diff options
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r-- | numpy/oldnumeric/__init__.py | 41 | ||||
-rw-r--r-- | numpy/oldnumeric/alter_code1.py | 240 | ||||
-rw-r--r-- | numpy/oldnumeric/alter_code2.py | 146 | ||||
-rw-r--r-- | numpy/oldnumeric/array_printer.py | 16 | ||||
-rw-r--r-- | numpy/oldnumeric/arrayfns.py | 98 | ||||
-rw-r--r-- | numpy/oldnumeric/compat.py | 66 | ||||
-rw-r--r-- | numpy/oldnumeric/fft.py | 21 | ||||
-rw-r--r-- | numpy/oldnumeric/fix_default_axis.py | 291 | ||||
-rw-r--r-- | numpy/oldnumeric/functions.py | 124 | ||||
-rw-r--r-- | numpy/oldnumeric/linear_algebra.py | 83 | ||||
-rw-r--r-- | numpy/oldnumeric/ma.py | 15 | ||||
-rw-r--r-- | numpy/oldnumeric/matrix.py | 68 | ||||
-rw-r--r-- | numpy/oldnumeric/misc.py | 42 | ||||
-rw-r--r-- | numpy/oldnumeric/mlab.py | 122 | ||||
-rw-r--r-- | numpy/oldnumeric/precision.py | 169 | ||||
-rw-r--r-- | numpy/oldnumeric/random_array.py | 268 | ||||
-rw-r--r-- | numpy/oldnumeric/rng.py | 135 | ||||
-rw-r--r-- | numpy/oldnumeric/rng_stats.py | 35 | ||||
-rw-r--r-- | numpy/oldnumeric/setup.py | 8 | ||||
-rw-r--r-- | numpy/oldnumeric/tests/test_oldnumeric.py | 86 | ||||
-rw-r--r-- | numpy/oldnumeric/typeconv.py | 60 | ||||
-rw-r--r-- | numpy/oldnumeric/ufuncs.py | 19 | ||||
-rw-r--r-- | numpy/oldnumeric/user_array.py | 9 |
23 files changed, 2162 insertions, 0 deletions
diff --git a/numpy/oldnumeric/__init__.py b/numpy/oldnumeric/__init__.py new file mode 100644 index 000000000..83819ad04 --- /dev/null +++ b/numpy/oldnumeric/__init__.py @@ -0,0 +1,41 @@ +# Don't add these to the __all__ variable though +from numpy import * + +def _move_axis_to_0(a, axis): + if axis == 0: + return a + n = len(a.shape) + if axis < 0: + axis += n + axes = range(1, axis+1) + [0,] + range(axis+1, n) + return transpose(a, axes) + +# Add these +from compat import * +from functions import * +from precision import * +from ufuncs import * +from misc import * + +import compat +import precision +import functions +import misc +import ufuncs + +import numpy +__version__ = numpy.__version__ +del numpy + +__all__ = ['__version__'] +__all__ += compat.__all__ +__all__ += precision.__all__ +__all__ += functions.__all__ +__all__ += ufuncs.__all__ +__all__ += misc.__all__ + +del compat +del functions +del precision +del ufuncs +del misc diff --git a/numpy/oldnumeric/alter_code1.py b/numpy/oldnumeric/alter_code1.py new file mode 100644 index 000000000..87538a855 --- /dev/null +++ b/numpy/oldnumeric/alter_code1.py @@ -0,0 +1,240 @@ +""" +This module converts code written for Numeric to run with numpy + +Makes the following changes: + * Changes import statements (warns of use of from Numeric import *) + * Changes import statements (using numerix) ... + * Makes search and replace changes to: + - .typecode() + - .iscontiguous() + - .byteswapped() + - .itemsize() + - .toscalar() + * Converts .flat to .ravel() except for .flat = xxx or .flat[xxx] + * Replace xxx.spacesaver() with True + * Convert xx.savespace(?) to pass + ## xx.savespace(?) + + * Converts uses of 'b' to 'B' in the typecode-position of + functions: + eye, tri (in position 4) + ones, zeros, identity, empty, array, asarray, arange, + fromstring, indices, array_constructor (in position 2) + + and methods: + astype --- only argument + -- converts uses of '1', 's', 'w', and 'u' to + -- 'b', 'h', 'H', and 'I' + + * Converts uses of type(...) is <type> + isinstance(..., <type>) +""" +__all__ = ['convertfile', 'convertall', 'converttree', 'convertsrc'] + +import sys +import os +import re +import glob + + +_func4 = ['eye', 'tri'] +_meth1 = ['astype'] +_func2 = ['ones', 'zeros', 'identity', 'fromstring', 'indices', + 'empty', 'array', 'asarray', 'arange', 'array_constructor'] + +_chars = {'1':'b','s':'h','w':'H','u':'I'} + +func_re = {} +meth_re = {} + +for name in _func2: + _astr = r"""(%s\s*[(][^,]*?[,][^'"]*?['"])b(['"][^)]*?[)])"""%name + func_re[name] = re.compile(_astr, re.DOTALL) + +for name in _func4: + _astr = r"""(%s\s*[(][^,]*?[,][^,]*?[,][^,]*?[,][^'"]*?['"])b(['"][^)]*?[)])"""%name + func_re[name] = re.compile(_astr, re.DOTALL) + +for name in _meth1: + _astr = r"""(.%s\s*[(][^'"]*?['"])b(['"][^)]*?[)])"""%name + func_re[name] = re.compile(_astr, re.DOTALL) + +for char in _chars.keys(): + _astr = r"""(.astype\s*[(][^'"]*?['"])%s(['"][^)]*?[)])"""%char + meth_re[char] = re.compile(_astr, re.DOTALL) + +def fixtypechars(fstr): + for name in _func2 + _func4 + _meth1: + fstr = func_re[name].sub('\\1B\\2',fstr) + for char in _chars.keys(): + fstr = meth_re[char].sub('\\1%s\\2'%_chars[char], fstr) + return fstr + +flatindex_re = re.compile('([.]flat(\s*?[[=]))') + +def changeimports(fstr, name, newname): + importstr = 'import %s' % name + importasstr = 'import %s as ' % name + fromstr = 'from %s import ' % name + fromall=0 + + fstr = re.sub(r'(import\s+[^,\n\r]+,\s*)(%s)' % name, + "\\1%s as %s" % (newname, name), fstr) + fstr = fstr.replace(importasstr, 'import %s as ' % newname) + fstr = fstr.replace(importstr, 'import %s as %s' % (newname,name)) + + ind = 0 + Nlen = len(fromstr) + Nlen2 = len("from %s import " % newname) + while 1: + found = fstr.find(fromstr,ind) + if (found < 0): + break + ind = found + Nlen + if fstr[ind] == '*': + continue + fstr = "%sfrom %s import %s" % (fstr[:found], newname, fstr[ind:]) + ind += Nlen2 - Nlen + return fstr, fromall + +istest_re = {} +_types = ['float', 'int', 'complex', 'ArrayType', 'FloatType', + 'IntType', 'ComplexType'] +for name in _types: + _astr = r'type\s*[(]([^)]*)[)]\s+(?:is|==)\s+(.*?%s)'%name + istest_re[name] = re.compile(_astr) +def fixistesting(astr): + for name in _types: + astr = istest_re[name].sub('isinstance(\\1, \\2)', astr) + return astr + +def replaceattr(astr): + astr = astr.replace(".typecode()",".dtype.char") + astr = astr.replace(".iscontiguous()",".flags.contiguous") + astr = astr.replace(".byteswapped()",".byteswap()") + astr = astr.replace(".toscalar()", ".item()") + astr = astr.replace(".itemsize()",".itemsize") + # preserve uses of flat that should be o.k. + tmpstr = flatindex_re.sub(r"@@@@\2",astr) + # replace other uses of flat + tmpstr = tmpstr.replace(".flat",".ravel()") + # put back .flat where it was valid + astr = tmpstr.replace("@@@@", ".flat") + return astr + +svspc2 = re.compile(r'([^,(\s]+[.]spacesaver[(][)])') +svspc3 = re.compile(r'(\S+[.]savespace[(].*[)])') +#shpe = re.compile(r'(\S+\s*)[.]shape\s*=[^=]\s*(.+)') +def replaceother(astr): + astr = svspc2.sub('True',astr) + astr = svspc3.sub(r'pass ## \1', astr) + #astr = shpe.sub('\\1=\\1.reshape(\\2)', astr) + return astr + +import datetime +def fromstr(filestr): + savestr = filestr[:] + filestr = fixtypechars(filestr) + filestr = fixistesting(filestr) + filestr, fromall1 = changeimports(filestr, 'Numeric', 'numpy.oldnumeric') + filestr, fromall1 = changeimports(filestr, 'multiarray','numpy.oldnumeric') + filestr, fromall1 = changeimports(filestr, 'umath', 'numpy.oldnumeric') + filestr, fromall1 = changeimports(filestr, 'Precision', 'numpy.oldnumeric.precision') + filestr, fromall1 = changeimports(filestr, 'UserArray', 'numpy.oldnumeric.user_array') + filestr, fromall1 = changeimports(filestr, 'ArrayPrinter', 'numpy.oldnumeric.array_printer') + filestr, fromall2 = changeimports(filestr, 'numerix', 'numpy.oldnumeric') + filestr, fromall3 = changeimports(filestr, 'scipy_base', 'numpy.oldnumeric') + filestr, fromall3 = changeimports(filestr, 'Matrix', 'numpy.oldnumeric.matrix') + filestr, fromall3 = changeimports(filestr, 'MLab', 'numpy.oldnumeric.mlab') + filestr, fromall3 = changeimports(filestr, 'LinearAlgebra', 'numpy.oldnumeric.linear_algebra') + filestr, fromall3 = changeimports(filestr, 'RNG', 'numpy.oldnumeric.rng') + filestr, fromall3 = changeimports(filestr, 'RNG.Statistics', 'numpy.oldnumeric.rng_stats') + filestr, fromall3 = changeimports(filestr, 'RandomArray', 'numpy.oldnumeric.random_array') + filestr, fromall3 = changeimports(filestr, 'FFT', 'numpy.oldnumeric.fft') + filestr, fromall3 = changeimports(filestr, 'MA', 'numpy.oldnumeric.ma') + fromall = fromall1 or fromall2 or fromall3 + filestr = replaceattr(filestr) + filestr = replaceother(filestr) + if savestr != filestr: + today = datetime.date.today().strftime('%b %d, %Y') + name = os.path.split(sys.argv[0])[-1] + filestr = '## Automatically adapted for '\ + 'numpy.oldnumeric %s by %s\n\n%s' % (today, name, filestr) + return filestr, 1 + return filestr, 0 + +def makenewfile(name, filestr): + fid = file(name, 'w') + fid.write(filestr) + fid.close() + +def convertfile(filename, orig=1): + """Convert the filename given from using Numeric to using NumPy + + Copies the file to filename.orig and then over-writes the file + with the updated code + """ + fid = open(filename) + filestr = fid.read() + fid.close() + filestr, changed = fromstr(filestr) + if changed: + if orig: + base, ext = os.path.splitext(filename) + os.rename(filename, base+".orig") + else: + os.remove(filename) + makenewfile(filename, filestr) + +def fromargs(args): + filename = args[1] + converttree(filename) + +def convertall(direc=os.path.curdir, orig=1): + """Convert all .py files to use numpy.oldnumeric (from Numeric) in the directory given + + For each changed file, a backup of <usesnumeric>.py is made as + <usesnumeric>.py.orig. A new file named <usesnumeric>.py + is then written with the updated code. + """ + files = glob.glob(os.path.join(direc,'*.py')) + for afile in files: + if afile[-8:] == 'setup.py': continue # skip these + convertfile(afile, orig) + +header_re = re.compile(r'(Numeric/arrayobject.h)') + +def convertsrc(direc=os.path.curdir, ext=None, orig=1): + """Replace Numeric/arrayobject.h with numpy/oldnumeric.h in all files in the + directory with extension give by list ext (if ext is None, then all files are + replaced).""" + if ext is None: + files = glob.glob(os.path.join(direc,'*')) + else: + files = [] + for aext in ext: + files.extend(glob.glob(os.path.join(direc,"*.%s" % aext))) + for afile in files: + fid = open(afile) + fstr = fid.read() + fid.close() + fstr, n = header_re.subn(r'numpy/oldnumeric.h',fstr) + if n > 0: + if orig: + base, ext = os.path.splitext(afile) + os.rename(afile, base+".orig") + else: + os.remove(afile) + makenewfile(afile, fstr) + +def _func(arg, dirname, fnames): + convertall(dirname, orig=0) + convertsrc(dirname, ext=['h','c'], orig=0) + +def converttree(direc=os.path.curdir): + """Convert all .py files and source code files in the tree given + """ + os.path.walk(direc, _func, None) + + +if __name__ == '__main__': + fromargs(sys.argv) diff --git a/numpy/oldnumeric/alter_code2.py b/numpy/oldnumeric/alter_code2.py new file mode 100644 index 000000000..baa6b9d26 --- /dev/null +++ b/numpy/oldnumeric/alter_code2.py @@ -0,0 +1,146 @@ +""" +This module converts code written for numpy.oldnumeric to work +with numpy + +FIXME: Flesh this out. + +Makes the following changes: + * Converts typecharacters '1swu' to 'bhHI' respectively + when used as typecodes + * Changes import statements + * Change typecode= to dtype= + * Eliminates savespace=xxx keyword arguments + * Removes it when keyword is not given as well + * replaces matrixmultiply with dot + * converts functions that don't give axis= keyword that have changed + * converts functions that don't give typecode= keyword that have changed + * converts use of capitalized type-names + * converts old function names in oldnumeric.linear_algebra, + oldnumeric.random_array, and oldnumeric.fft + +""" +#__all__ = ['convertfile', 'convertall', 'converttree'] +__all__ = [] + +import warnings +warnings.warn("numpy.oldnumeric.alter_code2 is not working yet.") + +import sys +import os +import re +import glob + +# To convert typecharacters we need to +# Not very safe. Disabled for now.. +def replacetypechars(astr): + astr = astr.replace("'s'","'h'") + astr = astr.replace("'b'","'B'") + astr = astr.replace("'1'","'b'") + astr = astr.replace("'w'","'H'") + astr = astr.replace("'u'","'I'") + return astr + +def changeimports(fstr, name, newname): + importstr = 'import %s' % name + importasstr = 'import %s as ' % name + fromstr = 'from %s import ' % name + fromall=0 + + fstr = fstr.replace(importasstr, 'import %s as ' % newname) + fstr = fstr.replace(importstr, 'import %s as %s' % (newname,name)) + + ind = 0 + Nlen = len(fromstr) + Nlen2 = len("from %s import " % newname) + while 1: + found = fstr.find(fromstr,ind) + if (found < 0): + break + ind = found + Nlen + if fstr[ind] == '*': + continue + fstr = "%sfrom %s import %s" % (fstr[:found], newname, fstr[ind:]) + ind += Nlen2 - Nlen + return fstr, fromall + +def replaceattr(astr): + astr = astr.replace("matrixmultiply","dot") + return astr + +def replaceother(astr): + astr = re.sub(r'typecode\s*=', 'dtype=', astr) + astr = astr.replace('ArrayType', 'ndarray') + astr = astr.replace('NewAxis', 'newaxis') + return astr + +import datetime +def fromstr(filestr): + #filestr = replacetypechars(filestr) + filestr, fromall1 = changeimports(filestr, 'numpy.oldnumeric', 'numpy') + filestr, fromall1 = changeimports(filestr, 'numpy.core.multiarray', 'numpy') + filestr, fromall1 = changeimports(filestr, 'numpy.core.umath', 'numpy') + filestr, fromall3 = changeimports(filestr, 'LinearAlgebra', + 'numpy.linalg.old') + filestr, fromall3 = changeimports(filestr, 'RNG', 'numpy.random.oldrng') + filestr, fromall3 = changeimports(filestr, 'RNG.Statistics', 'numpy.random.oldrngstats') + filestr, fromall3 = changeimports(filestr, 'RandomArray', 'numpy.random.oldrandomarray') + filestr, fromall3 = changeimports(filestr, 'FFT', 'numpy.fft.old') + filestr, fromall3 = changeimports(filestr, 'MA', 'numpy.core.ma') + fromall = fromall1 or fromall2 or fromall3 + filestr = replaceattr(filestr) + filestr = replaceother(filestr) + today = datetime.date.today().strftime('%b %d, %Y') + name = os.path.split(sys.argv[0])[-1] + filestr = '## Automatically adapted for '\ + 'numpy %s by %s\n\n%s' % (today, name, filestr) + return filestr + +def makenewfile(name, filestr): + fid = file(name, 'w') + fid.write(filestr) + fid.close() + +def getandcopy(name): + fid = file(name) + filestr = fid.read() + fid.close() + base, ext = os.path.splitext(name) + makenewfile(base+'.orig', filestr) + return filestr + +def convertfile(filename): + """Convert the filename given from using Numeric to using NumPy + + Copies the file to filename.orig and then over-writes the file + with the updated code + """ + filestr = getandcopy(filename) + filestr = fromstr(filestr) + makenewfile(filename, filestr) + +def fromargs(args): + filename = args[1] + convertfile(filename) + +def convertall(direc=os.path.curdir): + """Convert all .py files to use NumPy (from Numeric) in the directory given + + For each file, a backup of <usesnumeric>.py is made as + <usesnumeric>.py.orig. A new file named <usesnumeric>.py + is then written with the updated code. + """ + files = glob.glob(os.path.join(direc,'*.py')) + for afile in files: + convertfile(afile) + +def _func(arg, dirname, fnames): + convertall(dirname) + +def converttree(direc=os.path.curdir): + """Convert all .py files in the tree given + + """ + os.path.walk(direc, _func, None) + +if __name__ == '__main__': + fromargs(sys.argv) diff --git a/numpy/oldnumeric/array_printer.py b/numpy/oldnumeric/array_printer.py new file mode 100644 index 000000000..95f3f42c7 --- /dev/null +++ b/numpy/oldnumeric/array_printer.py @@ -0,0 +1,16 @@ + +__all__ = ['array2string'] + +from numpy import array2string as _array2string + +def array2string(a, max_line_width=None, precision=None, + suppress_small=None, separator=' ', + array_output=0): + if array_output: + prefix="array(" + style=repr + else: + prefix = "" + style=str + return _array2string(a, max_line_width, precision, + suppress_small, separator, prefix, style) diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py new file mode 100644 index 000000000..e80246a57 --- /dev/null +++ b/numpy/oldnumeric/arrayfns.py @@ -0,0 +1,98 @@ +"""Backward compatible with arrayfns from Numeric +""" + +__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask', 'histogram', 'index_sort', + 'interp', 'nz', 'reverse', 'span', 'to_corners', 'zmin_zmax'] + +import numpy as nx +from numpy import asarray + +class error(Exception): + pass + +def array_set(vals1, indices, vals2): + indices = asarray(indices) + if indices.ndim != 1: + raise ValueError, "index array must be 1-d" + if not isinstance(vals1, ndarray): + raise TypeError, "vals1 must be an ndarray" + vals1 = asarray(vals1) + vals2 = asarray(vals2) + if vals1.ndim != vals2.ndim or vals1.ndim < 1: + raise error, "vals1 and vals2 must have same number of dimensions (>=1)" + vals1[indices] = vals2 + +from numpy import digitize +from numpy import bincount as histogram + +def index_sort(arr): + return asarray(arr).argsort(kind='heap') + +def interp(y, x, z, typ=None): + """y(z) interpolated by treating y(x) as piecewise function + """ + res = numpy.interp(z, x, y) + if typ is None or typ == 'd': + return res + if typ == 'f': + return res.astype('f') + + raise error, "incompatible typecode" + +def nz(x): + x = asarray(x,dtype=nx.ubyte) + if x.ndim != 1: + raise TypeError, "intput must have 1 dimension." + indxs = nx.flatnonzero(x != 0) + return indxs[-1].item()+1 + +def reverse(x, n): + x = asarray(x,dtype='d') + if x.ndim != 2: + raise ValueError, "input must be 2-d" + y = nx.empty_like(x) + if n == 0: + y[...] = x[::-1,:] + elif n == 1: + y[...] = x[:,::-1] + return y + +def span(lo, hi, num, d2=0): + x = linspace(lo, hi, num) + if d2 <= 0: + return x + else: + ret = empty((d2,num),x.dtype) + ret[...] = x + return ret + +def zmin_zmax(z, ireg): + z = asarray(z, dtype=float) + ireg = asarray(ireg, dtype=int) + if z.shape != ireg.shape or z.ndim != 2: + raise ValueError, "z and ireg must be the same shape and 2-d" + ix, iy = nx.nonzero(ireg) + # Now, add more indices + x1m = ix - 1 + y1m = iy-1 + i1 = x1m>=0 + i2 = y1m>=0 + i3 = i1 & i2 + nix = nx.r_[ix, x1m[i1], x1m[i1], ix[i2] ] + niy = nx.r_[iy, iy[i1], y1m[i3], y1m[i2]] + # remove any negative indices + zres = z[nix,niy] + return zres.min().item(), zres.max().item() + + +def find_mask(fs, node_edges): + raise NotImplementedError + +def to_corners(arr, nv, nvsum): + raise NotImplementedError + + +def construct3(mask, itype): + raise NotImplementedError + + diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py new file mode 100644 index 000000000..369fa5000 --- /dev/null +++ b/numpy/oldnumeric/compat.py @@ -0,0 +1,66 @@ +# Compatibility module containing deprecated names + +__all__ = ['NewAxis', + 'UFuncType', 'UfuncType', 'ArrayType', 'arraytype', + 'LittleEndian', 'arrayrange', 'matrixmultiply', + 'array_constructor', 'pickle_array', + 'DumpArray', 'LoadArray', 'multiarray', + # from cPickle + 'dump', 'dumps' + ] + +import numpy.core.multiarray as multiarray +import numpy.core.umath as um +from numpy.core.numeric import array, correlate +import functions +import sys + +from cPickle import dump, dumps + +mu = multiarray + +#Use this to add a new axis to an array +#compatibility only +NewAxis = None + +#deprecated +UFuncType = type(um.sin) +UfuncType = type(um.sin) +ArrayType = mu.ndarray +arraytype = mu.ndarray + +LittleEndian = (sys.byteorder == 'little') + +from numpy import deprecate + +# backward compatibility +arrayrange = deprecate(functions.arange, 'arrayrange', 'arange') + +# deprecated names +matrixmultiply = deprecate(mu.dot, 'matrixmultiply', 'dot') + +def DumpArray(m, fp): + m.dump(fp) + +def LoadArray(fp): + import cPickle + return cPickle.load(fp) + +def array_constructor(shape, typecode, thestr, Endian=LittleEndian): + if typecode == "O": + x = array(thestr, "O") + else: + x = mu.fromstring(thestr, typecode) + x.shape = shape + if LittleEndian != Endian: + return x.byteswap(True) + else: + return x + +def pickle_array(a): + if a.dtype.hasobject: + return (array_constructor, + a.shape, a.dtype.char, a.tolist(), LittleEndian) + else: + return (array_constructor, + (a.shape, a.dtype.char, a.tostring(), LittleEndian)) diff --git a/numpy/oldnumeric/fft.py b/numpy/oldnumeric/fft.py new file mode 100644 index 000000000..67f30c750 --- /dev/null +++ b/numpy/oldnumeric/fft.py @@ -0,0 +1,21 @@ + +__all__ = ['fft', 'fft2d', 'fftnd', 'hermite_fft', 'inverse_fft', + 'inverse_fft2d', 'inverse_fftnd', + 'inverse_hermite_fft', 'inverse_real_fft', + 'inverse_real_fft2d', 'inverse_real_fftnd', + 'real_fft', 'real_fft2d', 'real_fftnd'] + +from numpy.fft import fft +from numpy.fft import fft2 as fft2d +from numpy.fft import fftn as fftnd +from numpy.fft import hfft as hermite_fft +from numpy.fft import ifft as inverse_fft +from numpy.fft import ifft2 as inverse_fft2d +from numpy.fft import ifftn as inverse_fftnd +from numpy.fft import ihfft as inverse_hermite_fft +from numpy.fft import irfft as inverse_real_fft +from numpy.fft import irfft2 as inverse_real_fft2d +from numpy.fft import irfftn as inverse_real_fftnd +from numpy.fft import rfft as real_fft +from numpy.fft import rfft2 as real_fft2d +from numpy.fft import rfftn as real_fftnd diff --git a/numpy/oldnumeric/fix_default_axis.py b/numpy/oldnumeric/fix_default_axis.py new file mode 100644 index 000000000..8483de85e --- /dev/null +++ b/numpy/oldnumeric/fix_default_axis.py @@ -0,0 +1,291 @@ +""" +This module adds the default axis argument to code which did not specify it +for the functions where the default was changed in NumPy. + +The functions changed are + +add -1 ( all second argument) +====== +nansum +nanmax +nanmin +nanargmax +nanargmin +argmax +argmin +compress 3 + + +add 0 +====== +take 3 +repeat 3 +sum # might cause problems with builtin. +product +sometrue +alltrue +cumsum +cumproduct +average +ptp +cumprod +prod +std +mean +""" +__all__ = ['convertfile', 'convertall', 'converttree'] + +import sys +import os +import re +import glob + + +_args3 = ['compress', 'take', 'repeat'] +_funcm1 = ['nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', + 'argmax', 'argmin', 'compress'] +_func0 = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue', + 'cumsum', 'cumproduct', 'average', 'ptp', 'cumprod', 'prod', + 'std', 'mean'] + +_all = _func0 + _funcm1 +func_re = {} + +for name in _all: + _astr = r"""%s\s*[(]"""%name + func_re[name] = re.compile(_astr) + + +import string +disallowed = '_' + string.uppercase + string.lowercase + string.digits + +def _add_axis(fstr, name, repl): + alter = 0 + if name in _args3: + allowed_comma = 1 + else: + allowed_comma = 0 + newcode = "" + last = 0 + for obj in func_re[name].finditer(fstr): + nochange = 0 + start, end = obj.span() + if fstr[start-1] in disallowed: + continue + if fstr[start-1] == '.' \ + and fstr[start-6:start-1] != 'numpy' \ + and fstr[start-2:start-1] != 'N' \ + and fstr[start-9:start-1] != 'numarray' \ + and fstr[start-8:start-1] != 'numerix' \ + and fstr[start-8:start-1] != 'Numeric': + continue + if fstr[start-1] in ['\t',' ']: + k = start-2 + while fstr[k] in ['\t',' ']: + k -= 1 + if fstr[k-2:k+1] == 'def' or \ + fstr[k-4:k+1] == 'class': + continue + k = end + stack = 1 + ncommas = 0 + N = len(fstr) + while stack: + if k>=N: + nochange =1 + break + if fstr[k] == ')': + stack -= 1 + elif fstr[k] == '(': + stack += 1 + elif stack == 1 and fstr[k] == ',': + ncommas += 1 + if ncommas > allowed_comma: + nochange = 1 + break + k += 1 + if nochange: + continue + alter += 1 + newcode = "%s%s,%s)" % (newcode, fstr[last:k-1], repl) + last = k + if not alter: + newcode = fstr + else: + newcode = "%s%s" % (newcode, fstr[last:]) + return newcode, alter + +def _import_change(fstr, names): + # Four possibilities + # 1.) import numpy with subsequent use of numpy.<name> + # change this to import numpy.oldnumeric as numpy + # 2.) import numpy as XXXX with subsequent use of + # XXXX.<name> ==> import numpy.oldnumeric as XXXX + # 3.) from numpy import * + # with subsequent use of one of the names + # 4.) from numpy import ..., <name>, ... (could span multiple + # lines. ==> remove all names from list and + # add from numpy.oldnumeric import <name> + + num = 0 + # case 1 + importstr = "import numpy" + ind = fstr.find(importstr) + if (ind > 0): + found = 0 + for name in names: + ind2 = fstr.find("numpy.%s" % name, ind) + if (ind2 > 0): + found = 1 + break + if found: + fstr = "%s%s%s" % (fstr[:ind], "import numpy.oldnumeric as numpy", + fstr[ind+len(importstr):]) + num += 1 + + # case 2 + importre = re.compile("""import numpy as ([A-Za-z0-9_]+)""") + modules = importre.findall(fstr) + if len(modules) > 0: + for module in modules: + found = 0 + for name in names: + ind2 = fstr.find("%s.%s" % (module, name)) + if (ind2 > 0): + found = 1 + break + if found: + importstr = "import numpy as %s" % module + ind = fstr.find(importstr) + fstr = "%s%s%s" % (fstr[:ind], + "import numpy.oldnumeric as %s" % module, + fstr[ind+len(importstr):]) + num += 1 + + # case 3 + importstr = "from numpy import *" + ind = fstr.find(importstr) + if (ind > 0): + found = 0 + for name in names: + ind2 = fstr.find(name, ind) + if (ind2 > 0) and fstr[ind2-1] not in disallowed: + found = 1 + break + if found: + fstr = "%s%s%s" % (fstr[:ind], + "from numpy.oldnumeric import *", + fstr[ind+len(importstr):]) + num += 1 + + # case 4 + ind = 0 + importstr = "from numpy import" + N = len(importstr) + while 1: + ind = fstr.find(importstr, ind) + if (ind < 0): + break + ind += N + ptr = ind+1 + stack = 1 + while stack: + if fstr[ptr] == '\\': + stack += 1 + elif fstr[ptr] == '\n': + stack -= 1 + ptr += 1 + substr = fstr[ind:ptr] + found = 0 + substr = substr.replace('\n',' ') + substr = substr.replace('\\','') + importnames = [x.strip() for x in substr.split(',')] + # determine if any of names are in importnames + addnames = [] + for name in names: + if name in importnames: + importnames.remove(name) + addnames.append(name) + if len(addnames) > 0: + fstr = "%s%s\n%s\n%s" % \ + (fstr[:ind], + "from numpy import %s" % \ + ", ".join(importnames), + "from numpy.oldnumeric import %s" % \ + ", ".join(addnames), + fstr[ptr:]) + num += 1 + + return fstr, num + +def add_axis(fstr, import_change=False): + total = 0 + if not import_change: + for name in _funcm1: + fstr, num = _add_axis(fstr, name, 'axis=-1') + total += num + for name in _func0: + fstr, num = _add_axis(fstr, name, 'axis=0') + total += num + return fstr, total + else: + fstr, num = _import_change(fstr, _funcm1+_func0) + return fstr, num + + +def makenewfile(name, filestr): + fid = file(name, 'w') + fid.write(filestr) + fid.close() + +def getfile(name): + fid = file(name) + filestr = fid.read() + fid.close() + return filestr + +def copyfile(name, fstr): + base, ext = os.path.splitext(name) + makenewfile(base+'.orig', fstr) + return + +def convertfile(filename, import_change=False): + """Convert the filename given from using Numeric to using NumPy + + Copies the file to filename.orig and then over-writes the file + with the updated code + """ + filestr = getfile(filename) + newstr, total = add_axis(filestr, import_change) + if total > 0: + print "Changing ", filename + copyfile(filename, filestr) + makenewfile(filename, newstr) + sys.stdout.flush() + +def fromargs(args): + filename = args[1] + convertfile(filename) + +def convertall(direc=os.path.curdir, import_change=False): + """Convert all .py files in the directory given + + For each file, a backup of <usesnumeric>.py is made as + <usesnumeric>.py.orig. A new file named <usesnumeric>.py + is then written with the updated code. + """ + files = glob.glob(os.path.join(direc,'*.py')) + for afile in files: + convertfile(afile, import_change) + +def _func(arg, dirname, fnames): + convertall(dirname, import_change=arg) + +def converttree(direc=os.path.curdir, import_change=False): + """Convert all .py files in the tree given + + """ + os.path.walk(direc, _func, import_change) + +if __name__ == '__main__': + fromargs(sys.argv) diff --git a/numpy/oldnumeric/functions.py b/numpy/oldnumeric/functions.py new file mode 100644 index 000000000..1f09d8f84 --- /dev/null +++ b/numpy/oldnumeric/functions.py @@ -0,0 +1,124 @@ +# Functions that should behave the same as Numeric and need changing + +import numpy as N +import numpy.core.multiarray as mu +import numpy.core.numeric as nn +from typeconv import convtypecode, convtypecode2 + +__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue', + 'cumsum', 'cumproduct', 'compress', 'fromfunction', + 'ones', 'empty', 'identity', 'zeros', 'array', 'asarray', + 'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace', + 'indices', 'where','sarray','cross_product', 'argmax', 'argmin', + 'average'] + +def take(a, indicies, axis=0): + return N.take(a, indicies, axis) + +def repeat(a, repeats, axis=0): + return N.repeat(a, repeats, axis) + +def sum(x, axis=0): + return N.sum(x, axis) + +def product(x, axis=0): + return N.product(x, axis) + +def sometrue(x, axis=0): + return N.sometrue(x, axis) + +def alltrue(x, axis=0): + return N.alltrue(x, axis) + +def cumsum(x, axis=0): + return N.cumsum(x, axis) + +def cumproduct(x, axis=0): + return N.cumproduct(x, axis) + +def argmax(x, axis=-1): + return N.argmax(x, axis) + +def argmin(x, axis=-1): + return N.argmin(x, axis) + +def compress(condition, m, axis=-1): + return N.compress(condition, m, axis) + +def fromfunction(args, dimensions): + return N.fromfunction(args, dimensions, dtype=int) + +def ones(shape, typecode='l', savespace=0, dtype=None): + """ones(shape, dtype=int) returns an array of the given + dimensions which is initialized to all ones. + """ + dtype = convtypecode(typecode,dtype) + a = mu.empty(shape, dtype) + a.fill(1) + return a + +def zeros(shape, typecode='l', savespace=0, dtype=None): + """zeros(shape, dtype=int) returns an array of the given + dimensions which is initialized to all zeros + """ + dtype = convtypecode(typecode,dtype) + return mu.zeros(shape, dtype) + +def identity(n,typecode='l', dtype=None): + """identity(n) returns the identity 2-d array of shape n x n. + """ + dtype = convtypecode(typecode, dtype) + return nn.identity(n, dtype) + +def empty(shape, typecode='l', dtype=None): + dtype = convtypecode(typecode, dtype) + return mu.empty(shape, dtype) + +def array(sequence, typecode=None, copy=1, savespace=0, dtype=None): + dtype = convtypecode2(typecode, dtype) + return mu.array(sequence, dtype, copy=copy) + +def sarray(a, typecode=None, copy=False, dtype=None): + dtype = convtypecode2(typecode, dtype) + return mu.array(a, dtype, copy) + +def asarray(a, typecode=None, dtype=None): + dtype = convtypecode2(typecode, dtype) + return mu.array(a, dtype, copy=0) + +def nonzero(a): + res = N.nonzero(a) + if len(res) == 1: + return res[0] + else: + raise ValueError, "Input argument must be 1d" + +def reshape(a, shape): + return N.reshape(a, shape) + +def arange(start, stop=None, step=1, typecode=None, dtype=None): + dtype = convtypecode2(typecode, dtype) + return mu.arange(start, stop, step, dtype) + +def fromstring(string, typecode='l', count=-1, dtype=None): + dtype = convtypecode(typecode, dtype) + return mu.fromstring(string, dtype, count=count) + +def ravel(m): + return N.ravel(m) + +def trace(a, offset=0, axis1=0, axis2=1): + return N.trace(a, offset=0, axis1=0, axis2=1) + +def indices(dimensions, typecode=None, dtype=None): + dtype = convtypecode(typecode, dtype) + return N.indices(dimensions, dtype) + +def where(condition, x, y): + return N.where(condition, x, y) + +def cross_product(a, b, axis1=-1, axis2=-1): + return N.cross(a, b, axis1, axis2) + +def average(a, axis=0, weights=None, returned=False): + return N.average(a, axis, weights, returned) diff --git a/numpy/oldnumeric/linear_algebra.py b/numpy/oldnumeric/linear_algebra.py new file mode 100644 index 000000000..2e7a264fe --- /dev/null +++ b/numpy/oldnumeric/linear_algebra.py @@ -0,0 +1,83 @@ +"""Backward compatible with LinearAlgebra from Numeric +""" +# This module is a lite version of the linalg.py module in SciPy which contains +# high-level Python interface to the LAPACK library. The lite version +# only accesses the following LAPACK functions: dgesv, zgesv, dgeev, +# zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf. + + +__all__ = ['LinAlgError', 'solve_linear_equations', + 'inverse', 'cholesky_decomposition', 'eigenvalues', + 'Heigenvalues', 'generalized_inverse', + 'determinant', 'singular_value_decomposition', + 'eigenvectors', 'Heigenvectors', + 'linear_least_squares' + ] + +from numpy.core import transpose +import numpy.linalg as linalg + +# Linear equations + +LinAlgError = linalg.LinAlgError + +def solve_linear_equations(a, b): + return linalg.solve(a,b) + +# Matrix inversion + +def inverse(a): + return linalg.inv(a) + +# Cholesky decomposition + +def cholesky_decomposition(a): + return linalg.cholesky(a) + +# Eigenvalues + +def eigenvalues(a): + return linalg.eigvals(a) + +def Heigenvalues(a, UPLO='L'): + return linalg.eigvalsh(a,UPLO) + +# Eigenvectors + +def eigenvectors(A): + w, v = linalg.eig(A) + return w, transpose(v) + +def Heigenvectors(A): + w, v = linalg.eigh(A) + return w, transpose(v) + +# Generalized inverse + +def generalized_inverse(a, rcond = 1.e-10): + return linalg.pinv(a, rcond) + +# Determinant + +def determinant(a): + return linalg.det(a) + +# Linear Least Squares + +def linear_least_squares(a, b, rcond=1.e-10): + """returns x,resids,rank,s +where x minimizes 2-norm(|b - Ax|) + resids is the sum square residuals + rank is the rank of A + s is the rank of the singular values of A in descending order + +If b is a matrix then x is also a matrix with corresponding columns. +If the rank of A is less than the number of columns of A or greater than +the number of rows, then residuals will be returned as an empty array +otherwise resids = sum((b-dot(A,x)**2). +Singular values less than s[0]*rcond are treated as zero. +""" + return linalg.lstsq(a,b,rcond) + +def singular_value_decomposition(A, full_matrices=0): + return linalg.svd(A, full_matrices) diff --git a/numpy/oldnumeric/ma.py b/numpy/oldnumeric/ma.py new file mode 100644 index 000000000..857c554ec --- /dev/null +++ b/numpy/oldnumeric/ma.py @@ -0,0 +1,15 @@ +# Incompatibility in that getmask and a.mask returns nomask +# instead of None + +from numpy.core.ma import * +import numpy.core.ma as nca + +def repeat(a, repeats, axis=0): + return nca.repeat(a, repeats, axis) + +def average(a, axis=0, weights=None, returned=0): + return nca.average(a, axis, weights, returned) + +def take(a, indices, axis=0): + return nca.average(a, indices, axis=0) + diff --git a/numpy/oldnumeric/matrix.py b/numpy/oldnumeric/matrix.py new file mode 100644 index 000000000..7c5b3700c --- /dev/null +++ b/numpy/oldnumeric/matrix.py @@ -0,0 +1,68 @@ +# This module is for compatibility only. + +__all__ = ['UserArray', 'squeeze', 'Matrix', 'asarray', 'dot', 'k', 'Numeric', 'LinearAlgebra', 'identity', 'multiply', 'types', 'string'] + +import string +import types +from user_array import UserArray, asarray +import numpy.oldnumeric as Numeric +from numpy.oldnumeric import dot, identity, multiply +import numpy.oldnumeric.linear_algebra as LinearAlgebra +from numpy import matrix as Matrix, squeeze + +# Hidden names that will be the same. + +_table = [None]*256 +for k in range(256): + _table[k] = chr(k) +_table = ''.join(_table) + +_numchars = string.digits + ".-+jeEL" +_todelete = [] +for k in _table: + if k not in _numchars: + _todelete.append(k) +_todelete = ''.join(_todelete) + + +def _eval(astr): + return eval(astr.translate(_table,_todelete)) + +def _convert_from_string(data): + data.find + rows = data.split(';') + newdata = [] + count = 0 + for row in rows: + trow = row.split(',') + newrow = [] + for col in trow: + temp = col.split() + newrow.extend(map(_eval,temp)) + if count == 0: + Ncols = len(newrow) + elif len(newrow) != Ncols: + raise ValueError, "Rows not the same size." + count += 1 + newdata.append(newrow) + return newdata + + +_lkup = {'0':'000', + '1':'001', + '2':'010', + '3':'011', + '4':'100', + '5':'101', + '6':'110', + '7':'111'} + +def _binary(num): + ostr = oct(num) + bin = '' + for ch in ostr[1:]: + bin += _lkup[ch] + ind = 0 + while bin[ind] == '0': + ind += 1 + return bin[ind:] diff --git a/numpy/oldnumeric/misc.py b/numpy/oldnumeric/misc.py new file mode 100644 index 000000000..4b43f3985 --- /dev/null +++ b/numpy/oldnumeric/misc.py @@ -0,0 +1,42 @@ +# Functions that already have the correct syntax or miscellaneous functions + + +__all__ = ['load', 'sort', 'copy_reg', 'clip', 'Unpickler', 'rank', + 'sign', 'shape', 'types', 'allclose', 'size', + 'choose', 'swapaxes', 'array_str', + 'pi', 'math', 'concatenate', 'putmask', 'put', + 'around', 'vdot', 'transpose', 'array2string', 'diagonal', + 'searchsorted', 'copy', 'resize', + 'array_repr', 'e', 'StringIO', 'pickle', + 'argsort', 'convolve', 'loads', 'cross_correlate', + 'Pickler', 'dot', 'outerproduct', 'innerproduct', 'insert'] + +import types +import StringIO +import pickle +import math +import copy +import copy_reg +from pickle import load, loads + +from numpy import sort, clip, rank, sign, shape, putmask, allclose, size,\ + choose, swapaxes, array_str, array_repr, e, pi, put, \ + resize, around, concatenate, vdot, transpose, \ + diagonal, searchsorted, argsort, convolve, dot, \ + outer as outerproduct, inner as innerproduct, correlate as cross_correlate, \ + place as insert + +from array_printer import array2string + + +class Unpickler(pickle.Unpickler): + def __init__(self, *args, **kwds): + raise NotImplemented + def load_array(self): + raise NotImplemented + +class Pickler(pickle.Pickler): + def __init__(self, *args, **kwds): + raise NotImplemented + def save_array(self, object): + raise NotImplemented diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py new file mode 100644 index 000000000..47be89e1b --- /dev/null +++ b/numpy/oldnumeric/mlab.py @@ -0,0 +1,122 @@ +# This module is for compatibility only. All functions are defined elsewhere. + +__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] + +import numpy.oldnumeric.linear_algebra as LinearAlgebra +import numpy.oldnumeric.random_array as RandomArray +from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ + angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ + diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ + amax as _Nmax, amin as _Nmin, blackman, bartlett, \ + squeeze, sinc, median, fliplr, mean as _Nmean, transpose + +from numpy.linalg import eig, svd +from numpy.random import rand, randn +import numpy as nn + +from typeconv import convtypecode + +def eye(N, M=None, k=0, typecode=None, dtype=None): + """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, + and everything else is zeros. + """ + dtype = convtypecode(typecode, dtype) + if M is None: M = N + m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) + if m.dtype != dtype: + return m.astype(dtype) + +def tri(N, M=None, k=0, typecode=None, dtype=None): + """ returns a N-by-M array where all the diagonals starting from + lower left corner up to the k-th are all ones. + """ + dtype = convtypecode(typecode, dtype) + if M is None: M = N + m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) + if m.dtype != dtype: + return m.astype(dtype) + +def trapz(y, x=None, axis=-1): + return _Ntrapz(y, x, axis=axis) + +def ptp(x, axis=0): + return _Nptp(x, axis) + +def cumprod(x, axis=0): + return _Ncumprod(x, axis) + +def max(x, axis=0): + return _Nmax(x, axis) + +def min(x, axis=0): + return _Nmin(x, axis) + +def prod(x, axis=0): + return _Nprod(x, axis) + +def std(x, axis=0): + N = asarray(x).shape[axis] + return _Nstd(x, axis)*sqrt(N/(N-1.)) + +def mean(x, axis=0): + return _Nmean(x, axis) + +# This is exactly the same cov function as in MLab +def cov(m, y=None, rowvar=0, bias=0): + if y is None: + y = m + else: + y = y + if rowvar: + m = transpose(m) + y = transpose(y) + if (m.shape[0] == 1): + m = transpose(m) + if (y.shape[0] == 1): + y = transpose(y) + N = m.shape[0] + if (y.shape[0] != N): + raise ValueError, "x and y must have the same number "\ + "of observations" + m = m - _Nmean(m,axis=0) + y = y - _Nmean(y,axis=0) + if bias: + fact = N*1.0 + else: + fact = N-1.0 + return squeeze(dot(transpose(m), conjugate(y)) / fact) + +from numpy import sqrt, multiply +def corrcoef(x, y=None): + c = cov(x,y) + d = diag(c) + return c/sqrt(multiply.outer(d,d)) + +from compat import * +from functions import * +from precision import * +from ufuncs import * +from misc import * + +import compat +import precision +import functions +import misc +import ufuncs + +import numpy +__version__ = numpy.__version__ +del numpy + +__all__ += ['__version__'] +__all__ += compat.__all__ +__all__ += precision.__all__ +__all__ += functions.__all__ +__all__ += ufuncs.__all__ +__all__ += misc.__all__ + +del compat +del functions +del precision +del ufuncs +del misc diff --git a/numpy/oldnumeric/precision.py b/numpy/oldnumeric/precision.py new file mode 100644 index 000000000..f495992a8 --- /dev/null +++ b/numpy/oldnumeric/precision.py @@ -0,0 +1,169 @@ +# Lifted from Precision.py. This is for compatibility only. +# +# The character strings are still for "new" NumPy +# which is the only Incompatibility with Numeric + +__all__ = ['Character', 'Complex', 'Float', + 'PrecisionError', 'PyObject', 'Int', 'UInt', + 'UnsignedInteger', 'string', 'typecodes', 'zeros'] + +import string +from functions import zeros + +typecodes = {'Character':'c', 'Integer':'bhil', 'UnsignedInteger':'BHI', 'Float':'fd', 'Complex':'FD'} + +def _get_precisions(typecodes): + lst = [] + for t in typecodes: + lst.append( (zeros( (1,), t ).itemsize*8, t) ) + return lst + +def _fill_table(typecodes, table={}): + for key, value in typecodes.items(): + table[key] = _get_precisions(value) + return table + +_code_table = _fill_table(typecodes) + +class PrecisionError(Exception): + pass + +def _lookup(table, key, required_bits): + lst = table[key] + for bits, typecode in lst: + if bits >= required_bits: + return typecode + raise PrecisionError, key+" of "+str(required_bits)+" bits not available on this system" + +Character = 'c' + +try: + UnsignedInt8 = _lookup(_code_table, "UnsignedInteger", 8) + UInt8 = UnsignedInt8 + __all__.extend(['UnsignedInt8', 'UInt8']) +except(PrecisionError): + pass +try: + UnsignedInt16 = _lookup(_code_table, "UnsignedInteger", 16) + UInt16 = UnsignedInt16 + __all__.extend(['UnsignedInt16', 'UInt16']) +except(PrecisionError): + pass +try: + UnsignedInt32 = _lookup(_code_table, "UnsignedInteger", 32) + UInt32 = UnsignedInt32 + __all__.extend(['UnsignedInt32', 'UInt32']) +except(PrecisionError): + pass +try: + UnsignedInt64 = _lookup(_code_table, "UnsignedInteger", 64) + UInt64 = UnsignedInt64 + __all__.extend(['UnsignedInt64', 'UInt64']) +except(PrecisionError): + pass +try: + UnsignedInt128 = _lookup(_code_table, "UnsignedInteger", 128) + UInt128 = UnsignedInt128 + __all__.extend(['UnsignedInt128', 'UInt128']) +except(PrecisionError): + pass +UnsignedInteger = 'u' +UInt = UnsignedInteger + +try: + Int0 = _lookup(_code_table, 'Integer', 0) + __all__.append('Int0') +except(PrecisionError): + pass +try: + Int8 = _lookup(_code_table, 'Integer', 8) + __all__.append('Int8') +except(PrecisionError): + pass +try: + Int16 = _lookup(_code_table, 'Integer', 16) + __all__.append('Int16') +except(PrecisionError): + pass +try: + Int32 = _lookup(_code_table, 'Integer', 32) + __all__.append('Int32') +except(PrecisionError): + pass +try: + Int64 = _lookup(_code_table, 'Integer', 64) + __all__.append('Int64') +except(PrecisionError): + pass +try: + Int128 = _lookup(_code_table, 'Integer', 128) + __all__.append('Int128') +except(PrecisionError): + pass +Int = 'l' + +try: + Float0 = _lookup(_code_table, 'Float', 0) + __all__.append('Float0') +except(PrecisionError): + pass +try: + Float8 = _lookup(_code_table, 'Float', 8) + __all__.append('Float8') +except(PrecisionError): + pass +try: + Float16 = _lookup(_code_table, 'Float', 16) + __all__.append('Float16') +except(PrecisionError): + pass +try: + Float32 = _lookup(_code_table, 'Float', 32) + __all__.append('Float32') +except(PrecisionError): + pass +try: + Float64 = _lookup(_code_table, 'Float', 64) + __all__.append('Float64') +except(PrecisionError): + pass +try: + Float128 = _lookup(_code_table, 'Float', 128) + __all__.append('Float128') +except(PrecisionError): + pass +Float = 'd' + +try: + Complex0 = _lookup(_code_table, 'Complex', 0) + __all__.append('Complex0') +except(PrecisionError): + pass +try: + Complex8 = _lookup(_code_table, 'Complex', 16) + __all__.append('Complex8') +except(PrecisionError): + pass +try: + Complex16 = _lookup(_code_table, 'Complex', 32) + __all__.append('Complex16') +except(PrecisionError): + pass +try: + Complex32 = _lookup(_code_table, 'Complex', 64) + __all__.append('Complex32') +except(PrecisionError): + pass +try: + Complex64 = _lookup(_code_table, 'Complex', 128) + __all__.append('Complex64') +except(PrecisionError): + pass +try: + Complex128 = _lookup(_code_table, 'Complex', 256) + __all__.append('Complex128') +except(PrecisionError): + pass +Complex = 'D' + +PyObject = 'O' diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py new file mode 100644 index 000000000..0b06ee959 --- /dev/null +++ b/numpy/oldnumeric/random_array.py @@ -0,0 +1,268 @@ +# Backward compatible module for RandomArray + +__all__ = ['ArgumentError','F','beta','binomial','chi_square', 'exponential', + 'gamma', 'get_seed', 'mean_var_test', 'multinomial', + 'multivariate_normal', 'negative_binomial', 'noncentral_F', + 'noncentral_chi_square', 'normal', 'permutation', 'poisson', + 'randint', 'random', 'random_integers', 'seed', 'standard_normal', + 'uniform'] + +ArgumentError = ValueError + +import numpy.random.mtrand as mt +import numpy as Numeric + +from types import IntType + +def seed(x=0, y=0): + if (x == 0 or y == 0): + mt.seed() + else: + mt.seed((x,y)) + +def get_seed(): + raise NotImplementedError, \ + "If you want to save the state of the random number generator.\n"\ + "Then you should use obj = numpy.random.get_state() followed by.\n"\ + "numpy.random.set_state(obj)." + +def random(shape=[]): + "random(n) or random([n, m, ...]) returns array of random numbers" + if shape == []: + shape = None + return mt.random_sample(shape) + +def uniform(minimum, maximum, shape=[]): + """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals + in given range""" + if shape == []: + shape = None + return mt.uniform(minimum, maximum, shape) + +def randint(minimum, maximum=None, shape=[]): + """randint(min, max, shape=[]) = random integers >=min, < max + If max not given, random integers >= 0, <min""" + if not isinstance(minimum, IntType): + raise ArgumentError, "randint requires first argument integer" + if maximum is None: + maximum = minimum + minimum = 0 + if not isinstance(maximum, IntType): + raise ArgumentError, "randint requires second argument integer" + a = ((maximum-minimum)* random(shape)) + if isinstance(a, Numeric.ArrayType): + return minimum + a.astype(Numeric.Int) + else: + return minimum + int(a) + +def random_integers(maximum, minimum=1, shape=[]): + """random_integers(max, min=1, shape=[]) = random integers in range min-max inclusive""" + return randint(minimum, maximum+1, shape) + +def permutation(n): + "permutation(n) = a permutation of indices range(n)" + return mt.permutation(n) + +def standard_normal(shape=[]): + """standard_normal(n) or standard_normal([n, m, ...]) returns array of + random numbers normally distributed with mean 0 and standard + deviation 1""" + if shape == []: + shape = None + return mt.standard_normal(shape) + +def normal(mean, std, shape=[]): + """normal(mean, std, n) or normal(mean, std, [n, m, ...]) returns + array of random numbers randomly distributed with specified mean and + standard deviation""" + if shape == []: + shape = None + return mt.normal(mean, std, shape) + +def multivariate_normal(mean, cov, shape=[]): + """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...]) + returns an array containing multivariate normally distributed random numbers + with specified mean and covariance. + + mean must be a 1 dimensional array. cov must be a square two dimensional + array with the same number of rows and columns as mean has elements. + + The first form returns a single 1-D array containing a multivariate + normal. + + The second form returns an array of shape (m, n, ..., cov.shape[0]). + In this case, output[i,j,...,:] is a 1-D array containing a multivariate + normal.""" + if shape == []: + shape = None + return mt.multivariate_normal(mean, cov, shape) + +def exponential(mean, shape=[]): + """exponential(mean, n) or exponential(mean, [n, m, ...]) returns array + of random numbers exponentially distributed with specified mean""" + if shape == []: + shape = None + return mt.exponential(mean, shape) + +def beta(a, b, shape=[]): + """beta(a, b) or beta(a, b, [n, m, ...]) returns array of beta distributed random numbers.""" + if shape == []: + shape = None + return mt.beta(a, b, shape) + +def gamma(a, r, shape=[]): + """gamma(a, r) or gamma(a, r, [n, m, ...]) returns array of gamma distributed random numbers.""" + if shape == []: + shape = None + return mt.gamma(a, r, shape) + +def F(dfn, dfd, shape=[]): + """F(dfn, dfd) or F(dfn, dfd, [n, m, ...]) returns array of F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator.""" + if shape == []: + shape == None + return mt.f(dfn, dfd, shape) + +def noncentral_F(dfn, dfd, nconc, shape=[]): + """noncentral_F(dfn, dfd, nonc) or noncentral_F(dfn, dfd, nonc, [n, m, ...]) returns array of noncentral F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator, and noncentrality parameter nconc.""" + if shape == []: + shape = None + return mt.noncentral_f(dfn, dfd, nconc, shape) + +def chi_square(df, shape=[]): + """chi_square(df) or chi_square(df, [n, m, ...]) returns array of chi squared distributed random numbers with df degrees of freedom.""" + if shape == []: + shape = None + return mt.chisquare(df, shape) + +def noncentral_chi_square(df, nconc, shape=[]): + """noncentral_chi_square(df, nconc) or chi_square(df, nconc, [n, m, ...]) returns array of noncentral chi squared distributed random numbers with df degrees of freedom and noncentrality parameter.""" + if shape == []: + shape = None + return mt.noncentral_chisquare(df, nconc, shape) + +def binomial(trials, p, shape=[]): + """binomial(trials, p) or binomial(trials, p, [n, m, ...]) returns array of binomially distributed random integers. + + trials is the number of trials in the binomial distribution. + p is the probability of an event in each trial of the binomial distribution.""" + if shape == []: + shape = None + return mt.binomial(trials, p, shape) + +def negative_binomial(trials, p, shape=[]): + """negative_binomial(trials, p) or negative_binomial(trials, p, [n, m, ...]) returns + array of negative binomially distributed random integers. + + trials is the number of trials in the negative binomial distribution. + p is the probability of an event in each trial of the negative binomial distribution.""" + if shape == []: + shape = None + return mt.negative_binomial(trials, p, shape) + +def multinomial(trials, probs, shape=[]): + """multinomial(trials, probs) or multinomial(trials, probs, [n, m, ...]) returns + array of multinomial distributed integer vectors. + + trials is the number of trials in each multinomial distribution. + probs is a one dimensional array. There are len(prob)+1 events. + prob[i] is the probability of the i-th event, 0<=i<len(prob). + The probability of event len(prob) is 1.-Numeric.sum(prob). + + The first form returns a single 1-D array containing one multinomially + distributed vector. + + The second form returns an array of shape (m, n, ..., len(probs)). + In this case, output[i,j,...,:] is a 1-D array containing a multinomially + distributed integer 1-D array.""" + if shape == []: + shape = None + return mt.multinomial(trials, probs, shape) + +def poisson(mean, shape=[]): + """poisson(mean) or poisson(mean, [n, m, ...]) returns array of poisson + distributed random integers with specified mean.""" + if shape == []: + shape = None + return mt.poisson(mean, shape) + + +def mean_var_test(x, type, mean, var, skew=[]): + n = len(x) * 1.0 + x_mean = Numeric.sum(x,axis=0)/n + x_minus_mean = x - x_mean + x_var = Numeric.sum(x_minus_mean*x_minus_mean,axis=0)/(n-1.0) + print "\nAverage of ", len(x), type + print "(should be about ", mean, "):", x_mean + print "Variance of those random numbers (should be about ", var, "):", x_var + if skew != []: + x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.) + print "Skewness of those random numbers (should be about ", skew, "):", x_skew + +def test(): + obj = mt.get_state() + mt.set_state(obj) + obj2 = mt.get_state() + if (obj2[1] - obj[1]).any(): + raise SystemExit, "Failed seed test." + print "First random number is", random() + print "Average of 10000 random numbers is", Numeric.sum(random(10000),axis=0)/10000. + x = random([10,1000]) + if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: + raise SystemExit, "random returned wrong shape" + x.shape = (10000,) + print "Average of 100 by 100 random numbers is", Numeric.sum(x,axis=0)/10000. + y = uniform(0.5,0.6, (1000,10)) + if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10: + raise SystemExit, "uniform returned wrong shape" + y.shape = (10000,) + if Numeric.minimum.reduce(y) <= 0.5 or Numeric.maximum.reduce(y) >= 0.6: + raise SystemExit, "uniform returned out of desired range" + print "randint(1, 10, shape=[50])" + print randint(1, 10, shape=[50]) + print "permutation(10)", permutation(10) + print "randint(3,9)", randint(3,9) + print "random_integers(10, shape=[20])" + print random_integers(10, shape=[20]) + s = 3.0 + x = normal(2.0, s, [10, 1000]) + if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: + raise SystemExit, "standard_normal returned wrong shape" + x.shape = (10000,) + mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0) + x = exponential(3, 10000) + mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2) + x = multivariate_normal(Numeric.array([10,20]), Numeric.array(([1,2],[2,4]))) + print "\nA multivariate normal", x + if x.shape != (2,): raise SystemExit, "multivariate_normal returned wrong shape" + x = multivariate_normal(Numeric.array([10,20]), Numeric.array([[1,2],[2,4]]), [4,3]) + print "A 4x3x2 array containing multivariate normals" + print x + if x.shape != (4,3,2): raise SystemExit, "multivariate_normal returned wrong shape" + x = multivariate_normal(Numeric.array([-100,0,100]), Numeric.array([[3,2,1],[2,2,1],[1,1,1]]), 10000) + x_mean = Numeric.sum(x,axis=0)/10000. + print "Average of 10000 multivariate normals with mean [-100,0,100]" + print x_mean + x_minus_mean = x - x_mean + print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]" + print Numeric.dot(Numeric.transpose(x_minus_mean),x_minus_mean)/9999. + x = beta(5.0, 10.0, 10000) + mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) + x = gamma(.01, 2., 10000) + mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100) + x = chi_square(11., 10000) + mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*Numeric.sqrt(2./11.)) + x = F(5., 10., 10000) + mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) + x = poisson(50., 10000) + mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14) + print "\nEach element is the result of 16 binomial trials with probability 0.5:" + print binomial(16, 0.5, 16) + print "\nEach element is the result of 16 negative binomial trials with probability 0.5:" + print negative_binomial(16, 0.5, [16,]) + print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:" + x = multinomial(16, [0.1, 0.5, 0.1], 8) + print x + print "Mean = ", Numeric.sum(x,axis=0)/8. + +if __name__ == '__main__': + test() diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py new file mode 100644 index 000000000..fcf08bb37 --- /dev/null +++ b/numpy/oldnumeric/rng.py @@ -0,0 +1,135 @@ +# This module re-creates the RNG interface from Numeric +# Replace import RNG with import numpy.oldnumeric.rng as RNG +# +# It is for backwards compatibility only. + + +__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution','NormalDistribution', + 'UniformDistribution', 'error', 'default_distribution', 'random_sample', 'ranf', + 'standard_generator'] + +import numpy.random.mtrand as mt +import math + +class error(Exception): + pass + +class Distribution(object): + def __init__(self, meth, *args): + self._meth = meth + self._args = args + + def density(self,x): + raise NotImplementedError + + def __call__(self, x): + return self.density(x) + + def _onesample(self, rng): + return getattr(rng, self._meth)(*self._args) + + def _sample(self, rng, n): + kwds = {'size' : n} + return getattr(rng, self._meth)(*self._args, **kwds) + + +class ExponentialDistribution(Distribution): + def __init__(self, lambda_): + if (lambda_ <= 0): + raise error, "parameter must be positive" + Distribution.__init__(self, 'exponential', lambda_) + + def density(x): + if x < 0: + return 0.0 + else: + lambda_ = self._args[0] + return lambda_*exp(-lambda_*x) + +class LogNormalDistribution(Distribution): + def __init__(self, m, s): + m = float(m) + s = float(s) + if (s <= 0): + raise error, "standard deviation must be positive" + Distribution.__init__(self, 'lognormal', m, s) + sn = math.log(1.0+s*s/(m*m)); + self._mn = math.log(m)-0.5*sn + self._sn = math.sqrt(sn) + self._fac = 1.0/math.sqrt(2*math.pi)/self._sn + + def density(x): + m,s = self._args + y = (math.log(x)-self._mn)/self._sn + return self._fac*exp(-0.5*y*y)/x + + +class NormalDistribution(Distribution): + def __init__(self, m, s): + m = float(m) + s = float(s) + if (s <= 0): + raise error, "standard deviation must be positive" + Distribution.__init__(self, 'normal', m, s) + self._fac = 1.0/math.sqrt(2*math.pi)/s + + def density(x): + m,s = self._args + y = (x-m)/s + return self._fac*exp(-0.5*y*y) + +class UniformDistribution(Distribution): + def __init__(self, a, b): + a = float(a) + b = float(b) + width = b-a + if (width <=0): + raise error, "width of uniform distribution must be > 0" + Distribution.__init__(self, 'uniform', a, b) + self._fac = 1.0/width + + def density(x): + a, b = self._args + if (x < a) or (x >= b): + return 0.0 + else: + return self._fac + +default_distribution = UniformDistribution(0.0,1.0) + +class CreateGenerator(object): + def __init__(self, seed, dist=None): + if seed <= 0: + self._rng = mt.RandomState() + elif seed > 0: + self._rng = mt.RandomState(seed) + if dist is None: + dist = default_distribution + if not isinstance(dist, Distribution): + raise error, "Not a distribution object" + self._dist = dist + + def ranf(self): + return self._dist._onesample(self._rng) + + def sample(self, n): + return self._dist._sample(self._rng, n) + + +standard_generator = CreateGenerator(-1) + +def ranf(): + "ranf() = a random number from the standard generator." + return standard_generator.ranf() + +def random_sample(*n): + """random_sample(n) = array of n random numbers; + + random_sample(n1, n2, ...)= random array of shape (n1, n2, ..)""" + + if not n: + return standard_generator.ranf() + m = 1 + for i in n: + m = m * i + return standard_generator.sample(m).reshape(*n) diff --git a/numpy/oldnumeric/rng_stats.py b/numpy/oldnumeric/rng_stats.py new file mode 100644 index 000000000..8c7fec433 --- /dev/null +++ b/numpy/oldnumeric/rng_stats.py @@ -0,0 +1,35 @@ + +__all__ = ['average', 'histogram', 'standardDeviation', 'variance'] + +import numpy.oldnumeric as Numeric + +def average(data): + data = Numeric.array(data) + return Numeric.add.reduce(data)/len(data) + +def variance(data): + data = Numeric.array(data) + return Numeric.add.reduce((data-average(data,axis=0))**2)/(len(data)-1) + +def standardDeviation(data): + data = Numeric.array(data) + return Numeric.sqrt(variance(data)) + +def histogram(data, nbins, range = None): + data = Numeric.array(data, Numeric.Float) + if range is None: + min = Numeric.minimum.reduce(data) + max = Numeric.maximum.reduce(data) + else: + min, max = range + data = Numeric.repeat(data, + Numeric.logical_and(Numeric.less_equal(data, max), + Numeric.greater_equal(data, + min)),axis=0) + bin_width = (max-min)/nbins + data = Numeric.floor((data - min)/bin_width).astype(Numeric.Int) + histo = Numeric.add.reduce(Numeric.equal( + Numeric.arange(nbins)[:,Numeric.NewAxis], data), -1) + histo[-1] = histo[-1] + Numeric.add.reduce(Numeric.equal(nbins, data)) + bins = min + bin_width*(Numeric.arange(nbins)+0.5) + return Numeric.transpose(Numeric.array([bins, histo])) diff --git a/numpy/oldnumeric/setup.py b/numpy/oldnumeric/setup.py new file mode 100644 index 000000000..82e8a6201 --- /dev/null +++ b/numpy/oldnumeric/setup.py @@ -0,0 +1,8 @@ + +def configuration(parent_package='',top_path=None): + from numpy.distutils.misc_util import Configuration + return Configuration('oldnumeric',parent_package,top_path) + +if __name__ == '__main__': + from numpy.distutils.core import setup + setup(configuration=configuration) diff --git a/numpy/oldnumeric/tests/test_oldnumeric.py b/numpy/oldnumeric/tests/test_oldnumeric.py new file mode 100644 index 000000000..628ec231f --- /dev/null +++ b/numpy/oldnumeric/tests/test_oldnumeric.py @@ -0,0 +1,86 @@ +from numpy.testing import * + +from numpy import array +from numpy.oldnumeric import * +from numpy.core.numeric import float32, float64, complex64, complex128, int8, \ + int16, int32, int64, uint, uint8, uint16, uint32, uint64 + +class test_oldtypes(NumPyTestCase): + def check_oldtypes(self, level=1): + a1 = array([0,1,0], Float) + a2 = array([0,1,0], float) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Float8) + a2 = array([0,1,0], float) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Float16) + a2 = array([0,1,0], float) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Float32) + a2 = array([0,1,0], float32) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Float64) + a2 = array([0,1,0], float64) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Complex) + a2 = array([0,1,0], complex) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Complex8) + a2 = array([0,1,0], complex) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Complex16) + a2 = array([0,1,0], complex) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Complex32) + a2 = array([0,1,0], complex64) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Complex64) + a2 = array([0,1,0], complex128) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Int) + a2 = array([0,1,0], int) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Int8) + a2 = array([0,1,0], int8) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Int16) + a2 = array([0,1,0], int16) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Int32) + a2 = array([0,1,0], int32) + assert_array_equal(a1, a2) + a1 = array([0,1,0], Int64) + a2 = array([0,1,0], int64) + assert_array_equal(a1, a2) + a1 = array([0,1,0], UnsignedInt) + a2 = array([0,1,0], UnsignedInteger) + a3 = array([0,1,0], uint) + assert_array_equal(a1, a3) + assert_array_equal(a2, a3) + a1 = array([0,1,0], UInt8) + a2 = array([0,1,0], UnsignedInt8) + a3 = array([0,1,0], uint8) + assert_array_equal(a1, a3) + assert_array_equal(a2, a3) + a1 = array([0,1,0], UInt16) + a2 = array([0,1,0], UnsignedInt16) + a3 = array([0,1,0], uint16) + assert_array_equal(a1, a3) + assert_array_equal(a2, a3) + a1 = array([0,1,0], UInt32) + a2 = array([0,1,0], UnsignedInt32) + a3 = array([0,1,0], uint32) + assert_array_equal(a1, a3) + assert_array_equal(a2, a3) + a1 = array([0,1,0], UInt64) + a2 = array([0,1,0], UnsignedInt64) + a3 = array([0,1,0], uint64) + assert_array_equal(a1, a3) + assert_array_equal(a2, a3) + a1 = array([0,1,0], Bool) + a2 = array([0,1,0], bool) + assert_array_equal(a1, a2) + + +if __name__ == "__main__": + NumPyTest().run() diff --git a/numpy/oldnumeric/typeconv.py b/numpy/oldnumeric/typeconv.py new file mode 100644 index 000000000..1fbf1e072 --- /dev/null +++ b/numpy/oldnumeric/typeconv.py @@ -0,0 +1,60 @@ +__all__ = ['oldtype2dtype', 'convtypecode', 'convtypecode2', 'oldtypecodes'] + +import numpy as N + +oldtype2dtype = {'1': N.dtype(N.byte), + 's': N.dtype(N.short), +# 'i': N.dtype(N.intc), +# 'l': N.dtype(int), +# 'b': N.dtype(N.ubyte), + 'w': N.dtype(N.ushort), + 'u': N.dtype(N.uintc), +# 'f': N.dtype(N.single), +# 'd': N.dtype(float), +# 'F': N.dtype(N.csingle), +# 'D': N.dtype(complex), +# 'O': N.dtype(object), +# 'c': N.dtype('c'), + None:N.dtype(int) + } + +# converts typecode=None to int +def convtypecode(typecode, dtype=None): + if dtype is None: + try: + return oldtype2dtype[typecode] + except: + return N.dtype(typecode) + else: + return dtype + +#if both typecode and dtype are None +# return None +def convtypecode2(typecode, dtype=None): + if dtype is None: + if typecode is None: + return None + else: + try: + return oldtype2dtype[typecode] + except: + return N.dtype(typecode) + else: + return dtype + +_changedtypes = {'B': 'b', + 'b': '1', + 'h': 's', + 'H': 'w', + 'I': 'u'} + +class _oldtypecodes(dict): + def __getitem__(self, obj): + char = N.dtype(obj).char + try: + return _changedtypes[char] + except KeyError: + return char + + +oldtypecodes = _oldtypecodes() diff --git a/numpy/oldnumeric/ufuncs.py b/numpy/oldnumeric/ufuncs.py new file mode 100644 index 000000000..c26050f55 --- /dev/null +++ b/numpy/oldnumeric/ufuncs.py @@ -0,0 +1,19 @@ +__all__ = ['less', 'cosh', 'arcsinh', 'add', 'ceil', 'arctan2', 'floor_divide', + 'fmod', 'hypot', 'logical_and', 'power', 'sinh', 'remainder', 'cos', + 'equal', 'arccos', 'less_equal', 'divide', 'bitwise_or', + 'bitwise_and', 'logical_xor', 'log', 'subtract', 'invert', + 'negative', 'log10', 'arcsin', 'arctanh', 'logical_not', + 'not_equal', 'tanh', 'true_divide', 'maximum', 'arccosh', + 'logical_or', 'minimum', 'conjugate', 'tan', 'greater', + 'bitwise_xor', 'fabs', 'floor', 'sqrt', 'arctan', 'right_shift', + 'absolute', 'sin', 'multiply', 'greater_equal', 'left_shift', + 'exp', 'divide_safe'] + +from numpy import less, cosh, arcsinh, add, ceil, arctan2, floor_divide, \ + fmod, hypot, logical_and, power, sinh, remainder, cos, \ + equal, arccos, less_equal, divide, bitwise_or, bitwise_and, \ + logical_xor, log, subtract, invert, negative, log10, arcsin, \ + arctanh, logical_not, not_equal, tanh, true_divide, maximum, \ + arccosh, logical_or, minimum, conjugate, tan, greater, bitwise_xor, \ + fabs, floor, sqrt, arctan, right_shift, absolute, sin, \ + multiply, greater_equal, left_shift, exp, divide as divide_safe diff --git a/numpy/oldnumeric/user_array.py b/numpy/oldnumeric/user_array.py new file mode 100644 index 000000000..375c4013b --- /dev/null +++ b/numpy/oldnumeric/user_array.py @@ -0,0 +1,9 @@ + + +from numpy.oldnumeric import * +from numpy.lib.user_array import container as UserArray + +import numpy.oldnumeric as nold +__all__ = nold.__all__[:] +__all__ += ['UserArray'] +del nold |