diff options
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r-- | numpy/linalg/linalg.py | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index 851db6e8c..78e487a25 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -13,7 +13,7 @@ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', - 'svd', 'eig', 'eigh','lstsq', 'norm', 'qr', 'cond', 'matrix_rank', + 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError'] import warnings @@ -271,7 +271,7 @@ def tensorsolve(a, b, axes=None): True """ - a,wrap = _makearray(a) + a, wrap = _makearray(a) b = asarray(b) an = a.ndim @@ -766,7 +766,7 @@ def qr(a, mode='reduced'): # handle modes that don't return q if mode == 'r': - r = _fastCopyAndTranspose(result_t, a[:,:mn]) + r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': @@ -808,7 +808,7 @@ def qr(a, mode='reduced'): raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) - r = _fastCopyAndTranspose(result_t, a[:,:mc]) + r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) @@ -1415,10 +1415,10 @@ def cond(x, p=None): """ x = asarray(x) # in case we have a matrix if p is None: - s = svd(x,compute_uv=False) + s = svd(x, compute_uv=False) return s[0]/s[-1] else: - return norm(x,p)*norm(inv(x),p) + return norm(x, p)*norm(inv(x), p) def matrix_rank(M, tol=None): @@ -1585,7 +1585,7 @@ def pinv(a, rcond=1e-15 ): s[i] = 1./s[i] else: s[i] = 0.; - res = dot(transpose(vt), multiply(s[:, newaxis],transpose(u))) + res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant @@ -1824,7 +1824,7 @@ def lstsq(a, b, rcond=-1): result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) - bstar[:b.shape[0],:n_rhs] = b.copy() + bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) |