diff options
Diffstat (limited to 'numpy/polynomial/chebyshev.py')
-rw-r--r-- | numpy/polynomial/chebyshev.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index db1b637fd..6a2394382 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -98,7 +98,7 @@ __all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebval', 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots', 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1', 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', - 'chebgrid2d', 'chebgrid3d', 'chebvander2d','chebvander3d', + 'chebgrid2d', 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion', 'chebgauss', 'chebweight'] chebtrim = pu.trimcoef @@ -439,7 +439,7 @@ def cheb2poly(c) : # # Chebyshev default domain. -chebdomain = np.array([-1,1]) +chebdomain = np.array([-1, 1]) # Chebyshev coefficients representing zero. chebzero = np.array([0]) @@ -448,7 +448,7 @@ chebzero = np.array([0]) chebone = np.array([1]) # Chebyshev coefficients representing the identity x. -chebx = np.array([0,1]) +chebx = np.array([0, 1]) def chebline(off, scl) : @@ -482,7 +482,7 @@ def chebline(off, scl) : """ if scl != 0 : - return np.array([off,scl]) + return np.array([off, scl]) else : return np.array([off]) @@ -1523,7 +1523,7 @@ def chebvander2d(x, y, deg) : vx = chebvander(x, degx) vy = chebvander(y, degy) - v = vx[..., None]*vy[..., None, :] + v = vx[..., None]*vy[..., None,:] return v.reshape(v.shape[:-2] + (-1,)) @@ -1588,7 +1588,7 @@ def chebvander3d(x, y, z, deg) : vx = chebvander(x, degx) vy = chebvander(y, degy) vz = chebvander(z, degz) - v = vx[..., None, None]*vy[..., None, :, None]*vz[..., None, None, :] + v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:] return v.reshape(v.shape[:-3] + (-1,)) @@ -1805,7 +1805,7 @@ def chebcompanion(c): top[0] = np.sqrt(.5) top[1:] = 1/2 bot[...] = top - mat[:,-1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5 + mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5 return mat |