diff options
Diffstat (limited to 'numpy/numarray/functions.py')
-rw-r--r-- | numpy/numarray/functions.py | 490 |
1 files changed, 490 insertions, 0 deletions
diff --git a/numpy/numarray/functions.py b/numpy/numarray/functions.py new file mode 100644 index 000000000..afb5ce875 --- /dev/null +++ b/numpy/numarray/functions.py @@ -0,0 +1,490 @@ +# missing Numarray defined names (in from numarray import *) +##__all__ = ['ClassicUnpickler', 'Complex32_fromtype', +## 'Complex64_fromtype', 'ComplexArray', 'Error', +## 'MAX_ALIGN', 'MAX_INT_SIZE', 'MAX_LINE_WIDTH', +## 'NDArray', 'NewArray', 'NumArray', +## 'NumError', 'PRECISION', 'Py2NumType', +## 'PyINT_TYPES', 'PyLevel2Type', 'PyNUMERIC_TYPES', 'PyREAL_TYPES', +## 'SUPPRESS_SMALL', +## 'SuitableBuffer', 'USING_BLAS', +## 'UsesOpPriority', +## 'codegenerator', 'generic', 'libnumarray', 'libnumeric', +## 'make_ufuncs', 'memory', +## 'numarrayall', 'numarraycore', 'numinclude', 'safethread', +## 'typecode', 'typecodes', 'typeconv', 'ufunc', 'ufuncFactory', +## 'ieeemask'] + +__all__ = ['asarray', 'ones', 'zeros', 'array', 'where'] +__all__ += ['vdot', 'dot', 'matrixmultiply', 'ravel', 'indices', + 'arange', 'concatenate', 'all', 'allclose', 'alltrue', 'and_', + 'any', 'argmax', 'argmin', 'argsort', 'around', 'array_equal', + 'array_equiv', 'arrayrange', 'array_str', 'array_repr', + 'array2list', 'average', 'choose', 'CLIP', 'RAISE', 'WRAP', + 'clip', 'compress', 'concatenate', 'copy', 'copy_reg', + 'diagonal', 'divide_remainder', 'e', 'explicit_type', 'pi', + 'flush_caches', 'fromfile', 'os', 'sys', 'STRICT', + 'SLOPPY', 'WARN', 'EarlyEOFError', 'SizeMismatchError', + 'SizeMismatchWarning', 'FileSeekWarning', 'fromstring', + 'fromfunction', 'fromlist', 'getShape', 'getTypeObject', + 'identity', 'indices', 'info', 'innerproduct', 'inputarray', + 'isBigEndian', 'kroneckerproduct', 'lexsort', 'math', + 'operator', 'outerproduct', 'put', 'putmask', 'rank', + 'repeat', 'reshape', 'resize', 'round', 'searchsorted', + 'shape', 'size', 'sometrue', 'sort', 'swapaxes', 'take', + 'tcode', 'tname', 'tensormultiply', 'trace', 'transpose', + 'types', 'value', 'cumsum', 'cumproduct', 'nonzero', 'newobj', + 'togglebyteorder' + ] + +import copy, copy_reg, types +import os, sys, math, operator + +from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\ + allclose, any, around, argsort, array_equal, array_equiv,\ + array_str, array_repr, CLIP, RAISE, WRAP, clip, concatenate, \ + diagonal, e, pi, indices, inner as innerproduct, nonzero, \ + outer as outerproduct, kron as kroneckerproduct, lexsort, putmask, rank, \ + resize, searchsorted, shape, size, sort, swapaxes, trace, transpose +import numpy as N + +from numerictypes import typefrom + +isBigEndian = sys.byteorder != 'little' +value = tcode = 'f' +tname = 'Float32' + +# If dtype is not None, then it is used +# If type is not None, then it is used +# If typecode is not None then it is used +# If use_default is True, then the default +# data-type is returned if all are None +def type2dtype(typecode, type, dtype, use_default=True): + if dtype is None: + if type is None: + if use_default or typecode is not None: + dtype = N.dtype(typecode) + else: + dtype = N.dtype(type) + if use_default and dtype is None: + dtype = N.dtype('int') + return dtype + +def fromfunction(shape, dimensions, type=None, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, 1) + return N.fromfunction(shape, dimensions, dtype=dtype) +def ones(shape, type=None, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, 1) + return N.ones(shape, dtype) + +def zeros(shape, type=None, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, 1) + return N.zeros(shape, dtype) + +def where(condition, x=None, y=None, out=None): + if x is None and y is None: + arr = N.where(condition) + else: + arr = N.where(condition, x, y) + if out is not None: + out[...] = arr + return out + return arr + +def indices(shape, type=None): + return N.indices(shape, type) + +def arange(a1, a2=None, stride=1, type=None, shape=None, + typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, 0) + return N.arange(a1, a2, stride, dtype) + +arrayrange = arange + +def alltrue(x, axis=0): + return N.alltrue(x, axis) + +def and_(a, b): + """Same as a & b + """ + return a & b + +def divide_remainder(a, b): + a, b = asarray(a), asarray(b) + return (a/b,a%b) + +def around(array, digits=0, output=None): + ret = N.around(array, digits, output) + if output is None: + return ret + return + +def array2list(arr): + return arr.tolist() + + +def choose(selector, population, outarr=None, clipmode=RAISE): + a = N.asarray(selector) + ret = a.choose(population, out=outarr, mode=clipmode) + if outarr is None: + return ret + return + +def compress(condition, a, axis=0): + return N.compress(condition, a, axis) + +# only returns a view +def explicit_type(a): + x = a.view() + return x + +# stub +def flush_caches(): + pass + + +class EarlyEOFError(Exception): + "Raised in fromfile() if EOF unexpectedly occurs." + pass + +class SizeMismatchError(Exception): + "Raised in fromfile() if file size does not match shape." + pass + +class SizeMismatchWarning(Warning): + "Issued in fromfile() if file size does not match shape." + pass + +class FileSeekWarning(Warning): + "Issued in fromfile() if there is unused data and seek() fails" + pass + + +STRICT, SLOPPY, WARN = range(3) + +_BLOCKSIZE=1024 + +# taken and adapted directly from numarray +def fromfile(infile, type=None, shape=None, sizing=STRICT, + typecode=None, dtype=None): + if isinstance(infile, (str, unicode)): + infile = open(infile, 'rb') + dtype = type2dtype(typecode, type, dtype, True) + if shape is None: + shape = (-1,) + if not isinstance(shape, tuple): + shape = (shape,) + + if (list(shape).count(-1)>1): + raise ValueError("At most one unspecified dimension in shape") + + if -1 not in shape: + if sizing != STRICT: + raise ValueError("sizing must be STRICT if size complete") + arr = N.empty(shape, dtype) + bytesleft=arr.nbytes + bytesread=0 + while(bytesleft > _BLOCKSIZE): + data = infile.read(_BLOCKSIZE) + if len(data) != _BLOCKSIZE: + raise EarlyEOFError("Unexpected EOF reading data for size complete array") + arr.data[bytesread:bytesread+_BLOCKSIZE]=data + bytesread += _BLOCKSIZE + bytesleft -= _BLOCKSIZE + if bytesleft > 0: + data = infile.read(bytesleft) + if len(data) != bytesleft: + raise EarlyEOFError("Unexpected EOF reading data for size complete array") + arr.data[bytesread:bytesread+bytesleft]=data + return arr + + + ##shape is incompletely specified + ##read until EOF + ##implementation 1: naively use memory blocks + ##problematic because memory allocation can be double what is + ##necessary (!) + + ##the most common case, namely reading in data from an unchanging + ##file whose size may be determined before allocation, should be + ##quick -- only one allocation will be needed. + + recsize = dtype.itemsize * N.product([i for i in shape if i != -1]) + blocksize = max(_BLOCKSIZE/recsize, 1)*recsize + + ##try to estimate file size + try: + curpos=infile.tell() + infile.seek(0,2) + endpos=infile.tell() + infile.seek(curpos) + except (AttributeError, IOError): + initsize=blocksize + else: + initsize=max(1,(endpos-curpos)/recsize)*recsize + + buf = N.newbuffer(initsize) + + bytesread=0 + while 1: + data=infile.read(blocksize) + if len(data) != blocksize: ##eof + break + ##do we have space? + if len(buf) < bytesread+blocksize: + buf=_resizebuf(buf,len(buf)+blocksize) + ## or rather a=resizebuf(a,2*len(a)) ? + assert len(buf) >= bytesread+blocksize + buf[bytesread:bytesread+blocksize]=data + bytesread += blocksize + + if len(data) % recsize != 0: + if sizing == STRICT: + raise SizeMismatchError("Filesize does not match specified shape") + if sizing == WARN: + _warnings.warn("Filesize does not match specified shape", + SizeMismatchWarning) + try: + infile.seek(-(len(data) % recsize),1) + except AttributeError: + _warnings.warn("Could not rewind (no seek support)", + FileSeekWarning) + except IOError: + _warnings.warn("Could not rewind (IOError in seek)", + FileSeekWarning) + datasize = (len(data)/recsize) * recsize + if len(buf) != bytesread+datasize: + buf=_resizebuf(buf,bytesread+datasize) + buf[bytesread:bytesread+datasize]=data[:datasize] + ##deduce shape from len(buf) + shape = list(shape) + uidx = shape.index(-1) + shape[uidx]=len(buf) / recsize + + a = N.ndarray(shape=shape, dtype=type, buffer=buf) + if a.dtype.char == '?': + N.not_equal(a, 0, a) + return a + +def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, True) + if shape is None: + count = -1 + else: + count = N.product(shape) + res = N.fromstring(datastring, dtype=dtype, count=count) + if shape is not None: + res.shape = shape + return res + + +# check_overflow is ignored +def fromlist(seq, type=None, shape=None, check_overflow=0, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, False) + return N.array(seq, dtype) + +def array(sequence=None, typecode=None, copy=1, savespace=0, + type=None, shape=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, 0) + if sequence is None: + if shape is None: + return None + if dtype is None: + dtype = 'l' + return N.empty(shape, dtype) + if isinstance(sequence, file): + return fromfile(sequence, dtype=dtype, shape=shape) + if isinstance(sequence, str): + return fromstring(sequence, dtype=dtype, shape=shape) + if isinstance(sequence, buffer): + arr = N.frombuffer(sequence, dtype=dtype) + else: + arr = N.array(sequence, dtype, copy=copy) + if shape is not None: + arr.shape = shape + return arr + +def asarray(seq, type=None, typecode=None, dtype=None): + if isinstance(seq, N.ndarray) and type is None and \ + typecode is None and dtype is None: + return seq + return array(seq, type=type, typecode=typecode, copy=0, dtype=dtype) + +inputarray = asarray + + +def getTypeObject(sequence, type): + if type is not None: + return type + try: + return typefrom(N.array(sequence)) + except: + raise TypeError("Can't determine a reasonable type from sequence") + +def getShape(shape, *args): + try: + if shape is () and not args: + return () + if len(args) > 0: + shape = (shape, ) + args + else: + shape = tuple(shape) + dummy = N.array(shape) + if not issubclass(dummy.dtype.type, N.integer): + raise TypeError + if len(dummy) > N.MAXDIMS: + raise TypeError + except: + raise TypeError("Shape must be a sequence of integers") + return shape + + +def identity(n, type=None, typecode=None, dtype=None): + dtype = type2dtype(typecode, type, dtype, True) + return N.identity(n, dtype) + +def info(obj, output=sys.stdout, numpy=0): + if numpy: + bp = lambda x: x + else: + bp = lambda x: int(x) + cls = getattr(obj, '__class__', type(obj)) + if numpy: + nm = getattr(cls, '__name__', cls) + else: + nm = cls + print >> output, "class: ", nm + print >> output, "shape: ", obj.shape + strides = obj.strides + print >> output, "strides: ", strides + if not numpy: + print >> output, "byteoffset: 0" + if len(strides) > 0: + bs = obj.strides[0] + else: + bs = obj.itemsize + print >> output, "bytestride: ", bs + print >> output, "itemsize: ", obj.itemsize + print >> output, "aligned: ", bp(obj.flags.aligned) + print >> output, "contiguous: ", bp(obj.flags.contiguous) + if numpy: + print >> output, "fortran: ", obj.flags.fortran + if not numpy: + print >> output, "buffer: ", repr(obj.data) + if not numpy: + extra = " (DEBUG ONLY)" + tic = "'" + else: + extra = "" + tic = "" + print >> output, "data pointer: %s%s" % (hex(obj.ctypes._as_parameter_), extra) + print >> output, "byteorder: ", + endian = obj.dtype.byteorder + if endian in ['|','=']: + print >> output, "%s%s%s" % (tic, sys.byteorder, tic) + byteswap = False + elif endian == '>': + print >> output, "%sbig%s" % (tic, tic) + byteswap = sys.byteorder != "big" + else: + print >> output, "%slittle%s" % (tic, tic) + byteswap = sys.byteorder != "little" + print >> output, "byteswap: ", bp(byteswap) + if not numpy: + print >> output, "type: ", typefrom(obj).name + else: + print >> output, "type: %s" % obj.dtype + +#clipmode is ignored if axis is not 0 and array is not 1d +def put(array, indices, values, axis=0, clipmode=RAISE): + if not isinstance(array, N.ndarray): + raise TypeError("put only works on subclass of ndarray") + work = asarray(array) + if axis == 0: + if array.ndim == 1: + work.put(indices, values, clipmode) + else: + work[indices] = values + elif isinstance(axis, (int, long, N.integer)): + work = work.swapaxes(0, axis) + work[indices] = values + work = work.swapaxes(0, axis) + else: + def_axes = range(work.ndim) + for x in axis: + def_axes.remove(x) + axis = list(axis)+def_axes + work = work.transpose(axis) + work[indices] = values + work = work.transpose(axis) + +def repeat(array, repeats, axis=0): + return N.repeat(array, repeats, axis) + + +def reshape(array, shape, *args): + if len(args) > 0: + shape = (shape,) + args + return N.reshape(array, shape) + + +import warnings as _warnings +def round(*args, **keys): + _warnings.warn("round() is deprecated. Switch to around()", + DeprecationWarning) + return around(*args, **keys) + +def sometrue(array, axis=0): + return N.sometrue(array, axis) + +#clipmode is ignored if axis is not an integer +def take(array, indices, axis=0, outarr=None, clipmode=RAISE): + array = N.asarray(array) + if isinstance(axis, (int, long, N.integer)): + res = array.take(indices, axis, outarr, clipmode) + if outarr is None: + return res + return + else: + def_axes = range(array.ndim) + for x in axis: + def_axes.remove(x) + axis = list(axis) + def_axes + work = array.transpose(axis) + res = work[indices] + if outarr is None: + return res + out[...] = res + return + +def tensormultiply(a1, a2): + a1, a2 = N.asarray(a1), N.asarray(a2) + if (a1.shape[-1] != a2.shape[0]): + raise ValueError("Unmatched dimensions") + shape = a1.shape[:-1] + a2.shape[1:] + return N.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])), + N.reshape(a2, (a2.shape[0],-1))), + shape) + +def cumsum(a1, axis=0, out=None, type=None, dim=0): + return N.asarray(a1).cumsum(axis,dtype=type,out=out) + +def cumproduct(a1, axis=0, out=None, type=None, dim=0): + return N.asarray(a1).cumprod(axis,dtype=type,out=out) + +def argmax(x, axis=-1): + return N.argmax(x, axis) + +def argmin(x, axis=-1): + return N.argmin(x, axis) + +def newobj(self, type): + if type is None: + return N.empty_like(self) + else: + return N.empty(self.shape, type) + +def togglebyteorder(self): + self.dtype=self.dtype.newbyteorder() + +def average(a, axis=0, weights=None, returned=0): + return N.average(a, axis, weights, returned) |