summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r--numpy/linalg/linalg.py20
1 files changed, 10 insertions, 10 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 1706ff4a9..f56005292 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -972,8 +972,8 @@ def svd(a, full_matrices=1, compute_uv=1):
def cond(x,p=None):
"""Compute the condition number of a matrix.
- The condition number of x is the norm of x times the norm
- of the inverse of x. The norm can be the usual L2
+ The condition number of x is the norm of x times the norm
+ of the inverse of x. The norm can be the usual L2
(root-of-sum-of-squares) norm or a number of other matrix norms.
Parameters
@@ -983,16 +983,16 @@ def cond(x,p=None):
p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}
Order of the norm:
- p norm for matrices
+ p norm for matrices
===== ============================
None 2-norm, computed directly using the SVD
- 'fro' Frobenius norm
- inf max(sum(abs(x), axis=1))
- -inf min(sum(abs(x), axis=1))
- 1 max(sum(abs(x), axis=0))
- -1 min(sum(abs(x), axis=0))
- 2 2-norm (largest sing. value)
- -2 smallest singular value
+ 'fro' Frobenius norm
+ inf max(sum(abs(x), axis=1))
+ -inf min(sum(abs(x), axis=1))
+ 1 max(sum(abs(x), axis=0))
+ -1 min(sum(abs(x), axis=0))
+ 2 2-norm (largest sing. value)
+ -2 smallest singular value
===== ============================
Returns