summaryrefslogtreecommitdiff
path: root/numpy/polynomial/hermite.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/hermite.py')
-rw-r--r--numpy/polynomial/hermite.py258
1 files changed, 222 insertions, 36 deletions
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index 68713d83a..2fd28a3ff 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -22,6 +22,10 @@ Arithmetic
- `hermmul` -- multiply two Hermite series.
- `hermdiv` -- divide one Hermite series by another.
- `hermval` -- evaluate a Hermite series at given points.
+- `hermval2d` -- evaluate a 2D Hermite series at given points.
+- `hermval3d` -- evaluate a 3D Hermite series at given points.
+- `hermgrid2d` -- evaluate a 2D Hermite series on a Cartesian product.
+- `hermgrid3d` -- evaluate a 3D Hermite series on a Cartesian product.
Calculus
--------
@@ -50,17 +54,18 @@ See also
"""
from __future__ import division
-__all__ = ['hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline',
- 'hermadd', 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermval',
- 'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
- 'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite']
-
import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate
+__all__ = ['hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline',
+ 'hermadd', 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow',
+ 'hermval', 'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d',
+ 'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
+ 'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite']
+
hermtrim = pu.trimcoef
@@ -795,36 +800,59 @@ def hermint(cs, m=1, k=[], lbnd=0, scl=1):
return cs
-def hermval(x, cs):
- """Evaluate a Hermite series.
+def hermval(x, c, tensor=True):
+ """
+ Evaluate a Hermite series.
+
+ If `c` is of length ``n + 1``, this function returns the value:
- If `cs` is of length `n`, this function returns :
+ ``p(x) = c[0]*H_0(x) + c[1]*H_1(x) + ... + c[n]*H_n(x)``
- ``p(x) = cs[0]*P_0(x) + cs[1]*P_1(x) + ... + cs[n-1]*P_{n-1}(x)``
+ If `x` is a sequence or array and `c` is 1 dimensional, then ``p(x)``
+ will have the same shape as `x`. If `x` is a algebra_like object that
+ supports multiplication and addition with itself and the values in `c`,
+ then an object of the same type is returned.
- If x is a sequence or array then p(x) will have the same shape as x.
- If r is a ring_like object that supports multiplication and addition
- by the values in `cs`, then an object of the same type is returned.
+ In the case where c is multidimensional, the shape of the result
+ depends on the value of `tensor`. If tensor is true the shape of the
+ return will be ``c.shape[1:] + x.shape``, where the shape of a scalar
+ is the empty tuple. If tensor is false the shape is ``c.shape[1:]`` if
+ `x` is broadcast compatible with that.
+
+ If there are trailing zeros in the coefficients they still take part in
+ the evaluation, so they should be avoided if efficiency is a concern.
Parameters
----------
- x : array_like, ring_like
- Array of numbers or objects that support multiplication and
- addition with themselves and with the elements of `cs`.
- cs : array_like
- 1-d array of Hermite coefficients ordered from low to high.
+ x : array_like, algebra_like
+ If x is a list or tuple, it is converted to an ndarray. Otherwise
+ it is left unchanged and if it isn't an ndarray it is treated as a
+ scalar. In either case, `x` or any element of an ndarray must
+ support addition and multiplication with itself and the elements of
+ `c`.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree n are contained in ``c[n]``. If `c` is multidimesional the
+ remaining indices enumerate multiple Hermite series. In the two
+ dimensional case the coefficients may be thought of as stored in
+ the columns of `c`.
+ tensor : boolean, optional
+ If true, the coefficient array shape is extended with ones on the
+ right, one for each dimension of `x`. Scalars are treated as having
+ dimension 0 for this action. The effect is that every column of
+ coefficients in `c` is evaluated for every value in `x`. If False,
+ the `x` are broadcast over the columns of `c` in the usual way.
+ This gives some flexibility in evaluations in the multidimensional
+ case. The default value it ``True``.
Returns
-------
- values : ndarray, ring_like
- If the return is an ndarray then it has the same shape as `x`.
+ values : ndarray, algebra_like
+ The shape of the return value is described above.
See Also
--------
- hermfit
-
- Examples
- --------
+ hermval2d, hermgrid2d, hermval3d, hermgrid3d
Notes
-----
@@ -841,30 +869,188 @@ def hermval(x, cs):
[ 115., 203.]])
"""
- # cs is a trimmed copy
- [cs] = pu.as_series([cs])
- if isinstance(x, tuple) or isinstance(x, list) :
+ c = np.array(c, ndmin=1, copy=0)
+ if c.dtype.char not in 'efdgFDGO':
+ c = c + 0.0
+ if isinstance(x, (tuple, list)):
x = np.asarray(x)
+ if isinstance(x, np.ndarray) and tensor:
+ c = c.reshape(c.shape + (1,)*x.ndim)
x2 = x*2
- if len(cs) == 1 :
- c0 = cs[0]
+ if len(c) == 1 :
+ c0 = c[0]
c1 = 0
- elif len(cs) == 2 :
- c0 = cs[0]
- c1 = cs[1]
+ elif len(c) == 2 :
+ c0 = c[0]
+ c1 = c[1]
else :
- nd = len(cs)
- c0 = cs[-2]
- c1 = cs[-1]
- for i in range(3, len(cs) + 1) :
+ nd = len(c)
+ c0 = c[-2]
+ c1 = c[-1]
+ for i in range(3, len(c) + 1) :
tmp = c0
nd = nd - 1
- c0 = cs[-i] - c1*(2*(nd - 1))
+ c0 = c[-i] - c1*(2*(nd - 1))
c1 = tmp + c1*x2
return c0 + c1*x2
+def hermval2d(x, y, c):
+ """
+ Evaluate 2D Hermite series at points (x,y).
+
+ This function returns the values:
+
+ ``p(x,y) = \sum_{i,j} c[i,j] * H_i(x) * H_j(y)``
+
+ Parameters
+ ----------
+ x,y : array_like, algebra_like
+ The two dimensional Hermite seres is evaluated at the points
+ ``(x,y)``, where `x` and `y` must have the same shape. If `x` or
+ `y` is a list or tuple, it is first converted to an ndarray.
+ Otherwise it is left unchanged and if it isn't an ndarray it is
+ treated as a scalar. See `hermval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the two dimensional Hermite series at points formed
+ from pairs of corresponding values from `x` and `y`.
+
+ See Also
+ --------
+ hermval, hermgrid2d, hermval3d, hermgrid3d
+
+ """
+ return hermval(y, hermval(x, c), False)
+
+
+def hermgrid2d(x, y, c):
+ """
+ Evaluate 2D Hermite series on the Cartesion product of x,y.
+
+ This function returns the values:
+
+ ``p(a,b) = \sum_{i,j} c[i,j] * H_i(a) * H_j(b)``
+
+ where the points ``(a,b)`` consist of all pairs of points formed by
+ taking ``a`` from `x` and ``b`` from `y`. The resulting points form a
+ grid with `x` in the first dimension and `y` in the second.
+
+ Parameters
+ ----------
+ x,y : array_like, algebra_like
+ The two dimensional Hermite series is evaluated at the points in
+ the Cartesian product of `x` and `y`. If `x` or `y` is a list or
+ tuple, it is first converted to an ndarray, Otherwise it is left
+ unchanged and if it isn't an ndarray it is treated as a scalar. See
+ `hermval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the two dimensional Hermite series at points in the
+ Cartesion product of `x` and `y`.
+
+ See Also
+ --------
+ hermval, hermval2d, hermval3d, hermgrid3d
+
+ """
+ return hermval(y, hermval(x, c))
+
+
+def hermval3d(x, y, z, c):
+ """
+ Evaluate 3D Hermite series at points (x,y,z).
+
+ This function returns the values:
+
+ ``p(x,y,z) = \sum_{i,j,k} c[i,j,k] * H_i(x) * H_j(y) * H_k(z)``
+
+ Parameters
+ ----------
+ x,y,z : array_like, algebra_like
+ The three dimensional Hermite seres is evaluated at the points
+ ``(x,y,z)``, where `x`, `y`, and `z` must have the same shape. If
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
+ to an ndarray. Otherwise it is left unchanged and if it isn't an
+ ndarray it is treated as a scalar. See `hermval` for explanation of
+ algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the three dimensional Hermite series at points formed
+ from triples of corresponding values from `x`, `y`, and `z`.
+
+ See Also
+ --------
+ hermval, hermval2d, hermgrid2d, hermgrid3d
+
+ """
+ return hermval(z, hermval2d(x, y, c), False)
+
+
+def hermgrid3d(x, y, z, c):
+ """
+ Evaluate 3D Hermite series on the Cartesian product of x,y,z.
+
+ This function returns the values:
+
+ ``p(a,b,c) = \sum_{i,j,k} c[i,j,k] * H_i(a) * H_j(b) * H_k(c)``
+
+ where the points ``(a,b,c)`` consist of all triples formed by taking
+ ``a`` from `x`, ``b`` from `y`, and ``c`` from `z`. The resulting
+ points form a grid with `x` in the first dimension, `y` in the second,
+ and `z` in the third.
+
+ Parameters
+ ----------
+ x,y,z : array_like, algebra_like
+ The three dimensional Hermite seres is evaluated at the points
+ in the cartesian product of `x`, `y`, and `z`
+ ``(x,y,z)``, where `x` and `y` must have the same shape. If `x` or
+ `y` is a list or tuple, it is first converted to an ndarray,
+ otherwise it is left unchanged and treated as a scalar. See
+ `hermval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the three dimensional Hermite series at points formed
+ from triples of corresponding values from `x`, `y`, and `z`.
+
+ See Also
+ --------
+ hermval, hermval2d, hermgrid2d, hermval3d
+
+ """
+ return hermval(z, hermgrid2d(x, y, c))
+
+
def hermvander(x, deg) :
"""Vandermonde matrix of given degree.