summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric/mlab.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/oldnumeric/mlab.py')
-rw-r--r--numpy/oldnumeric/mlab.py122
1 files changed, 0 insertions, 122 deletions
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py
deleted file mode 100644
index 47be89e1b..000000000
--- a/numpy/oldnumeric/mlab.py
+++ /dev/null
@@ -1,122 +0,0 @@
-# This module is for compatibility only. All functions are defined elsewhere.
-
-__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
-
-import numpy.oldnumeric.linear_algebra as LinearAlgebra
-import numpy.oldnumeric.random_array as RandomArray
-from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \
- angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \
- diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \
- amax as _Nmax, amin as _Nmin, blackman, bartlett, \
- squeeze, sinc, median, fliplr, mean as _Nmean, transpose
-
-from numpy.linalg import eig, svd
-from numpy.random import rand, randn
-import numpy as nn
-
-from typeconv import convtypecode
-
-def eye(N, M=None, k=0, typecode=None, dtype=None):
- """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones,
- and everything else is zeros.
- """
- dtype = convtypecode(typecode, dtype)
- if M is None: M = N
- m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
- if m.dtype != dtype:
- return m.astype(dtype)
-
-def tri(N, M=None, k=0, typecode=None, dtype=None):
- """ returns a N-by-M array where all the diagonals starting from
- lower left corner up to the k-th are all ones.
- """
- dtype = convtypecode(typecode, dtype)
- if M is None: M = N
- m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
- if m.dtype != dtype:
- return m.astype(dtype)
-
-def trapz(y, x=None, axis=-1):
- return _Ntrapz(y, x, axis=axis)
-
-def ptp(x, axis=0):
- return _Nptp(x, axis)
-
-def cumprod(x, axis=0):
- return _Ncumprod(x, axis)
-
-def max(x, axis=0):
- return _Nmax(x, axis)
-
-def min(x, axis=0):
- return _Nmin(x, axis)
-
-def prod(x, axis=0):
- return _Nprod(x, axis)
-
-def std(x, axis=0):
- N = asarray(x).shape[axis]
- return _Nstd(x, axis)*sqrt(N/(N-1.))
-
-def mean(x, axis=0):
- return _Nmean(x, axis)
-
-# This is exactly the same cov function as in MLab
-def cov(m, y=None, rowvar=0, bias=0):
- if y is None:
- y = m
- else:
- y = y
- if rowvar:
- m = transpose(m)
- y = transpose(y)
- if (m.shape[0] == 1):
- m = transpose(m)
- if (y.shape[0] == 1):
- y = transpose(y)
- N = m.shape[0]
- if (y.shape[0] != N):
- raise ValueError, "x and y must have the same number "\
- "of observations"
- m = m - _Nmean(m,axis=0)
- y = y - _Nmean(y,axis=0)
- if bias:
- fact = N*1.0
- else:
- fact = N-1.0
- return squeeze(dot(transpose(m), conjugate(y)) / fact)
-
-from numpy import sqrt, multiply
-def corrcoef(x, y=None):
- c = cov(x,y)
- d = diag(c)
- return c/sqrt(multiply.outer(d,d))
-
-from compat import *
-from functions import *
-from precision import *
-from ufuncs import *
-from misc import *
-
-import compat
-import precision
-import functions
-import misc
-import ufuncs
-
-import numpy
-__version__ = numpy.__version__
-del numpy
-
-__all__ += ['__version__']
-__all__ += compat.__all__
-__all__ += precision.__all__
-__all__ += functions.__all__
-__all__ += ufuncs.__all__
-__all__ += misc.__all__
-
-del compat
-del functions
-del precision
-del ufuncs
-del misc