summaryrefslogtreecommitdiff
path: root/numpy/linalg/tests
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/linalg/tests')
-rw-r--r--numpy/linalg/tests/test_gufuncs_linalg.py82
-rw-r--r--numpy/linalg/tests/test_linalg.py128
-rw-r--r--numpy/linalg/tests/test_regression.py8
3 files changed, 109 insertions, 109 deletions
diff --git a/numpy/linalg/tests/test_gufuncs_linalg.py b/numpy/linalg/tests/test_gufuncs_linalg.py
index c930ecff8..40f8c4058 100644
--- a/numpy/linalg/tests/test_gufuncs_linalg.py
+++ b/numpy/linalg/tests/test_gufuncs_linalg.py
@@ -71,7 +71,7 @@ def assert_almost_equal(a, b, **kw):
def assert_valid_eigen_no_broadcast(M, w, v, **kw):
- lhs = gula.matrix_multiply(M,v)
+ lhs = gula.matrix_multiply(M, v)
rhs = w*v
assert_almost_equal(lhs, rhs, **kw)
@@ -127,38 +127,38 @@ def assert_valid_eigenvals(M, w, **kw):
class MatrixGenerator(object):
def real_matrices(self):
- a = [[1,2],
- [3,4]]
+ a = [[1, 2],
+ [3, 4]]
- b = [[4,3],
- [2,1]]
+ b = [[4, 3],
+ [2, 1]]
return a, b
def real_symmetric_matrices(self):
- a = [[ 2 ,-1],
- [-1 , 2]]
+ a = [[ 2, -1],
+ [-1, 2]]
- b = [[4,3],
- [2,1]]
+ b = [[4, 3],
+ [2, 1]]
return a, b
def complex_matrices(self):
- a = [[1+2j,2+3j],
- [3+4j,4+5j]]
+ a = [[1+2j, 2+3j],
+ [3+4j, 4+5j]]
- b = [[4+3j,3+2j],
- [2+1j,1+0j]]
+ b = [[4+3j, 3+2j],
+ [2+1j, 1+0j]]
return a, b
def complex_hermitian_matrices(self):
- a = [[2,-1],
+ a = [[2, -1],
[-1, 2]]
- b = [[4+3j,3+2j],
- [2-1j,1+0j]]
+ b = [[4+3j, 3+2j],
+ [2-1j, 1+0j]]
return a, b
@@ -181,7 +181,7 @@ class MatrixGenerator(object):
class GeneralTestCase(MatrixGenerator):
def test_single(self):
- a,b = self.real_matrices()
+ a, b = self.real_matrices()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -201,7 +201,7 @@ class GeneralTestCase(MatrixGenerator):
array(b, dtype=cdouble))
def test_vector_single(self):
- a,b = self.real_matrices_vector()
+ a, b = self.real_matrices_vector()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -223,7 +223,7 @@ class GeneralTestCase(MatrixGenerator):
class HermitianTestCase(MatrixGenerator):
def test_single(self):
- a,b = self.real_symmetric_matrices()
+ a, b = self.real_symmetric_matrices()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -243,7 +243,7 @@ class HermitianTestCase(MatrixGenerator):
array(b, dtype=cdouble))
def test_vector_single(self):
- a,b = self.real_symmetric_matrices_vector()
+ a, b = self.real_symmetric_matrices_vector()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -265,17 +265,17 @@ class HermitianTestCase(MatrixGenerator):
class TestMatrixMultiply(GeneralTestCase):
def do(self, a, b):
- res = gula.matrix_multiply(a,b)
+ res = gula.matrix_multiply(a, b)
if a.ndim == 2:
- assert_almost_equal(res, np.dot(a,b))
+ assert_almost_equal(res, np.dot(a, b))
else:
- assert_almost_equal(res[0], np.dot(a[0],b[0]))
+ assert_almost_equal(res[0], np.dot(a[0], b[0]))
def test_column_matrix(self):
- A = np.arange(2*2).reshape((2,2))
- B = np.arange(2*1).reshape((2,1))
- res = gula.matrix_multiply(A,B)
- assert_almost_equal(res, np.dot(A,B))
+ A = np.arange(2*2).reshape((2, 2))
+ B = np.arange(2*1).reshape((2, 1))
+ res = gula.matrix_multiply(A, B)
+ assert_almost_equal(res, np.dot(A, B))
class TestInv(GeneralTestCase, TestCase):
def do(self, a, b):
@@ -291,7 +291,7 @@ class TestPoinv(HermitianTestCase, TestCase):
a_inv = gula.poinv(a)
ident = identity(a.shape[-1])
if 3 == len(a.shape):
- ident = ident.reshape((1,ident.shape[0], ident.shape[1]))
+ ident = ident.reshape((1, ident.shape[0], ident.shape[1]))
assert_almost_equal(a_inv, gula.inv(a))
assert_almost_equal(gula.matrix_multiply(a, a_inv), ident)
@@ -369,10 +369,10 @@ class TestEigh(HermitianTestCase, TestCase):
assert_almost_equal(ev_up, evalues_up)
-class TestSolve(GeneralTestCase,TestCase):
+class TestSolve(GeneralTestCase, TestCase):
def do(self, a, b):
- x = gula.solve(a,b)
- assert_almost_equal(b, gula.matrix_multiply(a,x))
+ x = gula.solve(a, b)
+ assert_almost_equal(b, gula.matrix_multiply(a, x))
class TestChosolve(HermitianTestCase, TestCase):
@@ -389,8 +389,8 @@ class TestChosolve(HermitianTestCase, TestCase):
assert_almost_equal(x_lo, x_up)
# inner1d not defined for complex types
# todo: implement alternative test
- assert_almost_equal(b, gula.matrix_multiply(a,x_lo))
- assert_almost_equal(b, gula.matrix_multiply(a,x_up))
+ assert_almost_equal(b, gula.matrix_multiply(a, x_lo))
+ assert_almost_equal(b, gula.matrix_multiply(a, x_up))
class TestSVD(GeneralTestCase, TestCase):
@@ -417,7 +417,7 @@ class TestCholesky(HermitianTestCase, TestCase):
# - multiply4_add
class UfuncTestCase(object):
- parameter = range(0,10)
+ parameter = range(0, 10)
def _check_for_type(self, typ):
a = np.array(self.__class__.parameter, dtype=typ)
@@ -455,43 +455,43 @@ class UfuncTestCase(object):
class TestAdd3(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.add3(a,a,a)
+ r = gula.add3(a, a, a)
assert_almost_equal(r, a+a+a)
class TestMultiply3(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply3(a,a,a)
+ r = gula.multiply3(a, a, a)
assert_almost_equal(r, a*a*a)
class TestMultiply3Add(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply3_add(a,a,a,a)
+ r = gula.multiply3_add(a, a, a, a)
assert_almost_equal(r, a*a*a+a)
class TestMultiplyAdd(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply_add(a,a,a)
+ r = gula.multiply_add(a, a, a)
assert_almost_equal(r, a*a+a)
class TestMultiplyAdd2(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply_add2(a,a,a,a)
+ r = gula.multiply_add2(a, a, a, a)
assert_almost_equal(r, a*a+a+a)
class TestMultiply4(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply4(a,a,a,a)
+ r = gula.multiply4(a, a, a, a)
assert_almost_equal(r, a*a*a*a)
class TestMultiply4_add(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply4_add(a,a,a,a,a)
+ r = gula.multiply4_add(a, a, a, a, a)
assert_almost_equal(r, a*a*a*a+a)
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py
index 7f102634e..2dd270521 100644
--- a/numpy/linalg/tests/test_linalg.py
+++ b/numpy/linalg/tests/test_linalg.py
@@ -39,32 +39,32 @@ def get_complex_dtype(dtype):
class LinalgTestCase(object):
def test_single(self):
- a = array([[1.,2.], [3.,4.]], dtype=single)
+ a = array([[1., 2.], [3., 4.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_double(self):
- a = array([[1.,2.], [3.,4.]], dtype=double)
+ a = array([[1., 2.], [3., 4.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_2(self):
- a = array([[1.,2.], [3.,4.]], dtype=double)
+ a = array([[1., 2.], [3., 4.]], dtype=double)
b = array([[2., 1., 4.], [3., 4., 6.]], dtype=double)
self.do(a, b)
def test_csingle(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_cdouble(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_2(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble)
self.do(a, b)
@@ -78,71 +78,71 @@ class LinalgTestCase(object):
pass
def test_nonarray(self):
- a = [[1,2], [3,4]]
+ a = [[1, 2], [3, 4]]
b = [2, 1]
- self.do(a,b)
+ self.do(a, b)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
- a = array([[1.,2.], [3.,4.]])
+ a = array([[1., 2.], [3., 4.]])
b = matrix([2., 1.]).T
self.do(a, b)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
- a = matrix([[1.,2.], [3.,4.]])
+ a = matrix([[1., 2.], [3., 4.]])
b = matrix([2., 1.]).T
self.do(a, b)
class LinalgNonsquareTestCase(object):
def test_single_nsq_1(self):
- a = array([[1.,2.,3.], [3.,4.,6.]], dtype=single)
+ a = array([[1., 2., 3.], [3., 4., 6.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_single_nsq_2(self):
- a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=single)
+ a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=single)
b = array([2., 1., 3.], dtype=single)
self.do(a, b)
def test_double_nsq_1(self):
- a = array([[1.,2.,3.], [3.,4.,6.]], dtype=double)
+ a = array([[1., 2., 3.], [3., 4., 6.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_nsq_2(self):
- a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=double)
+ a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=double)
b = array([2., 1., 3.], dtype=double)
self.do(a, b)
def test_csingle_nsq_1(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=csingle)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_csingle_nsq_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=csingle)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=csingle)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=csingle)
self.do(a, b)
def test_cdouble_nsq_1(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_1_2(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
@@ -211,14 +211,14 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
a = np.arange(8).reshape(2, 2, 2)
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
- expected = linalg.solve(a, b)[:,0:0,:]
- result = linalg.solve(a[:,0:0,0:0], b[:,0:0,:])
+ expected = linalg.solve(a, b)[:, 0:0,:]
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0,:])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# Test errors for non-square and only b's dimension being 0
- assert_raises(linalg.LinAlgError, linalg.solve, a[:,0:0,0:1], b)
- assert_raises(ValueError, linalg.solve, a, b[:,0:0,:])
+ assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
+ assert_raises(ValueError, linalg.solve, a, b[:, 0:0,:])
# Test broadcasting error
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
@@ -227,15 +227,15 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
# Test zero "single equations" with 0x0 matrices.
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
- expected = linalg.solve(a, b)[:,0:0]
- result = linalg.solve(a[:,0:0,0:0], b[:,0:0])
+ expected = linalg.solve(a, b)[:, 0:0]
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
b = np.arange(3).reshape(1, 3)
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
- assert_raises(ValueError, linalg.solve, a[:,0:0,0:0], b)
+ assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
@@ -256,13 +256,13 @@ class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
- a = np.zeros((0,1,1), dtype=np.int_).view(ArraySubclass)
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res.shape)
assert_(isinstance(a, ArraySubclass))
- a = np.zeros((0,0), dtype=np.complex64).view(ArraySubclass)
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res.shape)
@@ -288,7 +288,7 @@ class TestEig(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
def do(self, a, b):
evalues, evectors = linalg.eig(a)
if evectors.ndim == 3:
- assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:,None,:])
+ assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:, None,:])
else:
assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix)))
@@ -313,7 +313,7 @@ class TestSVD(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
if u.ndim == 3:
- assert_almost_equal(a, dot_generalized(u * s[:,None,:], vt))
+ assert_almost_equal(a, dot_generalized(u * s[:, None,:], vt))
else:
assert_almost_equal(a, dot(multiply(u, s), vt))
assert_(imply(isinstance(a, matrix), isinstance(u, matrix)))
@@ -344,13 +344,13 @@ class TestCond2(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
- old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)
+ old_assert_almost_equal(s[0]/s[-1], linalg.cond(a, 2), decimal=5)
class TestCondInf(TestCase):
def test(self):
- A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
- assert_almost_equal(linalg.cond(A,inf),3.)
+ A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]])
+ assert_almost_equal(linalg.cond(A, inf), 3.)
class TestPinv(LinalgTestCase, TestCase):
@@ -426,10 +426,10 @@ class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase):
class TestMatrixPower(object):
- R90 = array([[0,1],[-1,0]])
- Arb22 = array([[4,-7],[-2,10]])
- noninv = array([[1,0],[0,0]])
- arbfloat = array([[0.1,3.2],[1.2,0.7]])
+ R90 = array([[0, 1], [-1, 0]])
+ Arb22 = array([[4, -7], [-2, 10]])
+ noninv = array([[1, 0], [0, 0]])
+ arbfloat = array([[0.1, 3.2], [1.2, 0.7]])
large = identity(10)
t = large[1,:].copy()
@@ -437,14 +437,14 @@ class TestMatrixPower(object):
large[0,:] = t
def test_large_power(self):
- assert_equal(matrix_power(self.R90,2**100+2**10+2**5+1),self.R90)
+ assert_equal(matrix_power(self.R90, 2**100+2**10+2**5+1), self.R90)
def test_large_power_trailing_zero(self):
- assert_equal(matrix_power(self.R90,2**100+2**10+2**5),identity(2))
+ assert_equal(matrix_power(self.R90, 2**100+2**10+2**5), identity(2))
def testip_zero(self):
def tz(M):
- mz = matrix_power(M,0)
+ mz = matrix_power(M, 0)
assert_equal(mz, identity(M.shape[0]))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
@@ -452,7 +452,7 @@ class TestMatrixPower(object):
def testip_one(self):
def tz(M):
- mz = matrix_power(M,1)
+ mz = matrix_power(M, 1)
assert_equal(mz, M)
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
@@ -460,46 +460,46 @@ class TestMatrixPower(object):
def testip_two(self):
def tz(M):
- mz = matrix_power(M,2)
- assert_equal(mz, dot(M,M))
+ mz = matrix_power(M, 2)
+ assert_equal(mz, dot(M, M))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_invert(self):
def tz(M):
- mz = matrix_power(M,-1)
- assert_almost_equal(identity(M.shape[0]), dot(mz,M))
+ mz = matrix_power(M, -1)
+ assert_almost_equal(identity(M.shape[0]), dot(mz, M))
for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
yield tz, M
def test_invert_noninvertible(self):
import numpy.linalg
assert_raises(numpy.linalg.linalg.LinAlgError,
- lambda: matrix_power(self.noninv,-1))
+ lambda: matrix_power(self.noninv, -1))
class TestBoolPower(TestCase):
def test_square(self):
- A = array([[True,False],[True,True]])
- assert_equal(matrix_power(A,2),A)
+ A = array([[True, False], [True, True]])
+ assert_equal(matrix_power(A, 2), A)
class HermitianTestCase(object):
def test_single(self):
- a = array([[1.,2.], [2.,1.]], dtype=single)
+ a = array([[1., 2.], [2., 1.]], dtype=single)
self.do(a, None)
def test_double(self):
- a = array([[1.,2.], [2.,1.]], dtype=double)
+ a = array([[1., 2.], [2., 1.]], dtype=double)
self.do(a, None)
def test_csingle(self):
- a = array([[1.,2+3j], [2-3j,1]], dtype=csingle)
+ a = array([[1., 2+3j], [2-3j, 1]], dtype=csingle)
self.do(a, None)
def test_cdouble(self):
- a = array([[1.,2+3j], [2-3j,1]], dtype=cdouble)
+ a = array([[1., 2+3j], [2-3j, 1]], dtype=cdouble)
self.do(a, None)
def test_empty(self):
@@ -507,17 +507,17 @@ class HermitianTestCase(object):
assert_raises(linalg.LinAlgError, self.do, a, None)
def test_nonarray(self):
- a = [[1,2], [2,1]]
+ a = [[1, 2], [2, 1]]
self.do(a, None)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
- a = array([[1.,2.], [2.,1.]])
+ a = array([[1., 2.], [2., 1.]])
self.do(a, None)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
- a = matrix([[1.,2.], [2.,1.]])
+ a = matrix([[1., 2.], [2., 1.]])
self.do(a, None)
@@ -623,7 +623,7 @@ class _TestNorm(TestCase):
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
- expected0 = [norm(A[:,k], ord=order) for k in range(A.shape[1])]
+ expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
@@ -644,11 +644,11 @@ class _TestNorm(TestCase):
assert_almost_equal(n, expected)
n = norm(B, ord=order, axis=(0, 2))
- expected = [norm(B[:,k,:], ord=order) for k in range(B.shape[1])]
+ expected = [norm(B[:, k,:], ord=order) for k in range(B.shape[1])]
assert_almost_equal(n, expected)
n = norm(B, ord=order, axis=(0, 1))
- expected = [norm(B[:,:,k], ord=order) for k in range(B.shape[2])]
+ expected = [norm(B[:,:, k], ord=order) for k in range(B.shape[2])]
assert_almost_equal(n, expected)
def test_bad_args(self):
@@ -696,17 +696,17 @@ class TestMatrixRank(object):
# Full rank matrix
yield assert_equal, 4, matrix_rank(np.eye(4))
# rank deficient matrix
- I=np.eye(4); I[-1,-1] = 0.
+ I=np.eye(4); I[-1, -1] = 0.
yield assert_equal, matrix_rank(I), 3
# All zeros - zero rank
- yield assert_equal, matrix_rank(np.zeros((4,4))), 0
+ yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
# 1 dimension - rank 1 unless all 0
yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
yield assert_equal, matrix_rank(np.zeros((4,))), 0
# accepts array-like
yield assert_equal, matrix_rank([1]), 1
# greater than 2 dimensions raises error
- yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2))
+ yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
# works on scalar
yield assert_equal, matrix_rank(1), 1
@@ -769,7 +769,7 @@ class TestQR(TestCase):
def test_qr_empty(self):
- a = np.zeros((0,2))
+ a = np.zeros((0, 2))
self.assertRaises(linalg.LinAlgError, linalg.qr, a)
@@ -864,7 +864,7 @@ def test_generalized_raise_multiloop():
x = np.zeros([4, 4, 2, 2])[1::2]
x[...] = invertible
- x[0,0] = non_invertible
+ x[0, 0] = non_invertible
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
diff --git a/numpy/linalg/tests/test_regression.py b/numpy/linalg/tests/test_regression.py
index 76fe4be10..4ff14a6a5 100644
--- a/numpy/linalg/tests/test_regression.py
+++ b/numpy/linalg/tests/test_regression.py
@@ -20,13 +20,13 @@ class TestRegression(TestCase):
-6.57612485e-01+10.41755503j,
-6.57612485e-01-10.41755503j,
1.82126812e+01 +0.j,
- 1.06011014e+01 +0.j ,
- 7.80732773e+00 +0.j ,
+ 1.06011014e+01 +0.j,
+ 7.80732773e+00 +0.j,
-7.65390898e-01 +0.j,
- 1.51971555e-15 +0.j ,
+ 1.51971555e-15 +0.j,
-1.51308713e-15 +0.j])
a = arange(13*13, dtype = float64)
- a.shape = (13,13)
+ a.shape = (13, 13)
a = a%17
va, ve = linalg.eig(a)
va.sort()