summaryrefslogtreecommitdiff
path: root/numpy/polynomial/chebyshev.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/chebyshev.py')
-rw-r--r--numpy/polynomial/chebyshev.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index db1b637fd..6a2394382 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -98,7 +98,7 @@ __all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline',
'chebval', 'chebder', 'chebint', 'cheb2poly', 'poly2cheb',
'chebfromroots', 'chebvander', 'chebfit', 'chebtrim', 'chebroots',
'chebpts1', 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d',
- 'chebgrid2d', 'chebgrid3d', 'chebvander2d','chebvander3d',
+ 'chebgrid2d', 'chebgrid3d', 'chebvander2d', 'chebvander3d',
'chebcompanion', 'chebgauss', 'chebweight']
chebtrim = pu.trimcoef
@@ -439,7 +439,7 @@ def cheb2poly(c) :
#
# Chebyshev default domain.
-chebdomain = np.array([-1,1])
+chebdomain = np.array([-1, 1])
# Chebyshev coefficients representing zero.
chebzero = np.array([0])
@@ -448,7 +448,7 @@ chebzero = np.array([0])
chebone = np.array([1])
# Chebyshev coefficients representing the identity x.
-chebx = np.array([0,1])
+chebx = np.array([0, 1])
def chebline(off, scl) :
@@ -482,7 +482,7 @@ def chebline(off, scl) :
"""
if scl != 0 :
- return np.array([off,scl])
+ return np.array([off, scl])
else :
return np.array([off])
@@ -1523,7 +1523,7 @@ def chebvander2d(x, y, deg) :
vx = chebvander(x, degx)
vy = chebvander(y, degy)
- v = vx[..., None]*vy[..., None, :]
+ v = vx[..., None]*vy[..., None,:]
return v.reshape(v.shape[:-2] + (-1,))
@@ -1588,7 +1588,7 @@ def chebvander3d(x, y, z, deg) :
vx = chebvander(x, degx)
vy = chebvander(y, degy)
vz = chebvander(z, degz)
- v = vx[..., None, None]*vy[..., None, :, None]*vz[..., None, None, :]
+ v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
return v.reshape(v.shape[:-3] + (-1,))
@@ -1805,7 +1805,7 @@ def chebcompanion(c):
top[0] = np.sqrt(.5)
top[1:] = 1/2
bot[...] = top
- mat[:,-1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
+ mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
return mat