summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r--numpy/linalg/linalg.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index ea4585dfa..10d05f07f 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -594,7 +594,7 @@ def eigvals(a):
result_t = _complexType(result_t)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
- return wrap(w.astype(result_t))
+ return w.astype(result_t)
def eigvalsh(a, UPLO='L'):
@@ -673,7 +673,7 @@ def eigvalsh(a, UPLO='L'):
iwork, liwork, 0)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
- return wrap(w.astype(result_t))
+ return w.astype(result_t)
def _convertarray(a):
t, result_t = _commonType(a)
@@ -786,7 +786,7 @@ def eig(a):
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
vt = v.transpose().astype(result_t)
- return wrap(w.astype(result_t)), wrap(vt)
+ return w.astype(result_t), wrap(vt)
def eigh(a, UPLO='L'):
@@ -872,7 +872,7 @@ def eigh(a, UPLO='L'):
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
at = a.transpose().astype(result_t)
- return wrap(w.astype(_realType(result_t))), wrap(at)
+ return w.astype(_realType(result_t)), wrap(at)
# Singular value decomposition
@@ -979,9 +979,9 @@ def svd(a, full_matrices=1, compute_uv=1):
if compute_uv:
u = u.transpose().astype(result_t)
vt = vt.transpose().astype(result_t)
- return wrap(u), wrap(s), wrap(vt)
+ return wrap(u), s, wrap(vt)
else:
- return wrap(s)
+ return s
def cond(x, p=None):
"""Compute the condition number of a matrix.
@@ -1208,7 +1208,7 @@ def lstsq(a, b, rcond=-1):
if results['rank'] == n and m > n:
resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype(result_t)
st = s[:min(n, m)].copy().astype(_realType(result_t))
- return wrap(x), wrap(resids), results['rank'], wrap(st)
+ return wrap(x), wrap(resids), results['rank'], st
def norm(x, ord=None):
"""Matrix or vector norm.