summaryrefslogtreecommitdiff
path: root/numpy/polynomial/hermite.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/hermite.py')
-rw-r--r--numpy/polynomial/hermite.py93
1 files changed, 92 insertions, 1 deletions
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index 5babfb7b1..58cc655d7 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -39,6 +39,9 @@ Misc Functions
- `hermvander` -- Vandermonde-like matrix for Hermite polynomials.
- `hermvander2d` -- Vandermonde-like matrix for 2D power series.
- `hermvander3d` -- Vandermonde-like matrix for 3D power series.
+- `hermgauss` -- Gauss-Hermite quadrature, points and weights.
+- `hermweight` -- Hermite weight function.
+- `hermcompanion` -- symmetrized companion matrix in Hermite form.
- `hermfit` -- least-squares fit returning a Hermite series.
- `hermtrim` -- trim leading coefficients from a Hermite series.
- `hermline` -- Hermite series of given straight line.
@@ -67,7 +70,8 @@ __all__ = ['hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline',
'hermval', 'hermder', 'hermint', 'herm2poly', 'poly2herm',
'hermfromroots', 'hermvander', 'hermfit', 'hermtrim', 'hermroots',
'Hermite', 'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d',
- 'hermvander2d', 'hermvander3d']
+ 'hermvander2d', 'hermvander3d', 'hermcompanion', 'hermgauss',
+ 'hermweight']
hermtrim = pu.trimcoef
@@ -1507,6 +1511,93 @@ def hermroots(cs):
return r
+def hermgauss(deg):
+ """Gauss Hermite quadrature.
+
+ Computes the sample points and weights for Gauss-Hermite quadrature.
+ These sample points and weights will correctly integrate polynomials of
+ degree ``2*deg - 1`` or less over the interval ``[-inf, inf]`` with the
+ weight function ``f(x) = exp(-x**2)``.
+
+ Parameters
+ ----------
+ deg : int
+ Number of sample points and weights. It must be >= 1.
+
+ Returns
+ -------
+ x : ndarray
+ 1-D ndarray containing the sample points.
+ y : ndarray
+ 1-D ndarray containing the weights.
+
+ Notes
+ -----
+ The results have only been tested up to degree 100. Higher degrees may
+ be problematic. The weights are determined by using the fact that
+
+ w = c / (H'_n(x_k) * H_{n-1}(x_k))
+
+ where ``c`` is a constant independent of ``k`` and ``x_k`` is the k'th
+ root of ``H_n``, and then scaling the results to get the right value
+ when integrating 1.
+
+ """
+ ideg = int(deg)
+ if ideg != deg or ideg < 1:
+ raise ValueError("deg must be a non-negative integer")
+
+ # first approximation of roots. We use the fact that the companion
+ # matrix is symmetric in this case in order to obtain better zeros.
+ c = np.array([0]*deg + [1])
+ m = hermcompanion(c)
+ x = la.eigvals(m)
+ x.sort()
+
+ # improve roots by one application of Newton
+ dy = hermval(x, c)
+ df = hermval(x, hermder(c))
+ x -= dy/df
+
+ # compute the weights. We scale the factor to avoid possible numerical
+ # overflow.
+ fm = hermval(x, c[1:])
+ fm /= np.abs(fm).max()
+ df /= np.abs(df).max()
+ w = 1/(fm * df)
+
+ # for Hermite we can also symmetrize
+ w = (w + w[::-1])/2
+ x = (x - x[::-1])/2
+
+ # scale w to get the right value
+ w *= np.sqrt(np.pi) / w.sum()
+
+ return x, w
+
+
+def hermweight(x):
+ """Weight function of the Hermite polynomials.
+
+ The weight function for which the Hermite polynomials are orthogonal.
+ In this case the weight function is ``exp(-x**2)``. Note that the
+ Hermite polynomials are not normalized.
+
+ Parameters
+ ----------
+ x : array_like
+ Values at which the weight function will be computed.
+
+ Returns
+ -------
+ w : ndarray
+ The weight function at `x`.
+
+ """
+ w = np.exp(-x**2)
+ return w
+
+
#
# Hermite series class
#