) (ic - 32);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if ((ic >= 97 && ic <= 122)) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
+ }
+/* L10: */
+ }
+ }
+
+ } else if (iz == 233 || iz == 169) {
+
+/* EBCDIC character set */
+
+ if ((ic >= 129 && ic <= 137) || (ic >= 145 && ic <= 153) || (ic >=
+ 162 && ic <= 169)) {
+ *(unsigned char *)subnam = (char) (ic + 64);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if ((ic >= 129 && ic <= 137) || (ic >= 145 && ic <= 153) || (
+ ic >= 162 && ic <= 169)) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
+ }
+/* L20: */
+ }
+ }
+
+ } else if (iz == 218 || iz == 250) {
+
+/* Prime machines: ASCII+128 */
+
+ if ((ic >= 225 && ic <= 250)) {
+ *(unsigned char *)subnam = (char) (ic - 32);
+ for (i__ = 2; i__ <= 6; ++i__) {
+ ic = *(unsigned char *)&subnam[i__ - 1];
+ if ((ic >= 225 && ic <= 250)) {
+ *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
+ }
+/* L30: */
+ }
+ }
+ }
+
+ *(unsigned char *)c1 = *(unsigned char *)subnam;
+ sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
+ cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
+ if (! (cname || sname)) {
+ return ret_val;
+ }
+ s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
+ s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
+ s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
+
+ switch (*ispec) {
+ case 1: goto L110;
+ case 2: goto L200;
+ case 3: goto L300;
+ }
+
+L110:
+
+/*
+ ISPEC = 1: block size
+
+ In these examples, separate code is provided for setting NB for
+ real and complex. We assume that NB will take the same value in
+ single or double precision.
+*/
+
+ nb = 1;
+
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3,
+ "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
+ 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3)
+ == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 32;
+ } else {
+ nb = 32;
+ }
+ } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ } else if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
+ nb = 32;
+ } else if ((sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0)) {
+ nb = 64;
+ }
+ } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 64;
+ } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 32;
+ } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 64;
+ }
+ } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ }
+ } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nb = 32;
+ }
+ }
+ } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ if (*n4 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ } else {
+ if (*n4 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ }
+ }
+ } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ if (*n2 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ } else {
+ if (*n2 <= 64) {
+ nb = 1;
+ } else {
+ nb = 32;
+ }
+ }
+ }
+ } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nb = 64;
+ } else {
+ nb = 64;
+ }
+ }
+ } else if ((sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
+ nb = 1;
+ }
+ }
+ ret_val = nb;
+ return ret_val;
+
+L200:
+
+/* ISPEC = 2: minimum block size */
+
+ nbmin = 2;
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
+ ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
+ ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
+ {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 2;
+ } else {
+ nbmin = 2;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nbmin = 8;
+ } else {
+ nbmin = 8;
+ }
+ } else if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
+ nbmin = 2;
+ }
+ } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nbmin = 2;
+ }
+ } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ }
+ } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ } else if (*(unsigned char *)c3 == 'M') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nbmin = 2;
+ }
+ }
+ }
+ ret_val = nbmin;
+ return ret_val;
+
+L300:
+
+/* ISPEC = 3: crossover point */
+
+ nx = 0;
+ if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
+ if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
+ ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
+ ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
+ {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
+ if (sname) {
+ nx = 128;
+ } else {
+ nx = 128;
+ }
+ }
+ } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
+ if ((sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0)) {
+ nx = 32;
+ }
+ } else if ((cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
+ nx = 32;
+ }
+ } else if ((sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nx = 128;
+ }
+ }
+ } else if ((cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0)) {
+ if (*(unsigned char *)c3 == 'G') {
+ if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
+ (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
+ ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
+ 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
+ c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
+ ftnlen)2, (ftnlen)2) == 0) {
+ nx = 128;
+ }
+ }
+ }
+ ret_val = nx;
+ return ret_val;
+
+L400:
+
+/* ISPEC = 4: number of shifts (used by xHSEQR) */
+
+ ret_val = 6;
+ return ret_val;
+
+L500:
+
+/* ISPEC = 5: minimum column dimension (not used) */
+
+ ret_val = 2;
+ return ret_val;
+
+L600:
+
+/* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */
+
+ ret_val = (integer) ((real) min(*n1,*n2) * 1.6f);
+ return ret_val;
+
+L700:
+
+/* ISPEC = 7: number of processors (not used) */
+
+ ret_val = 1;
+ return ret_val;
+
+L800:
+
+/* ISPEC = 8: crossover point for multishift (used by xHSEQR) */
+
+ ret_val = 50;
+ return ret_val;
+
+L900:
+
+/*
+ ISPEC = 9: maximum size of the subproblems at the bottom of the
+ computation tree in the divide-and-conquer algorithm
+ (used by xGELSD and xGESDD)
+*/
+
+ ret_val = 25;
+ return ret_val;
+
+L1000:
+
+/*
+ ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
+
+ ILAENV = 0
+*/
+ ret_val = 1;
+ if (ret_val == 1) {
+ ret_val = ieeeck_(&c__0, &c_b3825, &c_b3826);
+ }
+ return ret_val;
+
+L1100:
+
+/*
+ ISPEC = 11: infinity arithmetic can be trusted not to trap
+
+ ILAENV = 0
+*/
+ ret_val = 1;
+ if (ret_val == 1) {
+ ret_val = ieeeck_(&c__1, &c_b3825, &c_b3826);
+ }
+ return ret_val;
+
+/* End of ILAENV */
+
+} /* ilaenv_ */
+