diff options
Diffstat (limited to 'numpy/polynomial/laguerre.py')
-rw-r--r-- | numpy/polynomial/laguerre.py | 1146 |
1 files changed, 1146 insertions, 0 deletions
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py new file mode 100644 index 000000000..b6389bf63 --- /dev/null +++ b/numpy/polynomial/laguerre.py @@ -0,0 +1,1146 @@ +""" +Objects for dealing with Laguerre series. + +This module provides a number of objects (mostly functions) useful for +dealing with Laguerre series, including a `Laguerre` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Constants +--------- +- `lagdomain` -- Laguerre series default domain, [-1,1]. +- `lagzero` -- Laguerre series that evaluates identically to 0. +- `lagone` -- Laguerre series that evaluates identically to 1. +- `lagx` -- Laguerre series for the identity map, ``f(x) = x``. + +Arithmetic +---------- +- `lagmulx` -- multiply a Laguerre series in ``P_i(x)`` by ``x``. +- `lagadd` -- add two Laguerre series. +- `lagsub` -- subtract one Laguerre series from another. +- `lagmul` -- multiply two Laguerre series. +- `lagdiv` -- divide one Laguerre series by another. +- `lagval` -- evaluate a Laguerre series at given points. + +Calculus +-------- +- `lagder` -- differentiate a Laguerre series. +- `lagint` -- integrate a Laguerre series. + +Misc Functions +-------------- +- `lagfromroots` -- create a Laguerre series with specified roots. +- `lagroots` -- find the roots of a Laguerre series. +- `lagvander` -- Vandermonde-like matrix for Laguerre polynomials. +- `lagfit` -- least-squares fit returning a Laguerre series. +- `lagtrim` -- trim leading coefficients from a Laguerre series. +- `lagline` -- Laguerre series of given straight line. +- `lag2poly` -- convert a Laguerre series to a polynomial. +- `poly2lag` -- convert a polynomial to a Laguerre series. + +Classes +------- +- `Laguerre` -- A Laguerre series class. + +See also +-------- +`numpy.polynomial` + +""" +from __future__ import division + +__all__ = ['lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', + 'lagadd', 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagval', + 'lagder', 'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', + 'lagvander', 'lagfit', 'lagtrim', 'lagroots', 'Laguerre'] + +import numpy as np +import numpy.linalg as la +import polyutils as pu +import warnings +from polytemplate import polytemplate + +lagtrim = pu.trimcoef + +def poly2lag(pol) : + """ + poly2lag(pol) + + Convert a polynomial to a Laguerre series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Laguerre series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-d array containing the polynomial coefficients + + Returns + ------- + cs : ndarray + 1-d array containing the coefficients of the equivalent Laguerre + series. + + See Also + -------- + lag2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.laguerre import poly2lag + >>> poly2lag(np.arange(4)) + array([ 23., -63., 58., -18.]) + + """ + [pol] = pu.as_series([pol]) + deg = len(pol) - 1 + res = 0 + for i in range(deg, -1, -1) : + res = lagadd(lagmulx(res), pol[i]) + return res + + +def lag2poly(cs) : + """ + Convert a Laguerre series to a polynomial. + + Convert an array representing the coefficients of a Laguerre series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + cs : array_like + 1-d array containing the Laguerre series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-d array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2lag + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lag2poly + >>> lag2poly([ 23., -63., 58., -18.]) + array([ 0., 1., 2., 3.]) + + """ + from polynomial import polyadd, polysub, polymulx + + [cs] = pu.as_series([cs]) + n = len(cs) + if n == 1: + return cs + else: + c0 = cs[-2] + c1 = cs[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(cs[i - 2], (c1*(i - 1))/i) + c1 = polyadd(tmp, polysub((2*i - 1)*c1, polymulx(c1))/i) + return polyadd(c0, polysub(c1, polymulx(c1))) + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Laguerre +lagdomain = np.array([0,1]) + +# Laguerre coefficients representing zero. +lagzero = np.array([0]) + +# Laguerre coefficients representing one. +lagone = np.array([1]) + +# Laguerre coefficients representing the identity x. +lagx = np.array([1, -1]) + + +def lagline(off, scl) : + """ + Laguerre series whose graph is a straight line. + + + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Laguerre series for + ``off + scl*x``. + + See Also + -------- + polyline, chebline + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagline, lagval + >>> lagval(0,lagline(3, 2)) + 3.0 + >>> lagval(1,lagline(3, 2)) + 5.0 + + """ + if scl != 0 : + return np.array([off + scl, -scl]) + else : + return np.array([off]) + + +def lagfromroots(roots) : + """ + Generate a Laguerre series with the given roots. + + Return the array of coefficients for the P-series whose roots (a.k.a. + "zeros") are given by *roots*. The returned array of coefficients is + ordered from lowest order "term" to highest, and zeros of multiplicity + greater than one must be included in *roots* a number of times equal + to their multiplicity (e.g., if `2` is a root of multiplicity three, + then [2,2,2] must be in *roots*). + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-d array of the Laguerre series coefficients, ordered from low to + high. If all roots are real, ``out.dtype`` is a float type; + otherwise, ``out.dtype`` is a complex type, even if all the + coefficients in the result are real (see Examples below). + + See Also + -------- + polyfromroots, chebfromroots + + Notes + ----- + What is returned are the :math:`c_i` such that: + + .. math:: + + \\sum_{i=0}^{n} c_i*P_i(x) = \\prod_{i=0}^{n} (x - roots[i]) + + where ``n == len(roots)`` and :math:`P_i(x)` is the `i`-th Laguerre + (basis) polynomial over the domain `[-1,1]`. Note that, unlike + `polyfromroots`, due to the nature of the Laguerre basis set, the + above identity *does not* imply :math:`c_n = 1` identically (see + Examples). + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagfromroots, lagval + >>> coef = lagfromroots((-1, 0, 1)) + >>> lagval((-1, 0, 1), coef) + array([ 0., 0., 0.]) + >>> coef = lagfromroots((-1j, 1j)) + >>> lagval((-1j, 1j), coef) + array([ 0.+0.j, 0.+0.j]) + + """ + if len(roots) == 0 : + return np.ones(1) + else : + [roots] = pu.as_series([roots], trim=False) + prd = np.array([1], dtype=roots.dtype) + for r in roots: + prd = lagsub(lagmulx(prd), r*prd) + return prd + + +def lagadd(c1, c2): + """ + Add one Laguerre series to another. + + Returns the sum of two Laguerre series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-d arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Laguerre series of their sum. + + See Also + -------- + lagsub, lagmul, lagdiv, lagpow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Laguerre series + is a Laguerre series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagadd + >>> lagadd([1, 2, 3], [1, 2, 3, 4]) + array([ 2., 4., 6., 4.]) + + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + if len(c1) > len(c2) : + c1[:c2.size] += c2 + ret = c1 + else : + c2[:c1.size] += c1 + ret = c2 + return pu.trimseq(ret) + + +def lagsub(c1, c2): + """ + Subtract one Laguerre series from another. + + Returns the difference of two Laguerre series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-d arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Laguerre series coefficients representing their difference. + + See Also + -------- + lagadd, lagmul, lagdiv, lagpow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Laguerre + series is a Laguerre series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagsub + >>> lagsub([1, 2, 3, 4], [1, 2, 3]) + array([ 0., 0., 0., 4.]) + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + if len(c1) > len(c2) : + c1[:c2.size] -= c2 + ret = c1 + else : + c2 = -c2 + c2[:c1.size] += c1 + ret = c2 + return pu.trimseq(ret) + + +def lagmulx(cs): + """Multiply a Laguerre series by x. + + Multiply the Laguerre series `cs` by x, where x is the independent + variable. + + + Parameters + ---------- + cs : array_like + 1-d array of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + Notes + ----- + The multiplication uses the recursion relationship for Laguerre + polynomials in the form + + .. math:: + + xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x)) + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagmulx + >>> lagmulx([1, 2, 3]) + array([ -1., -1., 11., -9.]) + + """ + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + # The zero series needs special treatment + if len(cs) == 1 and cs[0] == 0: + return cs + + prd = np.empty(len(cs) + 1, dtype=cs.dtype) + prd[0] = cs[0] + prd[1] = -cs[0] + for i in range(1, len(cs)): + prd[i + 1] = -cs[i]*(i + 1) + prd[i] += cs[i]*(2*i + 1) + prd[i - 1] -= cs[i]*i + return prd + + +def lagmul(c1, c2): + """ + Multiply one Laguerre series by another. + + Returns the product of two Laguerre series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-d arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Laguerre series coefficients representing their product. + + See Also + -------- + lagadd, lagsub, lagdiv, lagpow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Laguerre polynomial basis set. Thus, to express + the product as a Laguerre series, it is necessary to "re-project" the + product onto said basis set, which may produce "un-intuitive" (but + correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagmul + >>> lagmul([1, 2, 3], [0, 1, 2]) + array([ 8., -13., 38., -51., 36.]) + + """ + # s1, s2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + + if len(c1) > len(c2): + cs = c2 + xs = c1 + else: + cs = c1 + xs = c2 + + if len(cs) == 1: + c0 = cs[0]*xs + c1 = 0 + elif len(cs) == 2: + c0 = cs[0]*xs + c1 = cs[1]*xs + else : + nd = len(cs) + c0 = cs[-2]*xs + c1 = cs[-1]*xs + for i in range(3, len(cs) + 1) : + tmp = c0 + nd = nd - 1 + c0 = lagsub(cs[-i]*xs, (c1*(nd - 1))/nd) + c1 = lagadd(tmp, lagsub((2*nd - 1)*c1, lagmulx(c1))/nd) + return lagadd(c0, lagsub(c1, lagmulx(c1))) + + +def lagdiv(c1, c2): + """ + Divide one Laguerre series by another. + + Returns the quotient-with-remainder of two Laguerre series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-d arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + [quo, rem] : ndarrays + Of Laguerre series coefficients representing the quotient and + remainder. + + See Also + -------- + lagadd, lagsub, lagmul, lagpow + + Notes + ----- + In general, the (polynomial) division of one Laguerre series by another + results in quotient and remainder terms that are not in the Laguerre + polynomial basis set. Thus, to express these results as a Laguerre + series, it is necessary to "re-project" the results onto the Laguerre + basis set, which may produce "un-intuitive" (but correct) results; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagdiv + >>> lagdiv([ 8., -13., 38., -51., 36.], [0, 1, 2]) + (array([ 1., 2., 3.]), array([ 0.])) + >>> lagdiv([ 9., -12., 38., -51., 36.], [0, 1, 2]) + (array([ 1., 2., 3.]), array([ 1., 1.])) + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + if c2[-1] == 0 : + raise ZeroDivisionError() + + lc1 = len(c1) + lc2 = len(c2) + if lc1 < lc2 : + return c1[:1]*0, c1 + elif lc2 == 1 : + return c1/c2[-1], c1[:1]*0 + else : + quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype) + rem = c1 + for i in range(lc1 - lc2, - 1, -1): + p = lagmul([0]*i + [1], c2) + q = rem[-1]/p[-1] + rem = rem[:-1] - q*p[:-1] + quo[i] = q + return quo, pu.trimseq(rem) + + +def lagpow(cs, pow, maxpower=16) : + """Raise a Laguerre series to a power. + + Returns the Laguerre series `cs` raised to the power `pow`. The + arguement `cs` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` + + Parameters + ---------- + cs : array_like + 1d array of Laguerre series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to umanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Laguerre series of power. + + See Also + -------- + lagadd, lagsub, lagmul, lagdiv + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagpow + >>> lagpow([1, 2, 3], 2) + array([ 14., -16., 56., -72., 54.]) + + """ + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + power = int(pow) + if power != pow or power < 0 : + raise ValueError("Power must be a non-negative integer.") + elif maxpower is not None and power > maxpower : + raise ValueError("Power is too large") + elif power == 0 : + return np.array([1], dtype=cs.dtype) + elif power == 1 : + return cs + else : + # This can be made more efficient by using powers of two + # in the usual way. + prd = cs + for i in range(2, power + 1) : + prd = lagmul(prd, cs) + return prd + + +def lagder(cs, m=1, scl=1) : + """ + Differentiate a Laguerre series. + + Returns the series `cs` differentiated `m` times. At each iteration the + result is multiplied by `scl` (the scaling factor is for use in a linear + change of variable). The argument `cs` is the sequence of coefficients + from lowest order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + cs: array_like + 1-d array of Laguerre series coefficients ordered from low to high. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + + Returns + ------- + der : ndarray + Laguerre series of the derivative. + + See Also + -------- + lagint + + Notes + ----- + In general, the result of differentiating a Laguerre series does not + resemble the same operation on a power series. Thus the result of this + function may be "un-intuitive," albeit correct; see Examples section + below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagder + >>> lagder([ 1., 1., 1., -3.]) + array([ 1., 2., 3.]) + >>> lagder([ 1., 0., 0., -4., 3.], m=2) + array([ 1., 2., 3.]) + + """ + cnt = int(m) + + if cnt != m: + raise ValueError, "The order of derivation must be integer" + if cnt < 0 : + raise ValueError, "The order of derivation must be non-negative" + + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + if cnt == 0: + return cs + elif cnt >= len(cs): + return cs[:1]*0 + else : + for i in range(cnt): + n = len(cs) - 1 + cs *= scl + der = np.empty(n, dtype=cs.dtype) + for j in range(n, 0, -1): + der[j - 1] = -cs[j] + cs[j - 1] += cs[j] + cs = der + return cs + + +def lagint(cs, m=1, k=[], lbnd=0, scl=1): + """ + Integrate a Laguerre series. + + Returns a Laguerre series that is the Laguerre series `cs`, integrated + `m` times from `lbnd` to `x`. At each iteration the resulting series + is **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `cs` is a sequence of + coefficients, from lowest order Laguerre series "term" to highest, + e.g., [1,2,3] represents the series :math:`P_0(x) + 2P_1(x) + 3P_2(x)`. + + Parameters + ---------- + cs : array_like + 1-d array of Laguerre series coefficients, ordered from low to high. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at + ``lbnd`` is the first value in the list, the value of the second + integral at ``lbnd`` is the second value, etc. If ``k == []`` (the + default), all constants are set to zero. If ``m == 1``, a single + scalar can be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + + Returns + ------- + S : ndarray + Laguerre series coefficients of the integral. + + Raises + ------ + ValueError + If ``m < 0``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or + ``np.isscalar(scl) == False``. + + See Also + -------- + lagder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a` + - perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "re-projected" onto the C-series basis set. Thus, typically, + the result of this function is "un-intuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagint + >>> lagint([1,2,3]) + array([ 1., 1., 1., -3.]) + >>> lagint([1,2,3], m=2) + array([ 1., 0., 0., -4., 3.]) + >>> lagint([1,2,3], k=1) + array([ 2., 1., 1., -3.]) + >>> lagint([1,2,3], lbnd=-1) + array([ 11.5, 1. , 1. , -3. ]) + >>> lagint([1,2], m=2, k=[1,2], lbnd=-1) + array([ 11.16666667, -5. , -3. , 2. ]) + + """ + cnt = int(m) + if np.isscalar(k) : + k = [k] + + if cnt != m: + raise ValueError, "The order of integration must be integer" + if cnt < 0 : + raise ValueError, "The order of integration must be non-negative" + if len(k) > cnt : + raise ValueError, "Too many integration constants" + + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + if cnt == 0: + return cs + + k = list(k) + [0]*(cnt - len(k)) + for i in range(cnt) : + n = len(cs) + cs *= scl + if n == 1 and cs[0] == 0: + cs[0] += k[i] + else: + tmp = np.empty(n + 1, dtype=cs.dtype) + tmp[0] = cs[0] + tmp[1] = -cs[0] + for j in range(1, n): + tmp[j] += cs[j] + tmp[j + 1] = -cs[j] + tmp[0] += k[i] - lagval(lbnd, tmp) + cs = tmp + return cs + + +def lagval(x, cs): + """Evaluate a Laguerre series. + + If `cs` is of length `n`, this function returns : + + ``p(x) = cs[0]*P_0(x) + cs[1]*P_1(x) + ... + cs[n-1]*P_{n-1}(x)`` + + If x is a sequence or array then p(x) will have the same shape as x. + If r is a ring_like object that supports multiplication and addition + by the values in `cs`, then an object of the same type is returned. + + Parameters + ---------- + x : array_like, ring_like + Array of numbers or objects that support multiplication and + addition with themselves and with the elements of `cs`. + cs : array_like + 1-d array of Laguerre coefficients ordered from low to high. + + Returns + ------- + values : ndarray, ring_like + If the return is an ndarray then it has the same shape as `x`. + + See Also + -------- + lagfit + + Examples + -------- + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagval + >>> coef = [1,2,3] + >>> lagval(1, coef) + -0.5 + >>> lagval([[1,2],[3,4]], coef) + array([[-0.5, -4. ], + [-4.5, -2. ]]) + + """ + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + if isinstance(x, tuple) or isinstance(x, list) : + x = np.asarray(x) + + if len(cs) == 1 : + c0 = cs[0] + c1 = 0 + elif len(cs) == 2 : + c0 = cs[0] + c1 = cs[1] + else : + nd = len(cs) + c0 = cs[-2] + c1 = cs[-1] + for i in range(3, len(cs) + 1) : + tmp = c0 + nd = nd - 1 + c0 = cs[-i] - (c1*(nd - 1))/nd + c1 = tmp + (c1*((2*nd - 1) - x))/nd + return c0 + c1*(1 - x) + + +def lagvander(x, deg) : + """Vandermonde matrix of given degree. + + Returns the Vandermonde matrix of degree `deg` and sample points `x`. + This isn't a true Vandermonde matrix because `x` can be an arbitrary + ndarray and the Laguerre polynomials aren't powers. If ``V`` is the + returned matrix and `x` is a 2d array, then the elements of ``V`` are + ``V[i,j,k] = P_k(x[i,j])``, where ``P_k`` is the Laguerre polynomial + of degree ``k``. + + Parameters + ---------- + x : array_like + Array of points. The values are converted to double or complex + doubles. If x is scalar it is converted to a 1D array. + deg : integer + Degree of the resulting matrix. + + Returns + ------- + vander : Vandermonde matrix. + The shape of the returned matrix is ``x.shape + (deg+1,)``. The last + index is the degree. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagvander + >>> x = np.array([0, 1, 2]) + >>> lagvander(x, 3) + array([[ 1. , 1. , 1. , 1. ], + [ 1. , 0. , -0.5 , -0.66666667], + [ 1. , -1. , -1. , -0.33333333]]) + + """ + ideg = int(deg) + if ideg != deg: + raise ValueError("deg must be integer") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=0, ndmin=1) + 0.0 + v = np.empty((ideg + 1,) + x.shape, dtype=x.dtype) + v[0] = x*0 + 1 + if ideg > 0 : + v[1] = 1 - x + for i in range(2, ideg + 1) : + v[i] = (v[i-1]*(2*i - 1 - x) - v[i-2]*(i - 1))/i + return np.rollaxis(v, 0, v.ndim) + + +def lagfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Laguerre series to data. + + Fit a Laguerre series ``p(x) = p[0] * P_{0}(x) + ... + p[deg] * + P_{deg}(x)`` of degree `deg` to points `(x, y)`. Returns a vector of + coefficients `p` that minimises the squared error. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int + Degree of the fitting polynomial + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the contribution of each point + ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the + weights are chosen so that the errors of the products ``w[i]*y[i]`` + all have the same variance. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Laguerre coefficients ordered from low to high. If `y` was 2-D, + the coefficients for the data in column k of `y` are in column + `k`. + + [residuals, rank, singular_values, rcond] : present when `full` = True + Residuals of the least-squares fit, the effective rank of the + scaled Vandermonde matrix and its singular values, and the + specified value of `rcond`. For more details, see `linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if `full` = False. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', RankWarning) + + See Also + -------- + lagval : Evaluates a Laguerre series. + lagvander : Vandermonde matrix of Laguerre series. + polyfit : least squares fit using polynomials. + chebfit : least squares fit using Chebyshev series. + linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution are the coefficients ``c[i]`` of the Laguerre series + ``P(x)`` that minimizes the squared error + + ``E = \\sum_j |y_j - P(x_j)|^2``. + + This problem is solved by setting up as the overdetermined matrix + equation + + ``V(x)*c = y``, + + where ``V`` is the Vandermonde matrix of `x`, the elements of ``c`` are + the coefficients to be solved for, and the elements of `y` are the + observed values. This equation is then solved using the singular value + decomposition of ``V``. + + If some of the singular values of ``V`` are so small that they are + neglected, then a `RankWarning` will be issued. This means that the + coeficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using Laguerre series are usually better conditioned than fits + using power series, but much can depend on the distribution of the + sample points and the smoothness of the data. If the quality of the fit + is inadequate splines may be a good alternative. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + http://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagfit, lagval + >>> x = np.linspace(0, 10) + >>> err = np.random.randn(len(x))/10 + >>> y = lagval(x, [1, 2, 3]) + err + >>> lagfit(x, y, 2) + array([ 0.96971004, 2.00193749, 3.00288744]) + + """ + order = int(deg) + 1 + x = np.asarray(x) + 0.0 + y = np.asarray(y) + 0.0 + + # check arguments. + if deg < 0 : + raise ValueError, "expected deg >= 0" + if x.ndim != 1: + raise TypeError, "expected 1D vector for x" + if x.size == 0: + raise TypeError, "expected non-empty vector for x" + if y.ndim < 1 or y.ndim > 2 : + raise TypeError, "expected 1D or 2D array for y" + if len(x) != len(y): + raise TypeError, "expected x and y to have same length" + + # set up the least squares matrices + lhs = lagvander(x, deg) + rhs = y + if w is not None: + w = np.asarray(w) + 0.0 + if w.ndim != 1: + raise TypeError, "expected 1D vector for w" + if len(x) != len(w): + raise TypeError, "expected x and w to have same length" + # apply weights + if rhs.ndim == 2: + lhs *= w[:, np.newaxis] + rhs *= w[:, np.newaxis] + else: + lhs *= w[:, np.newaxis] + rhs *= w + + # set rcond + if rcond is None : + rcond = len(x)*np.finfo(x.dtype).eps + + # scale the design matrix and solve the least squares equation + scl = np.sqrt((lhs*lhs).sum(0)) + c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond) + c = (c.T/scl).T + + # warn on rank reduction + if rank != order and not full: + msg = "The fit may be poorly conditioned" + warnings.warn(msg, pu.RankWarning) + + if full : + return c, [resids, rank, s, rcond] + else : + return c + + +def lagroots(cs): + """ + Compute the roots of a Laguerre series. + + Return the roots (a.k.a "zeros") of the Laguerre series represented by + `cs`, which is the sequence of coefficients from lowest order "term" + to highest, e.g., [1,2,3] is the series ``L_0 + 2*L_1 + 3*L_2``. + + Parameters + ---------- + cs : array_like + 1-d array of Laguerre series coefficients ordered from low to high. + + Returns + ------- + out : ndarray + Array of the roots. If all the roots are real, then so is the + dtype of ``out``; otherwise, ``out``'s dtype is complex. + + See Also + -------- + polyroots + chebroots + + Notes + ----- + Algorithm(s) used: + + Remember: because the Laguerre series basis set is different from the + "standard" basis set, the results of this function *may* not be what + one is expecting. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagroots, lagfromroots + >>> coef = lagfromroots([0, 1, 2]) + >>> coef + array([ 2., -8., 12., -6.]) + >>> lagroots(coef) + array([ -4.44089210e-16, 1.00000000e+00, 2.00000000e+00]) + + """ + # cs is a trimmed copy + [cs] = pu.as_series([cs]) + if len(cs) <= 1 : + return np.array([], dtype=cs.dtype) + if len(cs) == 2 : + return np.array([1 + cs[0]/cs[1]]) + + n = len(cs) - 1 + cs /= cs[-1] + cmat = np.zeros((n,n), dtype=cs.dtype) + cmat[0, 0] = 1 + cmat[1, 0] = -1 + for i in range(1, n): + cmat[i - 1, i] = -i + cmat[i, i] = 2*i + 1 + if i != n - 1: + cmat[i + 1, i] = -(i + 1) + else: + cmat[:, i] += cs[:-1]*(i + 1) + roots = la.eigvals(cmat) + roots.sort() + return roots + + +# +# Laguerre series class +# + +exec polytemplate.substitute(name='Laguerre', nick='lag', domain='[-1,1]') |